Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 110(8): 1377-1393, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37451268

RESUMO

Phosphoinositides (PIs) are membrane phospholipids produced through the local activity of PI kinases and phosphatases that selectively add or remove phosphate groups from the inositol head group. PIs control membrane composition and play key roles in many cellular processes including actin dynamics, endosomal trafficking, autophagy, and nuclear functions. Mutations in phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2] phosphatases cause a broad spectrum of neurodevelopmental disorders such as Lowe and Joubert syndromes and congenital muscular dystrophy with cataracts and intellectual disability, which are thus associated with increased levels of PI(4,5)P2. Here, we describe a neurodevelopmental disorder associated with an increase in the production of PI(4,5)P2 and with PI-signaling dysfunction. We identified three de novo heterozygous missense variants in PIP5K1C, which encodes an isoform of the phosphatidylinositol 4-phosphate 5-kinase (PIP5KIγ), in nine unrelated children exhibiting intellectual disability, developmental delay, acquired microcephaly, seizures, visual abnormalities, and dysmorphic features. We provide evidence that the PIP5K1C variants result in an increase of the endosomal PI(4,5)P2 pool, giving rise to ectopic recruitment of filamentous actin at early endosomes (EEs) that in turn causes dysfunction in EE trafficking. In addition, we generated an in vivo zebrafish model that recapitulates the disorder we describe with developmental defects affecting the forebrain, including the eyes, as well as craniofacial abnormalities, further demonstrating the pathogenic effect of the PIP5K1C variants.


Assuntos
Deficiência Intelectual , Fosfatidilinositóis , Animais , Síndrome , Actinas , Peixe-Zebra/genética , Deficiência Intelectual/genética , Monoéster Fosfórico Hidrolases/genética , Fosfatos de Fosfatidilinositol
2.
J Med Genet ; 60(2): 163-173, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35256403

RESUMO

BACKGROUND: Postzygotic activating PIK3CA variants cause several phenotypes within the PIK3CA-related overgrowth spectrum (PROS). Variant strength, mosaicism level, specific tissue involvement and overlapping disorders are responsible for disease heterogeneity. We explored these factors in 150 novel patients and in an expanded cohort of 1007 PIK3CA-mutated patients, analysing our new data with previous literature to give a comprehensive picture. METHODS: We performed ultradeep targeted next-generation sequencing (NGS) on DNA from skin biopsy, buccal swab or blood using a panel including phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin pathway genes and GNAQ, GNA11, RASA1 and TEK. Additionally, 914 patients previously reported were systematically reviewed. RESULTS: 93 of our 150 patients had PIK3CA pathogenetic variants. The merged PROS cohort showed that PIK3CA variants span thorough all gene domains, some were exclusively associated with specific PROS phenotypes: weakly activating variants were associated with central nervous system (CNS) involvement, and strongly activating variants with extra-CNS phenotypes. Among the 57 with a wild-type PIK3CA allele, 11 patients with overgrowth and vascular malformations overlapping PROS had variants in GNAQ, GNA11, RASA1 or TEK. CONCLUSION: We confirm that (1) molecular diagnostic yield increases when multiple tissues are tested and by enriching NGS panels with genes of overlapping 'vascular' phenotypes; (2) strongly activating PIK3CA variants are found in affected tissue, rarely in blood: conversely, weakly activating mutations more common in blood; (3) weakly activating variants correlate with CNS involvement, strong variants are more common in cases without; (4) patients with vascular malformations overlapping those of PROS can harbour variants in genes other than PIK3CA.


Assuntos
Malformações Vasculares , Humanos , Mutação/genética , Fenótipo , Genótipo , Classe I de Fosfatidilinositol 3-Quinases/genética , Malformações Vasculares/diagnóstico , Malformações Vasculares/genética , Proteína p120 Ativadora de GTPase/genética
3.
Am J Hum Genet ; 106(5): 596-610, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32243864

RESUMO

Weaver syndrome (WS), an overgrowth/intellectual disability syndrome (OGID), is caused by pathogenic variants in the histone methyltransferase EZH2, which encodes a core component of the Polycomb repressive complex-2 (PRC2). Using genome-wide DNA methylation (DNAm) data for 187 individuals with OGID and 969 control subjects, we show that pathogenic variants in EZH2 generate a highly specific and sensitive DNAm signature reflecting the phenotype of WS. This signature can be used to distinguish loss-of-function from gain-of-function missense variants and to detect somatic mosaicism. We also show that the signature can accurately classify sequence variants in EED and SUZ12, which encode two other core components of PRC2, and predict the presence of pathogenic variants in undiagnosed individuals with OGID. The discovery of a functionally relevant signature with utility for diagnostic classification of sequence variants in EZH2, EED, and SUZ12 supports the emerging paradigm shift for implementation of DNAm signatures into diagnostics and translational research.


Assuntos
Anormalidades Múltiplas/genética , Hipotireoidismo Congênito/genética , Anormalidades Craniofaciais/genética , Metilação de DNA , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Deformidades Congênitas da Mão/genética , Deficiência Intelectual/genética , Mutação , Complexo Repressor Polycomb 2/genética , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Masculino , Mosaicismo , Mutação de Sentido Incorreto/genética , Proteínas de Neoplasias , Reprodutibilidade dos Testes , Fatores de Transcrição , Adulto Jovem
4.
Genet Med ; 25(1): 49-62, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36322151

RESUMO

PURPOSE: Pathogenic variants in genes involved in the epigenetic machinery are an emerging cause of neurodevelopment disorders (NDDs). Lysine-demethylase 2B (KDM2B) encodes an epigenetic regulator and mouse models suggest an important role during development. We set out to determine whether KDM2B variants are associated with NDD. METHODS: Through international collaborations, we collected data on individuals with heterozygous KDM2B variants. We applied methylation arrays on peripheral blood DNA samples to determine a KDM2B associated epigenetic signature. RESULTS: We recruited a total of 27 individuals with heterozygous variants in KDM2B. We present evidence, including a shared epigenetic signature, to support a pathogenic classification of 15 KDM2B variants and identify the CxxC domain as a mutational hotspot. Both loss-of-function and CxxC-domain missense variants present with a specific subepisignature. Moreover, the KDM2B episignature was identified in the context of a dual molecular diagnosis in multiple individuals. Our efforts resulted in a cohort of 21 individuals with heterozygous (likely) pathogenic variants. Individuals in this cohort present with developmental delay and/or intellectual disability; autism; attention deficit disorder/attention deficit hyperactivity disorder; congenital organ anomalies mainly of the heart, eyes, and urogenital system; and subtle facial dysmorphism. CONCLUSION: Pathogenic heterozygous variants in KDM2B are associated with NDD and a specific epigenetic signature detectable in peripheral blood.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Camundongos , Animais , Humanos , Metilação de DNA/genética , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , DNA , Mutação
5.
Genet Med ; 23(10): 1901-1911, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34113008

RESUMO

PURPOSE: ADP ribosylation factor guanine nucleotide exchange factors (ARFGEFs) are a family of proteins implicated in cellular trafficking between the Golgi apparatus and the plasma membrane through vesicle formation. Among them is ARFGEF1/BIG1, a protein involved in axon elongation, neurite development, and polarization processes. ARFGEF1 has been previously suggested as a candidate gene for different types of epilepsies, although its implication in human disease has not been well characterized. METHODS: International data sharing, in silico predictions, and in vitro assays with minigene study, western blot analyses, and RNA sequencing. RESULTS: We identified 13 individuals with heterozygous likely pathogenic variants in ARFGEF1. These individuals displayed congruent clinical features of developmental delay, behavioral problems, abnormal findings on brain magnetic resonance image (MRI), and epilepsy for almost half of them. While nearly half of the cohort carried de novo variants, at least 40% of variants were inherited from mildly affected parents who were clinically re-evaluated by reverse phenotyping. Our in silico predictions and in vitro assays support the contention that ARFGEF1-related conditions are caused by haploinsufficiency, and are transmitted in an autosomal dominant fashion with variable expressivity. CONCLUSION: We provide evidence that loss-of-function variants in ARFGEF1 are implicated in sporadic and familial cases of developmental delay with or without epilepsy.


Assuntos
Epilepsia , Fatores de Troca do Nucleotídeo Guanina , Haploinsuficiência , Deficiência Intelectual , Epilepsia/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Heterozigoto , Humanos , Deficiência Intelectual/genética
6.
Am J Med Genet A ; 185(1): 219-222, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33058492

RESUMO

Congenital glycosylation disorders (CDG) are inherited metabolic diseases due to defective glycoprotein and glycolipid glycan assembly and attachment. MOGS-CDG is a rare disorder with seven patients from five families reported worldwide. We report on a 19-year-old girl with MOGS-CDG. At birth she presented facial dysmorphism, marked hypotonia, and drug-resistant tonic seizures. In the following months, her motility was strongly limited by dystonia, with forced posture of the head and of both hands. She showed a peculiar hyperkinetic movement disorder with a rhythmic and repetitive pattern repeatedly documented on EEG-polygraphy recordings. Brain MRI showed progressive cortical and subcortical atrophy. Epileptic spasms appeared in first months and ceased by the age of 7 years, while tonic seizures were still present at last assessment (19 years). We report the oldest-known MOGS-CDG patient and broaden the neurological phenotype of this CDG.


Assuntos
Defeitos Congênitos da Glicosilação/diagnóstico , Epilepsia/diagnóstico , Transtornos dos Movimentos/diagnóstico , Convulsões/diagnóstico , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Criança , Defeitos Congênitos da Glicosilação/complicações , Defeitos Congênitos da Glicosilação/diagnóstico por imagem , Defeitos Congênitos da Glicosilação/patologia , Eletroencefalografia , Epilepsia/complicações , Epilepsia/diagnóstico por imagem , Epilepsia/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Transtornos dos Movimentos/complicações , Transtornos dos Movimentos/patologia , Hipotonia Muscular/diagnóstico por imagem , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Mutação/genética , Fenótipo , Convulsões/complicações , Convulsões/diagnóstico por imagem , Convulsões/patologia , Adulto Jovem
7.
Int J Mol Sci ; 22(3)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530447

RESUMO

Oculo-auriculo-vertebral-spectrum (OAVS; OMIM 164210) is a rare disorder originating from abnormal development of the first and second branchial arch. The clinical phenotype is extremely heterogeneous with ear anomalies, hemifacial microsomia, ocular defects, and vertebral malformations being the main features. MYT1, AMIGO2, and ZYG11B gene variants were reported in a few OAVS patients, but the etiology remains largely unknown. A multifactorial origin has been proposed, including the involvement of environmental and epigenetic mechanisms. To identify the epigenetic mechanisms contributing to OAVS, we evaluated the DNA-methylation profiles of 41 OAVS unrelated affected individuals by using a genome-wide microarray-based methylation approach. The analysis was first carried out comparing OAVS patients with controls at the group level. It revealed a moderate epigenetic variation in a large number of genes implicated in basic chromatin dynamics such as DNA packaging and protein-DNA organization. The alternative analysis in individual profiles based on the searching for Stochastic Epigenetic Variants (SEV) identified an increased number of SEVs in OAVS patients compared to controls. Although no recurrent deregulated enriched regions were found, isolated patients harboring suggestive epigenetic deregulations were identified. The recognition of a different DNA methylation pattern in the OAVS cohort and the identification of isolated patients with suggestive epigenetic variations provide consistent evidence for the contribution of epigenetic mechanisms to the etiology of this complex and heterogeneous disorder.


Assuntos
Metilação de DNA , Epigênese Genética , Estudo de Associação Genômica Ampla , Síndrome de Goldenhar/diagnóstico , Síndrome de Goldenhar/genética , Biologia Computacional/métodos , Ilhas de CpG , Feminino , Perfilação da Expressão Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Anotação de Sequência Molecular , Fenótipo
8.
Nat Genet ; 39(8): 1007-12, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17603483

RESUMO

Noonan and LEOPARD syndromes are developmental disorders with overlapping features, including cardiac abnormalities, short stature and facial dysmorphia. Increased RAS signaling owing to PTPN11, SOS1 and KRAS mutations causes approximately 60% of Noonan syndrome cases, and PTPN11 mutations cause 90% of LEOPARD syndrome cases. Here, we report that 18 of 231 individuals with Noonan syndrome without known mutations (corresponding to 3% of all affected individuals) and two of six individuals with LEOPARD syndrome without PTPN11 mutations have missense mutations in RAF1, which encodes a serine-threonine kinase that activates MEK1 and MEK2. Most mutations altered a motif flanking Ser259, a residue critical for autoinhibition of RAF1 through 14-3-3 binding. Of 19 subjects with a RAF1 mutation in two hotspots, 18 (or 95%) showed hypertrophic cardiomyopathy (HCM), compared with the 18% prevalence of HCM among individuals with Noonan syndrome in general. Ectopically expressed RAF1 mutants from the two HCM hotspots had increased kinase activity and enhanced ERK activation, whereas non-HCM-associated mutants were kinase impaired. Our findings further implicate increased RAS signaling in pathological cardiomyocyte hypertrophy.


Assuntos
Cardiomiopatia Hipertrófica/genética , Síndrome LEOPARD/genética , Mutação de Sentido Incorreto , Síndrome de Noonan/genética , Proteínas Proto-Oncogênicas c-raf/genética , Animais , Células COS , Cardiomiopatia Hipertrófica/metabolismo , Chlorocebus aethiops , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Síndrome LEOPARD/metabolismo , Síndrome de Noonan/metabolismo , Estrutura Terciária de Proteína , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Proteínas Tirosina Fosfatases/genética , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas c-raf/metabolismo , Transdução de Sinais , Transfecção , Proteínas ras/metabolismo
9.
Eur J Hum Genet ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38355961

RESUMO

Translation elongation factor eEF1A2 constitutes the alpha subunit of the elongation factor-1 complex, responsible for the enzymatic binding of aminoacyl-tRNA to the ribosome. Since 2012, 21 pathogenic missense variants affecting EEF1A2 have been described in 42 individuals with a severe neurodevelopmental phenotype including epileptic encephalopathy and moderate to profound intellectual disability (ID), with neurological regression in some patients. Through international collaborative call, we collected 26 patients with EEF1A2 variants and compared them to the literature. Our cohort shows a significantly milder phenotype. 83% of the patients are walking (vs. 29% in the literature), and 84% of the patients have language skills (vs. 15%). Three of our patients do not have ID. Epilepsy is present in 63% (vs. 93%). Neurological examination shows a less severe phenotype with significantly less hypotonia (58% vs. 96%), and pyramidal signs (24% vs. 68%). Cognitive regression was noted in 4% (vs. 56% in the literature). Among individuals over 10 years, 56% disclosed neurocognitive regression, with a mean age of onset at 2 years. We describe 8 novel missense variants of EEF1A2. Modeling of the different amino-acid sites shows that the variants associated with a severe phenotype, and the majority of those associated with a moderate phenotype, cluster within the switch II region of the protein and thus may affect GTP exchange. In contrast, variants associated with milder phenotypes may impact secondary functions such as actin binding. We report the largest cohort of individuals with EEF1A2 variants thus far, allowing us to expand the phenotype spectrum and reveal genotype-phenotype correlations.

10.
BMC Med Genet ; 14: 41, 2013 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-23551878

RESUMO

BACKGROUND: Cornelia de Lange syndrome (CdLS) is a rare autosomal-dominant disorder characterised by facial dysmorphism, growth and psychomotor developmental delay and skeletal defects. To date, causative mutations in the NIPBL (cohesin regulator) and SMC1A (cohesin structural subunit) genes account for > 50% and 6% of cases, respectively. METHODS: We recruited 50 patients with a CdLS clinical diagnosis or with features that overlap with CdLS, who were negative for mutations at NIPBL and SMC1A at molecular screening. Chromosomal rearrangements accounting for the clinical diagnosis were screened for using array Comparative Genomic Hybridisation (aCGH). RESULTS: Four patients were shown to carry imbalances considered to be candidates for having pathogenic roles in their clinical phenotypes: patient 1 had a 4.2 Mb de novo deletion at chromosome 20q11.2-q12; patient 2 had a 4.8 Mb deletion at chromosome 1p36.23-36.22; patient 3 carried an unbalanced translocation, t(7;17), with a 14 Mb duplication of chromosome 17q24.2-25.3 and a 769 Kb deletion at chromosome 7p22.3; patient 4 had an 880 Kb duplication of chromosome 19p13.3, for which his mother, who had a mild phenotype, was also shown to be a mosaic. CONCLUSIONS: Notwithstanding the variability in size and gene content of the rearrangements comprising the four different imbalances, they all map to regions containing genes encoding factors involved in cell cycle progression or genome stability. These functional similarities, also exhibited by the known CdLS genes, may explain the phenotypic overlap between the patients included in this study and CdLS. Our findings point to the complexity of the clinical diagnosis of CdLS and confirm the existence of phenocopies, caused by imbalances affecting multiple genomic regions, comprising 8% of patients included in this study, who did not have mutations at NIPBL and SMC1A. Our results suggests that analysis by aCGH should be recommended for CdLS spectrum cases with an unexplained clinical phenotype and included in the flow chart for diagnosis of cases with a clinical evaluation in the CdLS spectrum.


Assuntos
Síndrome de Cornélia de Lange/genética , Instabilidade Genômica , Proteínas de Ciclo Celular/genética , Criança , Proteínas Cromossômicas não Histona/genética , Cromossomos Humanos Par 1 , Cromossomos Humanos Par 17 , Cromossomos Humanos Par 19 , Cromossomos Humanos Par 4 , Variações do Número de Cópias de DNA , Síndrome de Cornélia de Lange/patologia , Feminino , Deleção de Genes , Humanos , Masculino , Fenótipo , Proteínas/genética , Translocação Genética , Adulto Jovem
11.
Am J Med Genet A ; 161A(5): 1012-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23532946

RESUMO

Fraser syndrome is a rare autosomal recessive disorder characterized by cryptophthalmos, cutaneous syndactyly, laryngeal, and urogenital malformations. We present a population-based epidemiological study using data provided by the European Surveillance of Congenital Anomalies (EUROCAT) network of birth defect registries. Between January 1990 and December 2008, we identified 26 cases of Fraser syndrome in the monitored population of 12,886,464 births (minimal estimated prevalence of 0.20 per 100,000 or 1:495,633 births). Most cases (18/26; 69%) were registered in the western part of Europe, where the mean prevalence is 1 in 230,695 births, compared to the prevalence 1 in 1,091,175 for the rest of Europe (P = 0.0003). Consanguinity was present in 7/26 (27%) families. Ten (38%) cases were liveborn, 14 (54%) pregnancies were terminated following prenatal detection of a serious anomaly, and 2 (8%) were stillborn. Eye anomalies were found in 20/24 (83%), syndactyly in 14/24 (58%), and laryngeal anomalies in 5/24 (21%) patients. Ambiguous genitalia were observed in 3/24 (13%) cases. Bilateral renal agenesis was present in 12/24 (50%) and unilateral in 4/24 (17%) cases. The frequency of anorectal anomalies was particularly high (42%). Most cases of Fraser syndrome (85%) are suspected prenatally, often due to the presence of the association of renal agenesis and cryptophthalmos. In the European population, a high proportion (82%) of pregnancies is terminated, thus reducing the live birth prevalence to a third of the total prevalence rate.


Assuntos
Síndrome de Fraser/epidemiologia , Estudos Epidemiológicos , Europa (Continente)/epidemiologia , Feminino , Humanos , Recém-Nascido , Masculino , Gravidez , Prevalência , Sistema de Registros
12.
Hum Mutat ; 33(3): 457-66, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22213154

RESUMO

Renal coloboma syndrome, also known as papillorenal syndrome is an autosomal-dominant disorder characterized by ocular and renal malformations. Mutations in the paired-box gene, PAX2, have been identified in approximately half of individuals with classic findings of renal hypoplasia/dysplasia and abnormalities of the optic nerve. Prior to 2011, there was no actively maintained locus-specific database (LSDB) cataloguing the extent of genetic variation in the PAX2 gene and phenotypic variation in individuals with renal coloboma syndrome. Review of published cases and the collective diagnostic experience of three laboratories in the United States, France, and New Zealand identified 55 unique mutations in 173 individuals from 86 families. The three clinical laboratories participating in this collaboration contributed 28 novel variations in 68 individuals in 33 families, which represent a 50% increase in the number of variations, patients, and families published in the medical literature. An LSDB was created using the Leiden Open Variation Database platform: www.lovd.nl/PAX2. The most common findings reported in this series were abnormal renal structure or function (92% of individuals), ophthalmological abnormalities (77% of individuals), and hearing loss (7% of individuals). Additional clinical findings and genetic counseling implications are discussed.


Assuntos
Coloboma/genética , Bases de Dados Genéticas , Fator de Transcrição PAX2/genética , Insuficiência Renal/genética , Refluxo Vesicoureteral/genética , Animais , Humanos
13.
Am J Med Genet C Semin Med Genet ; 160C(3): 217-29, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22791401

RESUMO

Progressive pseudorheumatoid dysplasia (PPRD) is a genetic, non-inflammatory arthropathy caused by recessive loss of function mutations in WISP3 (Wnt1-inducible signaling pathway protein 3; MIM 603400), encoding for a signaling protein. The disease is clinically silent at birth and in infancy. It manifests between the age of 3 and 6 years with joint pain and progressive joint stiffness. Affected children are referred to pediatric rheumatologists and orthopedic surgeons; however, signs of inflammation are absent and anti-inflammatory treatment is of little help. Bony enlargement at the interphalangeal joints progresses leading to camptodactyly. Spine involvement develops in late childhood and adolescence leading to short trunk with thoracolumbar kyphosis. Adult height is usually below the 3rd percentile. Radiographic signs are relatively mild. Platyspondyly develops in late childhood and can be the first clue to the diagnosis. Enlargement of the phalangeal metaphyses develops subtly and is usually recognizable by 10 years. The femoral heads are large and the acetabulum forms a distinct "lip" overriding the femoral head. There is a progressive narrowing of all articular spaces as articular cartilage is lost. Medical management of PPRD remains symptomatic and relies on pain medication. Hip joint replacement surgery in early adulthood is effective in reducing pain and maintaining mobility and can be recommended. Subsequent knee joint replacement is a further option. Mutation analysis of WISP3 allowed the confirmation of the diagnosis in 63 out of 64 typical cases in our series. Intronic mutations in WISP3 leading to splicing aberrations can be detected only in cDNA from fibroblasts and therefore a skin biopsy is indicated when genomic analysis fails to reveal mutations in individuals with otherwise typical signs and symptoms. In spite of the first symptoms appearing in early childhood, the diagnosis of PPRD is most often made only in the second decade and affected children often receive unnecessary anti-inflammatory and immunosuppressive treatments. Increasing awareness of PPRD appears to be essential to allow for a timely diagnosis.


Assuntos
Artropatia Neurogênica/diagnóstico por imagem , Artropatia Neurogênica/genética , Proteínas de Sinalização Intercelular CCN/genética , Mutação/genética , Adulto , Processamento Alternativo/genética , Artropatia Neurogênica/etnologia , Artropatia Neurogênica/patologia , Proteínas de Sinalização Intercelular CCN/química , Calcinose/diagnóstico por imagem , Criança , Pré-Escolar , DNA Complementar/genética , Mãos/diagnóstico por imagem , Humanos , Artropatias/congênito , Pelve/diagnóstico por imagem , Pelve/patologia , Polimorfismo de Nucleotídeo Único/genética , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Radiografia , Reprodutibilidade dos Testes , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/patologia
14.
Am J Med Genet A ; 158A(7): 1604-11, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22678594

RESUMO

Pitt-Hopkins syndrome (PTHS) is an emerging condition characterized by severe intellectual disability (ID), typical facial gestalt, and additional features, such as breathing abnormalities. Because of the overlapping phenotype of severe ID with absent speech, epilepsy, microcephaly, large mouth, and constipation, differential diagnosis of PTHS with respect to Angelman, Rett, and Mowat-Wilson syndromes represents a relevant clinical issue, and many patients are currently undergoing genetic tests for different conditions that are assumed to fall within the PTHS clinical spectrum. During a search for TCF4 mutations in 78 patients with a suspected PTHS, haploinsufficiency of TCF4 was identified in 18. By evaluating clinical features of patients with a proven TCF4 mutation with those of patients without, we noticed that, in addition to the typical facial gestalt, the PTHS phenotype results from the various combination of the following characteristics: ID with severe speech impairment, normal growth parameters at birth, postnatal microcephaly, breathing abnormalities, motor incoordination, ocular anomalies, constipation, seizures, typical behavior, and subtle brain abnormalities. On the basis of these observations, here we propose a clinically based score system as useful tool for driving a first choice molecular test for PTHS. This scoring system is also proposed for a clinically based diagnosis of PTHS in absence of a proven TCF4 mutation.


Assuntos
Hiperventilação/diagnóstico , Hiperventilação/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Adolescente , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Lista de Checagem , Criança , Pré-Escolar , Fácies , Feminino , Humanos , Masculino , Mutação , Fator de Transcrição 4 , Fatores de Transcrição/genética , Translocação Genética
15.
Nat Commun ; 13(1): 6470, 2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309531

RESUMO

Structural variants are a common cause of disease and contribute to a large extent to inter-individual variability, but their detection and interpretation remain a challenge. Here, we investigate 11 individuals with complex genomic rearrangements including germline chromothripsis by combining short- and long-read genome sequencing (GS) with Hi-C. Large-scale genomic rearrangements are identified in Hi-C interaction maps, allowing for an independent assessment of breakpoint calls derived from the GS methods, resulting in >300 genomic junctions. Based on a comprehensive breakpoint detection and Hi-C, we achieve a reconstruction of whole rearranged chromosomes. Integrating information on the three-dimensional organization of chromatin, we observe that breakpoints occur more frequently than expected in lamina-associated domains (LADs) and that a majority reshuffle topologically associating domains (TADs). By applying phased RNA-seq, we observe an enrichment of genes showing allelic imbalanced expression (AIG) within 100 kb around the breakpoints. Interestingly, the AIGs hit by a breakpoint (19/22) display both up- and downregulation, thereby suggesting different mechanisms at play, such as gene disruption and rearrangements of regulatory information. However, the majority of interpretable genes located 200 kb around a breakpoint do not show significant expression changes. Thus, there is an overall robustness in the genome towards large-scale chromosome rearrangements.


Assuntos
Cromatina , Genoma , Humanos , Genoma/genética , Sequência de Bases , Mapeamento Cromossômico , Células Germinativas
16.
Am J Med Genet A ; 155A(4): 706-16, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21438134

RESUMO

Costello syndrome is characterized by severe failure-to-thrive, short stature, cardiac abnormalities (heart defects, tachyarrhythmia, and hypertrophic cardiomyopathy (HCM)), distinctive facial features, a predisposition to papillomata and malignant tumors, postnatal cerebellar overgrowth resulting in Chiari 1 malformation, and cognitive disabilities. De novo germline mutations in the proto-oncogene HRAS cause Costello syndrome. Most mutations affect the glycine residues in position 12 or 13, and more than 80% of patients share p.G12S. To test the hypothesis that subtle genotype-phenotype differences exist, we report the first cohort comparison between 12 Costello syndrome individuals with p.G13C and individuals with p.G12S. The individuals with p.G13C had many typical findings including polyhydramnios, failure-to-thrive, HCM, macrocephaly with posterior fossa crowding, and developmental delay. Subjectively, their facial features were less coarse. Statistically significant differences included the absence of multifocal atrial tachycardia (P-value = 0.033), ulnar deviation of the wrist (P < 0.001) and papillomata (P = 0.003), and fewer neurosurgical procedures (P = 0.024). Fewer individuals with p.G13C had short stature (height below -2 SD) without use of growth hormone (P < 0.001). The noteworthy absence of malignant tumors did not reach statistical significance. Novel ectodermal findings were noted in individuals with p.G13C, including loose anagen hair resulting in easily pluckable hair with a matted appearance, different from the tight curls typical for most Costello syndrome individuals. Unusually long eye lashes requiring trimming are a novel finding we termed dolichocilia. These distinctive ectodermal findings suggest a cell type specific effect of this particular mutation. Additional patients are needed to validate these findings.


Assuntos
Síndrome de Costello/genética , Mutação/genética , Fenótipo , Proteínas Proto-Oncogênicas p21(ras)/genética , Adolescente , Adulto , Encéfalo/anormalidades , Criança , Pré-Escolar , Síndrome de Costello/complicações , Síndrome de Costello/diagnóstico , Face/anormalidades , Feminino , Cardiopatias Congênitas/etiologia , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Anormalidades Musculoesqueléticas/etiologia , Neoplasias/etiologia , Gravidez , Proto-Oncogene Mas , Adulto Jovem
17.
Eur J Med Genet ; 64(12): 104361, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34653680

RESUMO

The elongator complex is a highly conserved macromolecular assembly composed by 6 individual proteins (Elp 1-6) and it is essential for many cellular functions such as transcription elongation, histone acetylation and tRNA modification. ELP2 is the second major subunit and with Elp1 and Elp3 it shapes the catalytic core of this essential complex. ELP2 gene pathogenic variants have been reported to be associated with several neurodevelopmental disorders, such as intellectual disability, severe motor development delay with truncal hypotonia, spastic diplegia, choreoathetosis, short stature and neuropsychiatric problems. Here we report a case with heterozygous variants of the ELP2 gene associated with unpublished electro-clinical and neuroimaging features, such as abnormal eye movements, focal epilepsy, cortico-cerebellar atrophy and nodular cortical heterotopia on brain MRI. A possible phenotype-genotype correlation and the electro-clinical and neuroimaging phenotype expansion of ELP2 mutations are here discussed, together with considerations on involved cortico-cerebellar networks and a detailed review of the literature.


Assuntos
Atrofia/genética , Doenças Cerebelares/genética , Epilepsia/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação/genética , Criança , Feminino , Heterozigoto , Humanos , Deficiência Intelectual/genética , Fenótipo
18.
Genes (Basel) ; 12(4)2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923683

RESUMO

Molecular defects altering the expression of the imprinted genes of the 11p15.5 cluster are responsible for the etiology of two congenital disorders characterized by opposite growth disturbances, Silver-Russell syndrome (SRS), associated with growth restriction, and Beckwith-Wiedemann syndrome (BWS), associated with overgrowth. At the molecular level, SRS and BWS are characterized by defects of opposite sign, including loss (LoM) or gain (GoM) of methylation at the H19/IGF2:intergenic differentially methylated region (H19/IGF2:IG-DMR), maternal or paternal duplication (dup) of 11p15.5, maternal (mat) or paternal (pat) uniparental disomy (upd), and gain or loss of function mutations of CDKN1C. However, while upd(11)pat is found in 20% of BWS cases and in the majority of them it is segmental, upd(11)mat is extremely rare, being reported in only two SRS cases to date, and in both of them is extended to the whole chromosome. Here, we report on two novel cases of mosaic upd(11)mat with SRS phenotype. The upd is mosaic and isodisomic in both cases but covers the entire chromosome in one case and is restricted to 11p14.1-pter in the other case. The segmental upd(11)mat adds further to the list of molecular defects of opposite sign in SRS and BWS, making these two imprinting disorders even more specular than previously described.


Assuntos
Impressão Genômica , Herança Materna , Síndrome de Silver-Russell/genética , Dissomia Uniparental/genética , Adolescente , Cromossomos Humanos Par 11/genética , Humanos , Masculino , Mosaicismo , Linhagem , Síndrome de Silver-Russell/diagnóstico , Adulto Jovem
19.
Cell Death Discov ; 7(1): 34, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597506

RESUMO

Cornelia de Lange Syndrome (CdLS) is a rare developmental disorder affecting a multitude of organs including the central nervous system, inducing a variable neurodevelopmental delay. CdLS malformations derive from the deregulation of developmental pathways, inclusive of the canonical WNT pathway. We have evaluated MRI anomalies and behavioral and neurological clinical manifestations in CdLS patients. Importantly, we observed in our cohort a significant association between behavioral disturbance and structural abnormalities in brain structures of hindbrain embryonic origin. Considering the cumulative evidence on the cohesin-WNT-hindbrain shaping cascade, we have explored possible ameliorative effects of chemical activation of the canonical WNT pathway with lithium chloride in different models: (I) Drosophila melanogaster CdLS model showing a significant rescue of mushroom bodies morphology in the adult flies; (II) mouse neural stem cells restoring physiological levels in proliferation rate and differentiation capabilities toward the neuronal lineage; (III) lymphoblastoid cell lines from CdLS patients and healthy donors restoring cellular proliferation rate and inducing the expression of CyclinD1. This work supports a role for WNT-pathway regulation of CdLS brain and behavioral abnormalities and a consistent phenotype rescue by lithium in experimental models.

20.
Biomedicines ; 9(11)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34829952

RESUMO

Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) differ for triggers, mode of start, associated symptoms, evolution, and biochemical traits. Therefore, serious attempts are underway to partition them into subgroups useful for a personalized medicine approach to the disease. Here, we investigated clinical and biochemical traits in 40 ME/CFS patients and 40 sex- and age-matched healthy controls. Particularly, we analyzed serum levels of some cytokines, Fatty Acid Binding Protein 2 (FAPB-2), tryptophan, and some of its metabolites via serotonin and kynurenine. ME/CFS patients were heterogeneous for genetic background, trigger, start mode, symptoms, and evolution. ME/CFS patients had higher levels of IL-17A (p = 0.018), FABP-2 (p = 0.002), and 3-hydroxykynurenine (p = 0.037) and lower levels of kynurenine (p = 0.012) and serotonin (p = 0.045) than controls. Changes in kynurenine and 3-hydroxykynurenine were associated with increased kynurenic acid/kynurenine and 3-hydroxykynurenine/kynurenine ratios, indirect measures of kynurenine aminotransferases and kynurenine 3-monooxygenase enzymatic activities, respectively. No correlation was found among cytokines, FABP-2, and tryptophan metabolites, suggesting that inflammation, anomalies of the intestinal barrier, and changes of tryptophan metabolism may be independently associated with the pathogenesis of the disease. Interestingly, patients with the start of the disease after infection showed lower levels of kynurenine (p = 0.034) than those not starting after an infection. Changes in tryptophan metabolites and increased IL-17A levels in ME/CFS could both be compatible with anomalies in the sphere of energy metabolism. Overall, clinical traits together with serum biomarkers related to inflammation, intestine function, and tryptophan metabolism deserve to be further considered for the development of personalized medicine strategies for ME/CFS.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa