Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Biosci Biotechnol Biochem ; 80(1): 135-44, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26327168

RESUMO

The collagenase activity and the fpcol gene were examined in Flavobacterium psychrophilum isolates from cold-water disease (CWD)-affected ayu, Plecoglossus altivelis. Collagenase expression was closely related to the accumulated mortality of CWD-affected ayu. RT-qPCR and bacterial challenge experiments showed that F. psychrophilum ayu isolate WA-1 expressed the fpcol gene more actively and was more virulent than ayu isolate WA-2. The amago (Oncorhynchus masou) isolate WB-1, which possesses a pseudo-fpcol gene, was not harmful to ayu. Hitherto, the well-studied metalloproteases Fpp1 and Fpp2 have been considered virulence factors. However, the most virulent isolate against ayu (WA-1) showed no Fpp activity because of a deletion mutation or an insertion of a transposon in the fpp genes. The less virulent WA-2 isolate showed only Fpp1 activity. Taken together, these results suggest that collagenolytic activity, but not Fpp activity, is related to the virulence of F. psychrophilum isolates in CWD-affected ayu.


Assuntos
Proteínas de Bactérias/genética , Colagenases/genética , Infecções por Flavobacteriaceae/veterinária , Flavobacterium/genética , Flavobacterium/patogenicidade , Osmeriformes/microbiologia , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/metabolismo , Sequência de Bases , Temperatura Baixa , Colagenases/metabolismo , Elementos de DNA Transponíveis , Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/microbiologia , Flavobacterium/enzimologia , Flavobacterium/isolamento & purificação , Expressão Gênica , Metaloproteases/genética , Metaloproteases/metabolismo , Dados de Sequência Molecular , Mutação , Oncorhynchus/microbiologia , Pseudogenes , Virulência
2.
J Bacteriol ; 193(12): 3049-56, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21515782

RESUMO

The collagenase gene was cloned from Grimontia (Vibrio) hollisae 1706B, and its complete nucleotide sequence was determined. Nucleotide sequencing showed that the open reading frame was 2,301 bp in length and encoded an 84-kDa protein of 767 amino acid residues. The deduced amino acid sequence contains a putative signal sequence and a zinc metalloprotease consensus sequence, the HEXXH motif. G. hollisae collagenase showed 60 and 59% amino acid sequence identities to Vibrio parahaemolyticus and Vibrio alginolyticus collagenase, respectively. In contrast, this enzyme showed < 20% sequence identity with Clostridium histolyticum collagenase. When the recombinant mature collagenase, which consisted of 680 amino acids with a calculated molecular mass of 74 kDa, was produced by the Brevibacillus expression system, a major gelatinolytic protein band of ~ 60 kDa was determined by zymographic analysis. This result suggested that cloned collagenase might undergo processing after secretion. Moreover, the purified recombinant enzyme was shown to possess a specific activity of 5,314 U/mg, an ~ 4-fold greater activity than that of C. histolyticum collagenase.


Assuntos
Brevibacillus/metabolismo , Clonagem Molecular , Colagenases/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Vibrio/enzimologia , Vibrio/genética , Sequência de Aminoácidos , Sequência de Bases , Brevibacillus/genética , Colágeno Tipo I/metabolismo , Colagenases/genética , Hidrólise , Cinética , Dados de Sequência Molecular , Recombinação Genética , Vibrio/metabolismo
3.
Connect Tissue Res ; 51(5): 388-96, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20297902

RESUMO

Inherited deficiency for arylsulfatase (Ars) leads to lysosomal storage of sulfated compounds and to serious diseases such as growth retardation, heart failure, and demyelination in the central nervous system. Ars has been regarded as a lysosomal enzyme because of its hydrolytic activity on synthetic aromatic substrates and the lysosomal localization of its enzymatic activity. We previously demonstrated that a large portion of the mammalian arylsulfatase A (ArsA) protein exists on the cell surface of vascular endothelial cells, suggesting that ArsA plays a role in the components of the extracellular matrix. Here we show that ArsA functions as a substrate on which cells adhere and form protrusions. Coating culture plates with recombinant mouse ArsA (rmArsA) stimulates adhesion of human microvascular endothelial cells to the plate followed by the formation of cell protrusions as well as lamellipodia. rmArsA affects the architecture of the cytoskeleton, with a high density of actin filaments localized to peripheral regions of the cells and the extension of bundles of microtubules into the tips of cellular protrusions. rmArsA also affects the distribution pattern of the cell adhesion-associated proteins, integrin α2ß1, and paxillin. rmArsA seems to modulate signaling of basic fibroblast growth factor (bFGF) stimulating cytoskeletal rearrangement. We also show that rmArsA tightly binds to sulfated polysaccharides. We suggest that mammalian ArsA plays a role as a novel component of the extracellular matrix. This viewpoint of Ars could be very useful for clarifying the mechanisms underpinning syndromes caused by the deficiency of the function of Ars genes.


Assuntos
Cerebrosídeo Sulfatase/fisiologia , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Proteínas da Matriz Extracelular/fisiologia , Matriz Extracelular/enzimologia , Animais , Linhagem Celular , Cerebrosídeo Sulfatase/deficiência , Cerebrosídeo Sulfatase/genética , Matriz Extracelular/genética , Matriz Extracelular/patologia , Proteínas da Matriz Extracelular/deficiência , Proteínas da Matriz Extracelular/genética , Humanos , Recém-Nascido , Masculino , Camundongos
4.
Sci Rep ; 10(1): 3927, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32127566

RESUMO

Collagenase products are crucial to isolate primary cells in basic research and clinical therapies, where their stability in collagenolytic activity is required. However, currently standard collagenase products from Clostridium histolyticum lack such stability. Previously, we produced a recombinant 74-kDa collagenase from Grimontia hollisae, which spontaneously became truncated to ~60 kDa and possessed no stability. In this study, to generate G. hollisae collagenase useful as a collagenase product, we designed recombinant 62-kDa collagenase consisting only of the catalytic domain, which exhibits high production efficiency. We demonstrated that this recombinant collagenase is stable and active under physiological conditions. Moreover, it possesses higher specific activity against collagen and cleaves a wider variety of collagens than a standard collagenase product from C. histolyticum. Furthermore, it dissociated murine pancreata by digesting the collagens within the pancreata in a dose-dependent manner, and this dissociation facilitated isolation of pancreatic islets with masses and numbers comparable to those isolated using the standard collagenase from C. histolyticum. Implantation of these isolated islets into five diabetic mice led to normalisation of the blood glucose concentrations of all the recipients. These findings suggest that recombinant 62-kDa collagenase from G. hollisae can be used as a collagenase product to isolate primary cells.


Assuntos
Separação Celular/métodos , Colagenases/metabolismo , Proteínas Recombinantes/metabolismo , Vibrionaceae/enzimologia , Animais , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Camundongos , Vibrionaceae/genética
5.
FEBS Open Bio ; 8(10): 1691-1702, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30338219

RESUMO

The collagenase secreted by Grimontia hollisae strain 1706B is a 74 kDa protein that consists of two parts: the catalytic module and a C-terminal segment that includes the bacterial pre-peptidase C-terminal domain. Here, we produced a recombinant C-terminal segment protein and examined its ability to bind collagen and other characteristics as compared with collagen-binding domains (CBDs) derived from Hathewaya histolytica (Clostridium histolyticum) collagenases; these CBDs are the only ones thus far identified in bacterial collagenases. We found that the C-terminal segment binds to collagen only when the collagen is in its triple-helical conformation. Moreover, the C-terminal segment and the CBDs from H. histolytica have comparable characteristics, including binding affinity to type I collagen, substrate spectrum, and binding conditions with respect to salt concentration and pH. However, the C-terminal segment has a completely different primary structure from those of the CBDs from H. histolytica. As regards secondary structure, in silico prediction indicates that the C-terminal segment may be homologous to those in CBDs from H. histolytica. Furthermore, we performed collagenase assays using fluorescein isothiocyanate-labeled type I collagen to show that the C-terminal segment positively contributes to the collagenolytic activity of the 74 kDa collagenase from G. hollisae.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa