Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(42): 26414-26421, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33020310

RESUMO

Current drug discovery efforts focus on identifying lead compounds acting on a molecular target associated with an established pathological state. Concerted molecular changes that occur in specific cell types during disease progression have generally not been identified. Here, we used constellation pharmacology to investigate rat dorsal root ganglion neurons using two models of peripheral nerve injury: chronic constriction injury (CCI) and spinal nerve ligation (SNL). In these well-established models of neuropathic pain, we show that the onset of chronic pain is accompanied by a dramatic, previously unreported increase in the number of bradykinin-responsive neurons, with larger increases observed after SNL relative to CCI. To define the neurons with altered expression, we charted the temporal course of molecular changes following 1, 3, 6, and 14 d after SNL injury and demonstrated that specific molecular changes have different time courses during the progression to a pain state. In particular, ATP receptors up-regulated on day 1 postinjury, whereas the increase in bradykinin receptors was gradual after day 3 postinjury. We specifically tracked changes in two subsets of neurons: peptidergic and nonpeptidergic nociceptors. Significant increases occurred in ATP responses in nAChR-expressing isolectin B4+ nonpeptidergic neurons 1 d postinjury, whereas peptidergic neurons did not display any significant change. We propose that remodeling of ion channels and receptors occurs in a concerted and cell-specific manner, resulting in the appearance of bradykinin-responsive neuronal subclasses that are relevant to chronic pain.


Assuntos
Neurônios/metabolismo , Traumatismos dos Nervos Periféricos/patologia , Córtex Somatossensorial/metabolismo , Animais , Gânglios Espinais/metabolismo , Hiperalgesia/metabolismo , Masculino , Neuralgia/metabolismo , Nociceptores/metabolismo , Ratos , Ratos Sprague-Dawley , Nervos Espinhais/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(10): 5494-5501, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32079727

RESUMO

Somatosensory neurons have historically been classified by a variety of approaches, including structural, anatomical, and genetic markers; electrophysiological properties; pharmacological sensitivities; and more recently, transcriptional profile differentiation. These methodologies, used separately, have yielded inconsistent classification schemes. Here, we describe phenotypic differences in response to pharmacological agents as measured by changes in cytosolic calcium concentration for the rapid classification of neurons in vitro; further analysis with genetic markers, whole-cell recordings, and single-cell transcriptomics validated these findings in a functional context. Using this general approach, which we refer to as tripartite constellation analysis (TCA), we focused on large-diameter dorsal-root ganglion (L-DRG) neurons with myelinated axons. Divergent responses to the K-channel antagonist, κM-conopeptide RIIIJ (RIIIJ), reliably identified six discrete functional cell classes. In two neuronal subclasses (L1 and L2), block with RIIIJ led to an increase in [Ca] i Simultaneous electrophysiology and calcium imaging showed that the RIIIJ-elicited increase in [Ca] i corresponded to different patterns of action potentials (APs), a train of APs in L1 neurons, and sporadic firing in L2 neurons. Genetically labeled mice established that L1 neurons are proprioceptors. The single-cell transcriptomes of L1 and L2 neurons showed that L2 neurons are Aδ-low-threshold mechanoreceptors. RIIIJ effects were replicated by application of the Kv1.1 selective antagonist, Dendrotoxin-K, in several L-DRG subclasses (L1, L2, L3, and L5), suggesting the presence of functional Kv1.1/Kv1.2 heteromeric channels. Using this approach on other neuronal subclasses should ultimately accelerate the comprehensive classification and characterization of individual somatosensory neuronal subclasses within a mixed population.


Assuntos
Gânglios Espinais/citologia , Células Receptoras Sensoriais/classificação , Células Receptoras Sensoriais/fisiologia , Animais , Cálcio/metabolismo , Conotoxinas/farmacologia , Citosol/metabolismo , Gânglios Espinais/efeitos dos fármacos , Canal de Potássio Kv1.1/antagonistas & inibidores , Camundongos , Camundongos Transgênicos , Peptídeos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Células Receptoras Sensoriais/efeitos dos fármacos , Análise de Célula Única , Transcriptoma
3.
Proc Natl Acad Sci U S A ; 116(3): 1059-1064, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30593566

RESUMO

The vast complexity of native heteromeric K+ channels is largely unexplored. Defining the composition and subunit arrangement of individual subunits in native heteromeric K+ channels and establishing their physiological roles is experimentally challenging. Here we systematically explored this "zone of ignorance" in molecular neuroscience. Venom components, such as peptide toxins, appear to have evolved to modulate physiologically relevant targets by discriminating among closely related native ion channel complexes. We provide proof-of-principle for this assertion by demonstrating that κM-conotoxin RIIIJ (κM-RIIIJ) from Conus radiatus precisely targets "asymmetric" Kv channels composed of three Kv1.2 subunits and one Kv1.1 or Kv1.6 subunit with 100-fold higher apparent affinity compared with homomeric Kv1.2 channels. Our study shows that dorsal root ganglion (DRG) neurons contain at least two major functional Kv1.2 channel complexes: a heteromer, for which κM-RIIIJ has high affinity, and a putative Kv1.2 homomer, toward which κM-RIIIJ is less potent. This conclusion was reached by (i) covalent linkage of members of the mammalian Shaker-related Kv1 family to Kv1.2 and systematic assessment of the potency of κM-RIIIJ block of heteromeric K+ channel-mediated currents in heterologous expression systems; (ii) molecular dynamics simulations of asymmetric Kv1 channels providing insights into the molecular basis of κM-RIIIJ selectivity and potency toward its targets; and (iii) evaluation of calcium responses of a defined population of DRG neurons to κM-RIIIJ. Our study demonstrates that bioactive molecules present in venoms provide essential pharmacological tools that systematically target specific heteromeric Kv channel complexes that operate in native tissues.


Assuntos
Conotoxinas , Gânglios Espinais , Potenciais da Membrana , Simulação de Dinâmica Molecular , Neurônios , Superfamília Shaker de Canais de Potássio , Conotoxinas/química , Conotoxinas/metabolismo , Gânglios Espinais/química , Gânglios Espinais/metabolismo , Células HEK293 , Humanos , Transporte de Íons , Neurônios/química , Neurônios/metabolismo , Ligação Proteica , Superfamília Shaker de Canais de Potássio/antagonistas & inibidores , Superfamília Shaker de Canais de Potássio/química , Superfamília Shaker de Canais de Potássio/metabolismo
4.
Mol Pharmacol ; 95(4): 433-441, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30679204

RESUMO

Transient receptor potential (TRP) cation channels are molecular targets of various natural products. TRPA1, a member of TRP channel family, is specifically activated by natural products such as allyl isothiocyanate (mustard oil), cinnamaldehyde (cinnamon), and allicin (garlic). In this study, we demonstrated that TRPA1 is also a target of trans-anethole in fennel oil (FO) and fennel seed extract. Similar to FO, trans-anethole selectively elicited calcium influx in TRPA1-expressing mouse sensory neurons of the dorsal root and trigeminal ganglia. These FO- and anethole-induced calcium responses were blocked by a selective TRPA1 channel antagonist, HC-030031. Moreover, both FO and trans-anethole induced calcium influx and transmembrane currents in HEK293 cells stably overexpressing human TRPA1 channels, but not in regular HEK293 cells. Mutation of the amino acids S873 and T874 binding site of human TRPA1 significantly attenuated channel activation by trans-anethole, whereas pretreating with glutathione, a nucleophile, did not. Conversely, activation of TRPA1 by the electrophile allyl isothiocyanate was abolished by glutathione, but was ostensibly unaffected by mutation of the ST binding site. Finally, it was found that trans-anethole was capable of desensitizing TRPA1, and unlike allyl isothiocyanate, it failed to induce nocifensive behaviors in mice. We conclude that trans-anethole is a selective, nonelectrophilic, and seemingly less-irritating agonist of TRPA1.


Assuntos
Anisóis/farmacologia , Óleos Voláteis/farmacologia , Canal de Cátion TRPA1/agonistas , Derivados de Alilbenzenos , Animais , Canais de Cálcio/metabolismo , Foeniculum/química , Células HEK293 , Humanos , Isotiocianatos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Raízes Nervosas Espinhais/efeitos dos fármacos , Raízes Nervosas Espinhais/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Gânglio Trigeminal/efeitos dos fármacos , Gânglio Trigeminal/metabolismo
5.
Annu Rev Pharmacol Toxicol ; 55: 573-89, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25562646

RESUMO

Constellation pharmacology is a cell-based high-content phenotypic-screening platform that utilizes subtype-selective pharmacological agents to elucidate the cell-specific combinations (constellations) of key signaling proteins that define specific cell types. Heterogeneous populations of native cells, in which the different individual cell types have been identified and characterized, are the foundation for this screening platform. Constellation pharmacology is useful for screening small molecules or for deconvoluting complex mixtures of biologically active natural products. This platform has been used to purify natural products and discover their molecular mechanisms. In the ongoing development of constellation pharmacology, there is a positive feedback loop between the pharmacological characterization of cell types and screening for new drug candidates. As constellation pharmacology is used to discover compounds with novel targeting-selectivity profiles, those new compounds then further help to elucidate the constellations of specific cell types, thereby increasing the content of this high-content platform.


Assuntos
Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Neurônios/efeitos dos fármacos , Farmacologia/métodos , Transdução de Sinais/efeitos dos fármacos , Animais , Humanos , Terapia de Alvo Molecular , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Neurônios/classificação , Neurônios/metabolismo , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Peçonhas/química , Peçonhas/farmacologia
6.
Proc Natl Acad Sci U S A ; 112(16): 5087-92, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25848010

RESUMO

Prey shifts in carnivorous predators are events that can initiate the accelerated generation of new biodiversity. However, it is seldom possible to reconstruct how the change in prey preference occurred. Here we describe an evolutionary "smoking gun" that illuminates the transition from worm hunting to fish hunting among marine cone snails, resulting in the adaptive radiation of fish-hunting lineages comprising ∼100 piscivorous Conus species. This smoking gun is δ-conotoxin TsVIA, a peptide from the venom of Conus tessulatus that delays inactivation of vertebrate voltage-gated sodium channels. C. tessulatus is a species in a worm-hunting clade, which is phylogenetically closely related to the fish-hunting cone snail specialists. The discovery of a δ-conotoxin that potently acts on vertebrate sodium channels in the venom of a worm-hunting cone snail suggests that a closely related ancestral toxin enabled the transition from worm hunting to fish hunting, as δ-conotoxins are highly conserved among fish hunters and critical to their mechanism of prey capture; this peptide, δ-conotoxin TsVIA, has striking sequence similarity to these δ-conotoxins from piscivorous cone snail venoms. Calcium-imaging studies on dissociated dorsal root ganglion (DRG) neurons revealed the peptide's putative molecular target (voltage-gated sodium channels) and mechanism of action (inhibition of channel inactivation). The results were confirmed by electrophysiology. This work demonstrates how elucidating the specific interactions between toxins and receptors from phylogenetically well-defined lineages can uncover molecular mechanisms that underlie significant evolutionary transitions.


Assuntos
Caramujo Conus/fisiologia , Peixes/fisiologia , Comportamento Predatório/fisiologia , Sequência de Aminoácidos , Animais , Bioensaio , Conotoxinas/química , Conotoxinas/toxicidade , Caramujo Conus/anatomia & histologia , Dados de Sequência Molecular , Peptídeos/metabolismo , Filogenia
7.
Proc Natl Acad Sci U S A ; 111(6): 2319-24, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24469798

RESUMO

Change is intrinsic to nervous systems; change is required for learning and conditioning and occurs with disease progression, normal development, and aging. To better understand mammalian nervous systems and effectively treat nervous-system disorders, it is essential to track changes in relevant individual neurons. A critical challenge is to identify and characterize the specific cell types involved and the molecular-level changes that occur in each. Using an experimental strategy called constellation pharmacology, we demonstrate that we can define a specific somatosensory neuronal subclass, cold thermosensors, across different species and track changes in these neurons as a function of development. Cold thermosensors are uniformly responsive to menthol and innocuous cool temperature (17 °C), indicating that they express TRPM8 channels. A subset of cold thermosensors expressed α7 nicotinic acetylcholine receptors (nAChRs) but not other nAChR subtypes. Differences in temperature threshold of cold thermosensors correlated with functional expression of voltage-gated K channels Kv1.1/1.2: Relatively higher expression of KV1.1/1.2 channels resulted in a higher threshold response to cold temperature. Other signaling components varied during development and between species. In cold thermosensors of neonatal mice and rats, ATP receptors were functionally expressed, but the expression disappeared with development. This developmental change occurred earlier in low-threshold than high-threshold cold thermosensors. Most rat cold thermosensors expressed TRPA1 channels, whereas mouse cold thermosensors did not. The broad implications of this study are that it is now feasible to track changes in receptor and ion-channel expression in individual neuronal subclasses as a function of development, learning, disease, or aging.


Assuntos
Neurônios/efeitos dos fármacos , Córtex Somatossensorial/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Técnicas Biossensoriais , Temperatura Baixa , Isotiocianatos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Limiar Sensorial/efeitos dos fármacos , Córtex Somatossensorial/citologia , Córtex Somatossensorial/fisiologia , Especificidade da Espécie , Canal de Cátion TRPA1 , Canais de Cátion TRPC/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo
8.
Proc Natl Acad Sci U S A ; 111(17): 6449-54, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24733934

RESUMO

Previously we defined neuronal subclasses within the mouse peripheral nervous system using an experimental strategy called "constellation pharmacology." Here we demonstrate the broad applicability of constellation pharmacology by extending it to the CNS and specifically to the ventral respiratory column (VRC) of mouse brainstem, a region containing the neuronal network controlling respiratory rhythm. Analysis of dissociated cells from this locus revealed three major cell classes, each encompassing multiple subclasses. We broadly analyzed the combinations (constellations) of receptors and ion channels expressed within VRC cell classes and subclasses. These were strikingly different from the constellations of receptors and ion channels found in subclasses of peripheral neurons from mouse dorsal root ganglia. Within the VRC cell population, a subset of dissociated neurons responded to substance P, putatively corresponding to inspiratory pre-Bötzinger complex (preBötC) neurons. Using constellation pharmacology, we found that these substance P-responsive neurons also responded to histamine, and about half responded to bradykinin. Electrophysiological studies conducted in brainstem slices confirmed that preBötC neurons responsive to substance P exhibited similar responsiveness to bradykinin and histamine. The results demonstrate the predictive utility of constellation pharmacology for defining modulatory inputs into specific neuronal subclasses within central neuronal networks.


Assuntos
Sistema Nervoso Central/citologia , Neurônios/fisiologia , Animais , Bradicinina/farmacologia , Tronco Encefálico/citologia , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/fisiologia , Cálcio/metabolismo , Células Cultivadas , Análise por Conglomerados , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/fisiologia , Histamina/farmacologia , Imageamento Tridimensional , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/citologia , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Neurônios/efeitos dos fármacos , Receptores Colinérgicos/metabolismo , Receptores de Glutamato/metabolismo , Centro Respiratório/citologia , Substância P/farmacologia
9.
J Neurophysiol ; 115(2): 1031-42, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26581874

RESUMO

A pressing need in neurobiology is the comprehensive identification and characterization of neuronal subclasses within the mammalian nervous system. To this end, we used constellation pharmacology as a method to interrogate the neuronal and glial subclasses of the mouse cerebellum individually and simultaneously. We then evaluated the data obtained from constellation-pharmacology experiments by cluster analysis to classify cells into neuronal and glial subclasses, based on their functional expression of glutamate, acetylcholine, and GABA receptors, among other ion channels. Conantokin peptides were used to identify N-methyl-d-aspartate (NMDA) receptor subtypes, which revealed that neurons of the young mouse cerebellum expressed NR2A and NR2B NMDA receptor subunits. Additional pharmacological tools disclosed differential expression of α-amino-3-hydroxy-5-methyl-4-isoxazloepropionic, nicotinic acetylcholine, and muscarinic acetylcholine receptors in different neuronal and glial subclasses. Certain cell subclasses correlated with known attributes of granule cells, and we combined constellation pharmacology with genetically labeled neurons to identify and characterize Purkinje cells. This study illustrates the utility of applying constellation pharmacology to classify neuronal and glial subclasses in specific anatomical regions of the brain.


Assuntos
Cerebelo/citologia , Neuroglia/classificação , Neurônios/classificação , Potenciais de Ação , Animais , Células Cultivadas , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/classificação , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , Neuroglia/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Receptores de Neurotransmissores/agonistas , Receptores de Neurotransmissores/antagonistas & inibidores , Receptores de Neurotransmissores/classificação
10.
Proc Natl Acad Sci U S A ; 109(31): 12758-63, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22778416

RESUMO

Different types of neurons diverge in function because they express their own unique set or constellation of signaling molecules, including receptors and ion channels that work in concert. We describe an approach to identify functionally divergent neurons within a large, heterogeneous neuronal population while simultaneously investigating specific isoforms of signaling molecules expressed in each. In this study we characterized two subclasses of menthol-sensitive neurons from cultures of dissociated mouse dorsal-root ganglia. Although these neurons represent a small fraction of the dorsal-root ganglia neuronal population, we were able to identify them and investigate the cell-specific constellations of ion channels and receptors functionally expressed in each subclass, using a panel of selective pharmacological tools. Differences were found in the functional expression of ATP receptors, TRPA1 channels, voltage-gated calcium-, potassium-, and sodium channels, and responses to physiologically relevant cold temperatures. Furthermore, the cell-specific responses to various stimuli could be altered through pharmacological interventions targeted to the cell-specific constellation of ion channels expressed in each menthol-sensitive subclass. In fact, the normal responses to cold temperature could be reversed in the two neuronal subclasses by the coapplication of the appropriate combination of pharmacological agents. This result suggests that the functionally integrated constellation of signaling molecules in a particular type of cell is a more appropriate target for effective pharmacological intervention than a single signaling molecule. This shift from molecular to cellular targets has important implications for basic research and drug discovery. We refer to this paradigm as "constellation pharmacology."


Assuntos
Antipruriginosos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Mentol/farmacologia , Proteínas do Tecido Nervoso/biossíntese , Neurônios , Canais de Potencial de Receptor Transitório/biossíntese , Animais , Temperatura Baixa , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica/imunologia , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Neurônios/metabolismo , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório/genética
11.
Proc Natl Acad Sci U S A ; 109(5): 1388-95, 2012 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-22307590

RESUMO

We describe a functional profiling strategy to identify and characterize subtypes of neurons present in a peripheral ganglion, which should be extendable to neurons in the CNS. In this study, dissociated dorsal-root ganglion neurons from mice were exposed to various pharmacological agents (challenge compounds), while at the same time the individual responses of >100 neurons were simultaneously monitored by calcium imaging. Each challenge compound elicited responses in only a subset of dorsal-root ganglion neurons. Two general types of challenge compounds were used: agonists of receptors (ionotropic and metabotropic) that alter cytoplasmic calcium concentration (receptor-agonist challenges) and compounds that affect voltage-gated ion channels (membrane-potential challenges). Notably, among the latter are K-channel antagonists, which elicited unexpectedly diverse types of calcium responses in different cells (i.e., phenotypes). We used various challenge compounds to identify several putative neuronal subtypes on the basis of their shared and/or divergent functional, phenotypic profiles. Our results indicate that multiple receptor-agonist and membrane-potential challenges may be applied to a neuronal population to identify, characterize, and discriminate among neuronal subtypes. This experimental approach can uncover constellations of plasma membrane macromolecules that are functionally coupled to confer a specific phenotypic profile on each neuronal subtype. This experimental platform has the potential to bridge a gap between systems and molecular neuroscience with a cellular-focused neuropharmacology, ultimately leading to the identification and functional characterization of all neuronal subtypes at a given locus in the nervous system.


Assuntos
Neurônios/fisiologia , Animais , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/patologia , Gânglios Espinais/fisiologia , Camundongos , Venenos de Moluscos/química , Neurônios/efeitos dos fármacos , Neurônios/patologia , Peptídeos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Tetraetilamônio/farmacologia , Tetrodotoxina/farmacologia
12.
J Nat Prod ; 77(5): 1224-30, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24786728

RESUMO

The griseorhodins belong to a family of extensively modified aromatic polyketides that exhibit activities such as inhibition of HIV reverse transcriptase and human telomerase. The vast structural diversity of this group of polyketides is largely introduced by enzymatic oxidations, which can significantly influence the bioactivity profile. Four new compounds, griseorhodins D-F, were isolated from a griseorhodin producer, Streptomyces sp. CN48+, based upon their enhancement of calcium uptake in a mouse dorsal root ganglion primary cell culture assay. Two of these compounds, griseorhodins D1 and D2, were shown to be identical to the major, previously uncharacterized products of a grhM mutant in an earlier griseorhodin biosynthesis study. Their structures enabled the establishment of a more complete hypothesis for the biosynthesis of griseorhodins and related compounds. The other two compounds, griseorhodins E and F, represent new products of post-polyketide synthase tailoring in griseorhodin biosynthesis and showed significant binding activity in a human dopamine active transporter assay.


Assuntos
Naftoquinonas/isolamento & purificação , Naftoquinonas/farmacologia , Policetídeos/isolamento & purificação , Policetídeos/farmacologia , Streptomyces/química , Animais , Agonistas de Dopamina/química , Agonistas de Dopamina/isolamento & purificação , Humanos , Camundongos , Estrutura Molecular , Complexos Multienzimáticos/metabolismo , Família Multigênica , Naftoquinonas/química , Ressonância Magnética Nuclear Biomolecular , Filipinas , Policetídeo Sintases/metabolismo , Policetídeos/química , Streptomyces/genética , Telomerase/antagonistas & inibidores
14.
ACS Chem Biol ; 16(9): 1654-1662, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34423964

RESUMO

Marine tunicates produce defensive amino-acid-derived metabolites, including 2-(3,5-diiodo-4-methoxyphenyl)ethan-1-amine (DIMTA), but their mechanisms of action are rarely known. Using an assay-guided approach, we found that out of the many different sensory cells in the mouse dorsal root ganglion (DRG), DIMTA selectively affected low-threshold cold thermosensors. Whole-cell electrophysiology experiments using DRG cells, channels expressed in Xenopus oocytes, and human cell lines revealed that DIMTA blocks several potassium channels, reducing the magnitude of the afterhyperpolarization and increasing the baseline intracellular calcium concentration [Ca2+]i of low-threshold cold thermosensors. When injected into mice, DIMTA increased the threshold of cold sensation by >3 °C. DIMTA may thus serve as a lead in the further design of compounds that inhibit problems in the cold-sensory system, such as cold allodynia and other neuropathic pain conditions.


Assuntos
Aminas/metabolismo , Canais de Cálcio/metabolismo , Células Receptoras Sensoriais/metabolismo , Aminas/administração & dosagem , Animais , Cálcio/metabolismo , Gânglios Espinais/metabolismo , Masculino , Camundongos , Técnicas de Patch-Clamp , Transdução de Sinais , Sensação Térmica/fisiologia , Urocordados , Vertebrados
15.
Biochemistry ; 48(19): 4063-73, 2009 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-19309162

RESUMO

Conantokins are venom peptides from marine cone snails that are NMDA receptor antagonists. Here, we report the characterization of a 24 AA conantokin from Conus brettinghami Coomans , H. E. , Moolenbeek , R. G. and Wils , E. ( 1982 ) Basteria 46 ( 1/4 ), 3 - 67 , conantokin-Br (con-Br), the first conantokin that does not have the conserved glutamate residue at position 2. Molecular modeling studies suggest that con-Br has a helical structure between residues 2-13. In contrast to other characterized conantokins, con-Br has a high potency for NMDA receptors with NR2D subunits. To identify determinants for NR2D potency, we synthesized chimeras of con-Br and conantokin-R (con-R); the latter has a approximately 30-fold lower potency for the NR2D subtype. The characterization of two reciprocal chimeras (con-Br/R and con-R/Br), comprising the first 9-10 N-terminal AAs of each conantokin followed by the corresponding C-terminal AAs of the other conantokin demonstrates that determinants for NR2D selectivity are at the N-terminal region. Additional analogues comprising 1-3 amino acid substitutions from each peptide into the homologous region of the other led to the identification of a key determinant; a Tyr residue in position 5 increases potency for NR2D, while Val at this locus causes a decrease. The systematic definition of key determinants in the conantokin peptides for NMDA receptor subtype selectivity is an essential component in the development of conantokin peptides that are highly selective for each specific NMDA receptor subtype.


Assuntos
Conotoxinas/química , Caramujo Conus/química , Peptídeos/química , Receptores de N-Metil-D-Aspartato/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Simulação por Computador , Conotoxinas/metabolismo , Conotoxinas/farmacologia , Eletrofisiologia , Feminino , Concentração Inibidora 50 , Modelos Moleculares , Dados de Sequência Molecular , Oócitos/metabolismo , Oxirredução , Técnicas de Patch-Clamp , Peptídeos/metabolismo , Peptídeos/farmacologia , Perfusão , Dobramento de Proteína , Estrutura Secundária de Proteína , Subunidades Proteicas/metabolismo , Subunidades Proteicas/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Tirosina/metabolismo , Xenopus
16.
Ann N Y Acad Sci ; 1132: 61-70, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18567854

RESUMO

Although the neuromuscular nicotinic acetylcholine receptor (nAChR) is one of the most intensively studied ion channels in the nervous system, the differential roles of fetal and adult subtypes of the nAChR under normal and pathological conditions are still incompletely defined. Until recently, no pharmacological tools distinguished between fetal and adult subtypes. Waglerin toxins (from snake venom) and alphaA(S)-conotoxins (from cone-snail venom) have provided such tools. Because these peptides were characterized by different research groups using different methods, we have: 1) more extensively tested their subtype selectivity, and 2) begun to explore how these peptides may be used in concert to elucidate expression patterns and functions of fetal and adult nAChRs. In heterologous expression systems and native tissues, Waglerin-1 and an alphaA(S)-conotoxin analog, alphaA-OIVA[K15N], are high-affinity, highly selective inhibitors of the adult and fetal muscle nAChRs, respectively. We have used the peptides and their fluorescent derivatives to explore the expression and function of the fetal and adult nAChR subtypes. While fluorescent derivatives of these peptides indicated a gradual transition from fetal to adult muscle nAChRs in mice during the first 2 weeks postnatal, we unexpectedly observed a steeper transition in functional expression in the mouse diaphragm muscle using electrophysiology. As a toolkit of pharmacological agents with complementary specificity, alphaA-OIVA[K15N] and Waglerin-1 should have further utility in determining the roles of fetal and adult nAChR subtypes in development, in mature tissues, and under pathological conditions.


Assuntos
Envelhecimento/fisiologia , Conotoxinas/farmacologia , Venenos de Crotalídeos/farmacologia , Receptores Nicotínicos/classificação , Receptores Nicotínicos/metabolismo , Animais , Eletrofisiologia , Cinética , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Ligação Proteica , Subunidades Proteicas/classificação , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Receptores Nicotínicos/genética , Xenopus laevis
17.
Toxicon ; 52(2): 203-13, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18586049

RESUMO

The conantokins are a family of Conus venom peptides (17-27AA) that are N-methyl-d-aspartate (NMDA) receptor antagonists. Conantokins lack disulfide bridges (six out of seven previously characterized peptides are linear), but contain multiple residues of gamma-carboxyglutamate. These post-translationally modified amino acids confer the largely helical structure of conantokins by coordinating divalent metal ions. Here, we report that a group of fish-hunting cone snails, Conus purpurascens and Conus ermineus, express a distinctive branch of the conantokin family in their venom ducts. Two novel conantokins, conantokin-P (Con-P) and conantokin-E (Con-E) are 24AA long and contain five gamma-carboxyglutamate residues. These two peptides are characterized by a long disulfide loop (12 amino acids including two Gla residues between the Cys residues). The oxidative folding studies of Con-P revealed that the formation of the disulfide bond proceeded significantly faster in the presence of Ca(++) ions. Circular dichroism suggested that Con-P is less helical than other previously characterized conantokins. Con-P blocks NMDA receptors containing NR2B subunit with submicromolar potency. Furthermore, the subtype-selectivity for different NR2 subunits differs from that of the previously characterized conantokins. Our results suggest that different branches of the phylogenetic tree of cone snails have evolved distinct groups of conantokins, each with its own unique biochemical features.


Assuntos
Caramujo Conus/fisiologia , Dissulfetos/química , Venenos de Moluscos/química , Ácido 1-Carboxiglutâmico/química , Sequência de Aminoácidos , Animais , Dicroísmo Circular , Conotoxinas/síntese química , Conotoxinas/química , DNA/análise , Sequências Hélice-Alça-Hélice , Dados de Sequência Molecular , Filogenia , Receptores de N-Metil-D-Aspartato/química
18.
J Neurosci ; 26(35): 8983-7, 2006 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-16943554

RESUMO

It has been shown previously in a number of systems that after an extended block of activity, synaptic strength is increased. We found that an extended block of synaptic activity at the mouse neuromuscular junction, using a tetrodotoxin cuff in vivo, increased synaptic strength by prolonging the evoked endplate current (EPC) decay. Prolongation of EPC decay was accompanied by only modest prolongation of spontaneous miniature EPC (MEPC) decay. Prolongation of EPC decay was reversed when quantal content was lowered by reducing extracellular calcium. These findings suggested that the cause of EPC prolongation was presynaptic in origin. However, when we acutely inhibited fetal-type acetylcholine receptors (AChRs) using a novel peptide toxin (alphaA-conotoxin OIVA[K15N]), prolongation of both EPC and MEPC decay were reversed. We also blocked synaptic activity in a mutant strain of mice in which persistent muscle activity prevents upregulation of fetal-type AChRs. In these mice, there was no prolongation of EPC decay. We conclude that upregulation of fetal-type AChRs after blocking synaptic activity causes modest prolongation of MEPC decay that is accompanied by much greater prolongation of EPC decay. This might occur if acetylcholine escapes from endplates and binds to extrajunctional fetal-type AChRs only during large, evoked EPCs. Our study is the first to demonstrate a functional role for upregulation of extrajunctional AChRs.


Assuntos
Potenciais Evocados , Feto/fisiologia , Junção Neuromuscular/embriologia , Receptores Colinérgicos/metabolismo , Transmissão Sináptica , Animais , Cálcio/metabolismo , Condutividade Elétrica , Líquido Extracelular/metabolismo , Feto/metabolismo , Camundongos , Placa Motora/embriologia , Tempo de Reação , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Tetrodotoxina/farmacologia , Regulação para Cima
19.
Toxicon ; 49(3): 318-28, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17118419

RESUMO

We have characterized the defining members of a novel subfamily of excitatory conotoxins, the short kappaA-conotoxins (kappaA(S)-conotoxins). kappaA-conotoxins PIVE and PIVF (kappaA-PIVE and kappaA-PIVF) were purified from Conus purpurascens venom. Both peptides elicited excitatory activity upon injection into fish. kappaA-PIVE was synthesized for further characterization. The excitatory effects of kappaA-PIVE in vivo were dose dependent, causing hyperactivity at low doses and rapid immobilization at high doses, symptomatic of a type of excitotoxic shock. Consistent with these observations, kappaA-PIVE caused repetitive action potentials in frog motor axons in vitro. Similar results have been reported for other structurally distinct conotoxin families; such peptides appear to be required by most fish-hunting cone snails for the rapid immobilization of prey. Unexpected structure-function relationships were revealed between these peptides and two families of homologous conotoxins: the alphaA-conotoxins (muscle nAChR antagonists) and kappaA-conotoxins (excitotoxins), which all share a common arrangement of cysteine residues (CC-C-C-C-C). Biochemically, the kappaA(S)-conotoxins more closely resemble the alphaA(S)-conotoxins than the other kappaA-conotoxin subfamily, the long kappaA-conotoxins (kappaA(L)-conotoxins); however, kappaA(S)- and alphaA(S)-conotoxins produce different physiological effects. In contrast, the kappaA(S)-and kappaA(L)-conotoxins that diverge in several biochemical characteristics are clearly more similar in their physiological effects.


Assuntos
Conotoxinas/isolamento & purificação , Caramujo Conus , Neurotoxinas/isolamento & purificação , Sequência de Aminoácidos , Animais , Bioensaio , Encéfalo/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Conotoxinas/química , Conotoxinas/farmacologia , Relação Dose-Resposta a Droga , Carpa Dourada , Camundongos , Dados de Sequência Molecular , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Neurotoxinas/química , Neurotoxinas/farmacologia , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Técnicas de Patch-Clamp , Rana pipiens , Relação Estrutura-Atividade , Xenopus
20.
Toxicon ; 49(8): 1193-9, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17382984

RESUMO

The alpha-conotoxin family is comprised of peptides that share the following arrangement of cysteine residues in the primary amino acid sequence: -CC-C-C-, where each dash represents a variable number of amino acids. The number of amino acids between cysteine residues has been used to group the alpha-conotoxins into distinct subfamilies. These subfamilies include the alpha 4/7-, alpha 4/3- and alpha 3/5-conotoxins, so named for the number of amino acids between 2nd/3rd and 3rd/4th cysteine residues, respectively. The alpha 3/5-conotoxins antagonize vertebrate-muscle nicotinic acetylcholine receptors (nAChRs), while the alpha 4/7- and alpha 4/3-conotoxins primarily inhibit vertebrate neuronal nAChRs. To date, these three subfamilies are the most extensively characterized of the alpha-conotoxin family. Here we report the purification and characterization of an unusual alpha 4/4-conotoxin, alpha-conotoxin PIB (alpha-PIB), from the venom of Conus purpurascens, with the following amino-acid sequence: ZSOGCCWNPACVKNRC (Z=pyroglutamate, O=hydroxyproline). This peptide demonstrates high affinity inhibition of vertebrate-muscle nAChRs, and paralytic effects when injected in vivo. Testing of alpha-PIB against other receptors indicated that the inhibitory effect is specific for skeletal muscle nAChRs. alpha-PIB shares the key biochemical and pharmacological characteristics of the alpha-conotoxin family.


Assuntos
Conotoxinas/genética , Conotoxinas/toxicidade , Caramujo Conus/química , Músculo Esquelético/efeitos dos fármacos , Antagonistas Nicotínicos/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Cromatografia Líquida de Alta Pressão , Eletrofisiologia , Carpa Dourada , Espectrometria de Massas , Dados de Sequência Molecular , Músculo Esquelético/metabolismo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa