Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Bull Environ Contam Toxicol ; 98(5): 589-594, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28341993

RESUMO

Methods are needed to prepare stable suspensions of engineered nanoparticles in aqueous matrixes for ecotoxicity testing and ecological risk assessments. We developed a novel method of preparing large volumes of silver nanoparticles (AgNP) in suspension using a commercially available rotor-stator dispersion mill. AgNP in powder form (PVP capped, 30-50 nm) was suspended in deionized water and natural lake water at 1 g/L and the addition of 0.025% (w/v) gum arabic (GA) increased stability over 2 weeks after preparation. The concentrations of total and dissolved Ag in the suspensions did not change significantly over this period. Analysis of hydrodynamic diameters of the major peaks in suspension using dynamic light scattering showed that suspensions prepared with GA were stable, and this was confirmed by single-particle ICP-MS analysis. This method for dispersing AgNPs provides an inexpensive, yet reliable method for preparing suspensions for toxicity testing and ecosystem level studies of the fate and biological effects of AgNPs in aquatic ecosystems.


Assuntos
Monitoramento Ambiental/métodos , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Prata/química , Suspensões/química , Testes de Toxicidade/métodos , Água Doce/química
2.
Anal Bioanal Chem ; 408(19): 5169-77, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27311958

RESUMO

Silver nanoparticles (AgNPs) are used in a large number of consumer products due to their antimicrobial and antifungal properties, and these materials may be discharged into municipal wastewater. Wastewater treatment, including advanced oxidation processes (AOPs), may modify the forms of silver in wastewater before they are discharged into surface waters. In addition, little is known about the changes in AgNPs that occur in natural waters under different environmental conditions. In this project, we utilized single particle ICP-MS (spICP-MS) and dynamic light scattering (DLS) analytical techniques to evaluate changes in the number and size of AgNPs in laboratory experiments with milliQ water under different environmental conditions, as well as during ozonation. Changes in the number and size of AgNPs determined by spICP-MS were evidence of altered stability of the nanoparticles. Increased rates of dissolution occurred under extremes of pH. Lower temperature decreased the rate of dissolution of AgNP relative to the dissolution in treatments at room temperature. The addition of chloride resulted in the loss of AgNPs from suspension due to agglomeration and precipitation. Ozonation led to a rapid decline in the number and size of AgNPs, as indicated by both spICP-MS and DLS analysis. An increase in the concentration of dissolved silver in the ozone treatments was evidence that changes in particle size were a result of oxidative dissolution of AgNPs to silver ion. Graphical abstract Single particle ICP-MS is used to evaluate dissolution of silver nanoparticles under different environmental conditions, including water treatment by ozonation.

3.
Sci Total Environ ; : 174344, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964417

RESUMO

Increasing consumption of pharmaceuticals and the respective consequences for the aquatic environment have been the focus of many studies over the last thirty years. Various aspects in this field were investigated, considering diverse pharmaceutical groups and employing a wide range of research methodologies. Various questions from the perspectives of different research areas were devised and answered, resulting in a large mix of individual findings and conclusions. Collectively, the results of the studies offer a comprehensive overview. The large variety of methods and strategies, however, demands close attention when comparing and combining information from heterogeneous projects. This review critically examines the application of diverse sampling techniques as well as analytical methods in investigations concerning the behavior of pharmaceutically active compounds (PhACs) and contrast agents (CAs) in wastewater treatment plants (WWTPs). The combination of sampling and analysis is discussed with regard to its suitability for specific scientific problems. Different research focuses need different methods and answer different questions. An overview of studies dealing with the fate and degradation of PhACs and CAs in WWTPs is presented, discussing their strategic approaches and findings. This review includes surveys of anticancer drugs, antibiotics, analgesics and anti-inflammatory drugs, antidiabetics, beta blockers, hormonal contraceptives, lipid lowering agents, antidepressants as well as contrast agents for X-ray and magnetic resonance imaging.

4.
Environ Sci Technol ; 46(21): 11929-36, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23062026

RESUMO

The fate of Gadolinium (Gd)-based contrast agents for magnetic resonance imaging (MRI) during sewage treatment was investigated. The total concentration of Gd in influent and effluent 2 and 24 h composite samples was determined by means of isotope dilution analysis. The balancing of Gd input and output of a sewage plant over seven days indicated that approximately 10% of the Gd is removed during treatment. Batch experiments simulating the aeration tank of a sewage treatment plant confirmed the Gd complex removal during activated sludge treatment. For speciation analysis of the Gd complexes in wastewater samples, high performance liquid chromatography (HPLC) was hyphenated to inductively coupled plasma sector field mass spectrometry (ICP-SFMS). Separation of the five predominantly used contrast agents was carried out on a new hydrophilic interaction liquid chromatography stationary phase in less than 15 min. A limit of detection (LOD) of 0.13 µg/L and a limit of quantification of 0.43 µg/L could be achieved for the Gd chelates without having to apply enrichment techniques. Speciation analysis of the 24 h composite samples revealed that 80% of the Gd complexes are present as Gd-BT-DO3A in the sampled treatment plant. The day-of-week dependent variation of the complex load followed the variation of the total Gd load, indicating a similar behavior. The analysis of sewage sludge did not prove the presence of anthropogenic Gd. However, in the effluent of the chamber filter press, which was used for sludge dewatering, two of the contrast agents and three other unknown Gd species were observed. This indicates that species transformation took place during anaerobic sludge treatment.


Assuntos
Meios de Contraste/análise , Gadolínio/análise , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Técnicas de Diluição do Indicador
5.
Anal Bioanal Chem ; 404(8): 2133-41, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23001305

RESUMO

The risk of transmetalation reactions between gadolinium complexes used as contrast agents for magnetic resonance imaging (MRI) and iron ions is examined under physiological conditions. A fast separation of gadopentetate (Gd-DTPA) and gadoterate (Gd-DOTA) and the respective Fe transmetalation products was accomplished by high-performance liquid chromatography. For detection, the LC system was coupled to an Orbitrap electrospray ionization mass spectrometer to achieve a detection limit as low as 50 nmol/L for Fe-DTPA. In vitro experiments revealed the formation of Fe-DTPA in blood plasma samples with Gd-DTPA and Fe(III) citrate. Analysis after different incubation times of the sample showed that the exchange of the metal ions is significantly dependent on time. If this reaction takes place in the body of MRI patients, this could explain why the disease nephrogenic systemic fibrosis (NSF) develops only after a longer retention of the linear Gd complex in the patient's body. Transmetalation either with endogenous Fe(II)/Fe(III) ions or with parenteral Fe supplements with Gd-DTPA could not be proven under the applied conditions. The high stability of Gd-DOTA is responsible that transmetalation between this macrocylic complex and neither of the Fe species was observed. These findings are important because NSF only develops after administration of Gd complexes with linear ligands. The results indicate that transmetalation reactions may be a trigger for the development of NSF, if free Fe(III) ions are accessible during a prolonged dwell time of Gd complexes with linear ligands in the patient's body.


Assuntos
Meios de Contraste/química , Gadolínio DTPA/química , Ferro/química , Quelantes/química , Química Analítica , Cromatografia Líquida de Alta Pressão , Compostos Férricos/sangue , Compostos Férricos/química , Compostos Ferrosos/sangue , Compostos Ferrosos/química , Humanos , Ferro/sangue , Imageamento por Ressonância Magnética/métodos , Estrutura Molecular
6.
Anal Chem ; 81(9): 3600-7, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19338293

RESUMO

To study transmetalation effects of the gadolinium-based contrast agent Magnevist (Gd-DTPA), the first analytical method for the simultaneous determination of Gd-DTPA and its transmetalation products in complex clinical samples was developed. The high separation efficiency of capillary electrophoresis (CE) was employed to separate Gd-DTPA, Fe-DTPA, Cu-DTPA, Zn-DTPA, and the free DTPA (diethylenetriaminepentaacetic acid) ligand. The coupling of CE with electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS) provided the required sensitivity and excellent selectivity for the analysis of complex samples, such as blood plasma and whole blood. Separation and detection parameters were optimized, and crucial steps for CE/MS method development are pointed out. Limit of detection (LOD) is 5 x 10(-7) mol/L, limit of quantification (LOQ) is 1.7 x 10(-6) mol/L, and the linear range comprises 2 decades, starting at the limit of quantification. To determine recovery rates, precision, and accuracy of the method, blank plasma samples were spiked with Gd-DTPA in three different concentrations. Blood plasma samples from 10 patients with normal renal function, having received Magnevist, were analyzed for Gd-DTPA and possible transmetalation products by CE/ESI-TOF-MS. The method was validated by determination of the total Gd concentration using inductively coupled plasma optical emission spectroscopy (ICP-OES). Transmetalation assays of Magnevist with and without supplementary iron were carried out in incubated whole blood samples.


Assuntos
Análise Química do Sangue/métodos , Meios de Contraste/análise , Meios de Contraste/química , Gadolínio DTPA/sangue , Gadolínio DTPA/química , Metais/química , Adulto , Idoso , Eletroforese Capilar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização por Electrospray
7.
Electrophoresis ; 30(10): 1766-73, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19441033

RESUMO

A novel method for the analysis of Gadolinium-based contrast agents in complex clinical matrices is presented. Three commonly applied ionic contrast agents for magnetic resonance imaging were separated by CE and detected by ESI-MS. Blank urine samples were spiked with Dotarem (Gd-DOTA, Gadolinium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid), Magnevist (Gd-DTPA, Gadolinium-diethylenetriaminepentaacetic acid) and Multihance (Gd-BOPTA, Gadolinium-benzyloxymethyl-diethylenetriaminepentaacetic acid) to determine the recovery rates. The figures of merit were determined with LODs as low as 2.0 x 10(-7) mol/L for Gd-DOTA, 5.0 x 10(-7) mol/L for Gd-DTPA and 1.0 x 10(-6) mol/L for Gd-BOPTA. The respective LOQs were 6.6 x 10(-7) mol/L for Gd-DOTA, 1.5 x 10(-6) mol/L for Gd-DTPA and 3.3 x 10(-6) mol/L for Gd-BOPTA. The linear working range comprised two orders of magnitude starting at the LOQ, with regression coefficients of R > or = 0.999 for all investigated analytes. Using this CE-MS method, Gd-DOTA was quantified in seven urine samples obtained at different times after delivery from a volunteer magnetic resonance imaging patient who was treated with Dotarem. Additionally, total Gd concentrations were determined by means of ICP-optical emission spectroscopy to validate the CE-MS data. To compensate for dietary dilution effects of the urine samples, creatinine was determined by HPLC with UV/Vis absorption detection. Gd-DOTA concentrations were normalized to urinary creatinine, illustrating the fast excretion kinetics of Gd-DOTA.


Assuntos
Meios de Contraste/análise , Meios de Contraste/química , Eletroforese Capilar/métodos , Imageamento por Ressonância Magnética , Espectrometria de Massas/métodos , Adulto , Gadolínio DTPA/química , Gadolínio DTPA/urina , Compostos Heterocíclicos/química , Compostos Heterocíclicos/urina , Humanos , Aumento da Imagem , Cinética , Masculino , Meglumina/análogos & derivados , Meglumina/química , Meglumina/urina , Compostos Organometálicos/química , Compostos Organometálicos/urina
8.
Anal Chem ; 80(21): 8163-70, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18821778

RESUMO

The first analytical method for simultaneous speciation analysis of five of the most important gadolinium-based magnetic resonance imaging (MRI) contrast agents in blood plasma samples was developed. Gd-DTPA (Magnevist), Gd-BT-DO3A (Gadovist), Gd-DOTA (Dotarem), Gd-DTPA-BMA (Omniscan), and Gd-BOPTA (Multihance) were separated by hydrophilic interaction liquid chromatography (HILIC) and detected with electrospray mass spectrometry (ESI-MS). Spiking experiments of blank plasma with Magnevist and Gadovist were performed to determine the analytical figures of merit and the recovery rates. The limits of detection ranged from 1 x 10 (-7) to 1 x 10 (-6) mol/L depending on the ionization properties of the individual compounds, and limits of quantification ranged from 5 x 10 (-7) to 5 x 10 (-6) mol/L. The linear concentration range comprised 2 orders of magnitude. With application of this method, blood plasma samples of 10 healthy volunteers, with Magnevist or Gadovist medication, were analyzed for Gd-DTPA and Gd-BT-DO3A, respectively. The obtained results were successfully validated with inductively coupled plasma-optical emission spectroscopy (ICP-OES).


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Meios de Contraste/análise , Meios de Contraste/metabolismo , Gadolínio/sangue , Interações Hidrofóbicas e Hidrofílicas , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Cromatografia Líquida de Alta Pressão/instrumentação , Meios de Contraste/química , Feminino , Gadolínio/química , Humanos , Masculino , Pessoa de Meia-Idade , Estrutura Molecular
9.
PLoS One ; 13(8): e0201412, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30110351

RESUMO

Studies of the fate and toxicity of nanoparticles, including nanosilver (AgNPs), have been primarily conducted using bench scale studies over relatively short periods of time. To better understand the fate of AgNPs in natural aquatic ecosystems over longer time scales and ecological settings, we released suspensions of AgNPs (30-50 nm, capped with polyvinylpyrrolidone) into a boreal lake at the Experimental Lakes Area in Canada. Approximately 9 kg of silver was added from a shoreline point source from June to October 2014, which resulted in total Ag (TAg) concentrations of about 10 µg L-1 or less. In addition, dissolved Ag concentrations (DAg) were typically very low. Using single particle inductively coupled plasma mass spectrometry (sp-ICP-MS) analysis of grab samples, we found that the nanoparticles typically ranged in the 40-60 nm size class and were widely distributed throughout the lake, while larger aggregates (i.e. >100 nm) were infrequently detected. The highest occurrence of aggregates was found near the addition site; however, size distributions did not vary significantly among spatial locations or time suggesting rapid dispersal upon entry into the lake. Lake stratification at the thermocline was not a barrier to mobility of the AgNPs, as the particles were also detected in the hypolimnion. Environmental factors influenced Ag size distributions over sampling locations and time. Total dissolved phosphorus, bacterioplankton chlorophyll-a, and sampling time strongly correlated with aggregation and dissolution dynamics. AgNPs thus appear to be relatively mobile and persistent over the growing season in lake ecosystems.


Assuntos
Lagos/química , Nanopartículas Metálicas/química , Prata/química , Canadá
10.
Environ Sci Process Impacts ; 18(2): 200-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26701777

RESUMO

Gadolinium (Gd) based contrast agents (CA) are used to enhance magnetic resonance imaging. As a consequence of excretion by patients and insufficient elimination in wastewater treatment plants they are detected in high concentrations in surface water. At present, little is known about the uptake of these species by living organisms in aquatic systems. Therefore the uptake of gadolinium containing chelates by plants and animals grown in exposed water or on soil irrigated with exposed water was investigated. For this purpose two types of plants were treated with two different contrast agents. The uptake of the Gd contrast agents was studied by monitoring the elemental distribution with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). This technique allows the multi-elemental analysis of solid samples with high resolution and little sample preparation. The analysis of L. minor showed that the uptake of Gd correlated with the concentration of gadodiamide in the water. The higher the concentration in the exposed water, the larger the Gd signal in the LA-ICP-MS acquired image. Exposure time experiments showed saturation within one day. The L. minor had contact with the CAs through roots and fronds, whereas the L. sativum only showed uptake through the roots. These results show that an external absorption of the CA through the leaves of L. sativum was impossible. All the analyzed parts of the plant showed Gd signal from the CA; the highest being at the main vein of the leaf. It is shown that the CAs can be taken up from plants. Furthermore, the uptake and distribution of Gd in Daphnia magna were shown. The exposure via cultivation medium is followed by Gd signals on the skin and in the area of the intestine, while the uptake via exposed nutrition algae causes the significantly highest Gd intensities in the area of the intestine. Because there are hints of negative effects for human organism these findings are important as they show that Gd based CAs may reach the human food chain via plants and animals growing in contaminated water or plants growing in fields which are irrigated with surface water.


Assuntos
Meios de Contraste/isolamento & purificação , Daphnia/química , Gadolínio/isolamento & purificação , Lepidium sativum/química , Águas Residuárias/química , Poluentes Químicos da Água/isolamento & purificação , Zygnematales/química , Animais , Quelantes , Daphnia/crescimento & desenvolvimento , Feminino , Humanos , Lasers , Lepidium sativum/crescimento & desenvolvimento , Espectrometria de Massas , Plantas/química , Zygnematales/crescimento & desenvolvimento
11.
Sci Total Environ ; 569-570: 223-233, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27343941

RESUMO

Nanomaterials such as nanosilver (AgNP) can be released into the aquatic environment through production, usage, and disposal. Sensitive and cost-effective methods are needed to monitor AgNPs in the environment. This work is hampered by a lack of sensitive methods to detect nanomaterials in environmental matrixes. The present study focused on the development, calibration and application of a passive sampling technique for detecting AgNPs in aquatic matrixes. A Carbon Nanotube Integrative Sampler (CNIS) was developed using multi-walled carbon nanotubes (CNTs) as the sorbent for accumulating AgNPs and other Ag species from water. Sampling rates were determined in the laboratory for different sampler configurations and in different aquatic matrixes. The sampler was field tested at the Experimental Lakes Area, Canada, in lake water dosed with AgNPs. For a configuration of the CNIS consisting of CNTs bound to carbon fiber (i.e. CNT veil) placed in Chemcatcher® housing, the time weighted average (TWA) concentrations of silver estimated from deployments of the sampler in lake mesocosms dosed with AgNPs were similar to the measured concentrations of "colloidal silver" (i.e. <0.22µm in size) in the water column. For a configuration of CNIS consisting of CNTs in loose powder form placed in a custom made housing that were deployed in a whole lake dosed with AgNPs, the estimated TWA concentrations of "CNIS-labile Ag" were similar to the concentrations of total silver measured in the epilimnion of the lake. However, sampling rates for the CNIS in various matrixes are relatively low (i.e. 1-20mL/day), so deployment periods of several weeks are required to detect AgNPs at environmentally relevant concentrations, which can allow biofilms to develop on the sampler and could affect the sampling rates. With further development, this novel sampler may provide a simple and sensitive method for screening for the presence of AgNPs in surface waters.


Assuntos
Monitoramento Ambiental/métodos , Nanopartículas Metálicas/análise , Nanotubos de Carbono/estatística & dados numéricos , Prata/análise , Poluentes Químicos da Água/análise , Lagos/análise , Ontário
12.
Anal Chim Acta ; 764: 1-16, 2013 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-23374209

RESUMO

The development of analytical methods and strategies to determine gadolinium and its complexes in biological and environmental matrices is evaluated in this review. Gadolinium (Gd) chelates are employed as contrast agents for magnetic resonance imaging (MRI) since the 1980s. In general they were considered as safe and well-tolerated, when in 2006, the disease nephrogenic systemic fibrosis (NSF) was connected to the administration of MRI contrast agents based on Gd. Pathogenesis and etiology of NSF are yet unclear and called for the development of several analytical methods to obtain elucidation in this field. Determination of Gd complex stability in vitro and in vivo, as well as the quantification of Gd in body fluids like blood and urine was carried out. Separation of the Gd chelates was achieved with high performance liquid chromatography (HPLC) and capillary electrophoresis (CE). For detection, various methods were employed, including UV-vis absorbance and fluorescence spectroscopy, electrospray ionization mass spectrometry (ESI-MS) and inductively coupled plasma mass spectrometry (ICP-MS). A second challenge for analysts was the discovery of high concentrations of anthropogenic Gd in surface waters draining populated areas. The source could soon be determined to be the increasing administration of Gd complexes during MRI examinations. Identification and quantification of the contrast agents was carried out in various surface and groundwater samples to determine the behavior and fate of the Gd chelates in the environment. The improvement of limits of detection (LOD) and limits of quantification (LOQ) was and still is the goal of past and ongoing projects.


Assuntos
Cromatografia Líquida de Alta Pressão , Meios de Contraste/análise , Gadolínio/química , Espectrometria de Massas , Dermopatia Fibrosante Nefrogênica/etiologia , Quelantes/química , Meios de Contraste/metabolismo , Complexos de Coordenação/análise , Complexos de Coordenação/metabolismo , Humanos , Imageamento por Ressonância Magnética , Dermopatia Fibrosante Nefrogênica/metabolismo , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análise
13.
J Chromatogr A ; 1308: 125-31, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-23958698

RESUMO

The application of gadolinium(Gd)-based contrast agents to support medical examinations by magnetic resonance imaging (MRI) results in a large input of Gd into the environment. The long-term effects of the anthropogenic Gd anomaly, especially on aqueous ecosystems, are mostly unknown. The identification and quantification of Gd-based contrast agents in the aquatic environment requires the use of powerful methods of speciation analysis. Therefore, a method employing the hyphenation of hydrophilic interaction liquid chromatography (HILIC) and inductively coupled plasma sector field mass spectrometry (ICP-SFMS) with sample introduction as dry aerosol generated by desolvation was developed. The desolvation resulted in improved limits of detection for the predominantly used contrast agents well below 0.10 nmol/L. This method was subsequently used for the analysis of Gd species in surface waters. Samples from a nature reserve in the city of Münster (Germany), into which the effluent from the city's main wastewater treatment plant enters the environment, were examined. The contrast agents Gd-DTPA, Gd-DOTA and Gd-BT-DO3A were identified and quantified in constant ratios in those samples. The concentrations were found in a range from 0.59 nmol/L for Gd-DOTA up to 3.55 nmol/L for Gd-BT-DO3A. As a result of mass balancing, the contrast agent concentration was found to account for 74-89% of total Gd concentrations, possibly indicating the presence of further Gd species. Nevertheless, there was no direct indication of species transformation by transmetallation reactions resulting in such Gd species. The determination of REE patterns by means of ICP-MS confirmed the results of speciation analysis showing significant Gd anomalies.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Meios de Contraste/análise , Gadolínio DTPA/análise , Compostos Heterocíclicos/análise , Compostos Organometálicos/análise , Poluentes Químicos da Água/análise , Água Doce/química , Alemanha , Interações Hidrofóbicas e Hidrofílicas , Limite de Detecção , Espectrometria de Massas/métodos , Análise de Regressão
14.
J Chromatogr A ; 1240: 147-55, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22525874

RESUMO

Oxidative and potentially metabolic pathways of the five most frequently used contrast agents for magnetic resonance imaging (MRI) based on gadolinium (Gd) are examined. The oxidation of gadopentetate (Gd-DTPA) was studied with a focus on electrochemical oxidation coupled to analytical separation methods and mass spectrometric detection. Mass voltammograms generated with online electrochemistry/electrospray ionization mass spectrometry (EC/ESI-MS) gave a first overview of oxidation products. Two potential metabolites could be detected, with the major metabolite originating from an N-dealkylation (M1). Four other Gd complexes used as MRI contrast agents showed similar reactions in the EC/ESI-MS set-up. To obtain more information about the properties and the quantity of the generated products, a wide range of separation and detection techniques was applied in further experiments. Gd-DTPA and its N-dealkylation product were successfully separated by capillary electrophoresis (CE) and detected by ESI-MS and inductively coupled plasma (ICP)-MS, respectively. CE experiments indicated that the second oxidation product (M2) detected in the mass voltammogram is unstable and decomposes to M1. Employing EC/CE/ICP-MS, the quantification of the metabolites could be achieved. Under the employed conditions, 8.8% of Gd-DTPA was oxidized. Online experiments with high performance liquid chromatography (HPLC) coupled to ESI-MS confirmed the decomposition of M2. Time-resolved measurements showed a decrease of M2 and a simultaneous increase in M1 within only a few minutes, confirming the conclusion that M2 degrades to M1, while EC/LC/ICP-MS measurements provided quantitative evidence as well. The EC/MS simulation shows that a metabolic transformation should not be disregarded in further research regarding the trigger of nephrogenic systemic fibrosis (NSF), a disease exclusively observed for several hundred dialysis patients after delivery of Gd-based MRI contrast agents with linear structure. Furthermore, the used methods may allow the prediction of options for the oxidative removal of these contrast agents from wastewaters.


Assuntos
Meios de Contraste/química , Técnicas Eletroquímicas/métodos , Gadolínio/química , Compostos Organometálicos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Cromatografia Líquida de Alta Pressão , Meios de Contraste/metabolismo , Gadolínio/metabolismo , Humanos , Masculino , Microssomos Hepáticos/metabolismo , Compostos Organometálicos/metabolismo , Oxirredução , Ratos , Ratos Sprague-Dawley
15.
Metallomics ; 3(10): 1035-40, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21847492

RESUMO

A simple and rapid method to determine gadolinium (Gd) concentrations in urine and blood plasma samples by means of total reflection X-ray fluorescence (TXRF) was developed. With a limit of detection (LOD) of 100 µg L(-1) in urine and 80 µg L(-1) in blood plasma and a limit of quantification (LOQ) of 330 µg L(-1) in urine and 270 µg L(-1) in blood plasma, it allows analyzing urine samples taken from magnetic resonance imaging (MRI) patients during a period of up to 20 hours after the administration of Gd-based MRI contrast agents by means of TXRF. By parallel determination of the urinary creatinine concentration, it was possible to monitor the excretion kinetics of Gd from the patient's body. The Gd concentration in blood plasma samples, taken immediately after an MRI examination, could be determined after rapid and easy sample preparation by centrifugation. All measurements were validated with inductively coupled plasma mass spectrometry (ICP-MS). TXRF is considered to be an attractive alternative for fast and simple Gd analysis in human body fluids during daily routine in clinical laboratories.


Assuntos
Gadolínio/sangue , Gadolínio/urina , Espectrometria por Raios X/métodos , Adulto , Humanos , Limite de Detecção , Masculino , Espectrometria por Raios X/economia , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa