Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Plant J ; 81(1): 147-59, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25267488

RESUMO

There is significant interest in farming algae for the direct production of biofuels and valuable lipids. Chlamydomonas reinhardtii is the leading model system for studying lipid metabolism in green algae, but current methods for isolating mutants of this organism with a perturbed lipid content are slow and tedious. Here, we present the Chlamydomonas high-lipid sorting (CHiLiS) strategy, which enables enrichment of high-lipid mutants by fluorescence-activated cell sorting (FACS) of pooled mutants stained with the lipid-sensitive dye Nile Red. This method only takes 5 weeks from mutagenesis to mutant isolation. We developed a staining protocol that allows quantification of lipid content while preserving cell viability. We improved separation of high-lipid mutants from the wild type by using each cell's chlorophyll fluorescence as an internal control. We initially demonstrated 20-fold enrichment of the known high-lipid mutant sta1 from a mixture of sta1 and wild-type cells. We then applied CHiLiS to sort thousands of high-lipid cells from a pool of about 60,000 mutants. Flow cytometry analysis of 24 individual mutants isolated by this approach revealed that about 50% showed a reproducible high-lipid phenotype. We further characterized nine of the mutants with the highest lipid content by flame ionization detection and mass spectrometry lipidomics. All mutants analyzed had a higher triacylglycerol content and perturbed whole-cell fatty acid composition. One arbitrarily chosen mutant was evaluated by microscopy, revealing larger lipid droplets than the wild type. The unprecedented throughput of CHiLiS opens the door to a systems-level understanding of green algal lipid biology by enabling genome-saturating isolation of mutants in key genes.


Assuntos
Chlamydomonas reinhardtii/genética , Citometria de Fluxo/métodos , Metabolismo dos Lipídeos/genética , Chlamydomonas reinhardtii/metabolismo , Clorofila/metabolismo , Fluorescência , Mutação , Oxazinas/análise , Fenótipo
2.
Proc Natl Acad Sci U S A ; 109(43): 17717-22, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23045639

RESUMO

Cyclic photosynthetic electron flow (CEF) is crucial to photosynthesis because it participates in the control of chloroplast energy and redox metabolism, and it is particularly induced under adverse environmental conditions. Here we report that down-regulation of the chloroplast localized Ca(2+) sensor (CAS) protein by an RNAi approach in Chlamydomonas reinhardtii results in strong inhibition of CEF under anoxia. Importantly, this inhibition is rescued by an increase in the extracellular Ca(2+) concentration, inferring that CEF is Ca(2+)-dependent. Furthermore, we identified a protein, anaerobic response 1 (ANR1), that is also required for effective acclimation to anaerobiosis. Depletion of ANR1 by artificial microRNA expression mimics the CAS-depletion phenotype, and under anaerobic conditions the two proteins coexist within a large active photosystem I-cytochrome b(6)/f complex. Moreover, we provide evidence that CAS and ANR1 interact with each other as well as with PGR5-Like 1 (PGRL1) in vivo. Overall our data establish a Ca(2+)-dependent regulation of CEF via the combined function of ANR1, CAS, and PGRL1, associated with each other in a multiprotein complex.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Fotossíntese , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Transporte de Elétrons , Eletroforese em Gel de Poliacrilamida , Espectrometria de Fluorescência
3.
Mol Cell Proteomics ; 9(7): 1514-32, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20190198

RESUMO

The versatile metabolism of the green alga Chlamydomonas reinhardtii is reflected in its complex response to anaerobic conditions. The anaerobic response is also remarkable in the context of renewable energy because C. reinhardtii is able to produce hydrogen under anaerobic conditions. To identify proteins involved during anaerobic acclimation as well as to localize proteins and pathways to the powerhouses of the cell, chloroplasts and mitochondria from C. reinhardtii in aerobic and anaerobic (induced by 8 h of argon bubbling) conditions were isolated and analyzed using comparative proteomics. A total of 2315 proteins were identified. Further analysis based on spectral counting clearly localized 606 of these proteins to the chloroplast, including many proteins of the fermentative metabolism. Comparative quantitative analyses were performed with the chloroplast-localized proteins using stable isotopic labeling of amino acids ([(13)C(6)]arginine/[(12)C(6)]arginine in an arginine auxotrophic strain). The quantitative data confirmed proteins previously characterized as induced at the transcript level as well as identified several new proteins of unknown function induced under anaerobic conditions. These proteins of unknown function provide new candidates for further investigation, which could bring insights for the engineering of hydrogen-producing alga strains.


Assuntos
Proteínas de Algas/metabolismo , Anaerobiose/fisiologia , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/metabolismo , Proteômica/métodos , Proteínas de Algas/química , Sequência de Aminoácidos , Animais , Cloroplastos/química , Cloroplastos/metabolismo , Mitocôndrias/química , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo
4.
Proteomics ; 11(9): 1814-23, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21432999

RESUMO

The use and development of post-genomic tools naturally depends on large-scale genome sequencing projects. The usefulness of post-genomic applications is dependent on the accuracy of genome annotations, for which the correct identification of intron-exon borders in complex genomes of eukaryotic organisms is often an error-prone task. Although automated algorithms for predicting intron-exon structures are available, supporting exon evidence is necessary to achieve comprehensive genome annotation. Besides cDNA and EST support, peptides identified via MS/MS can be used as extrinsic evidence in a proteogenomic approach. We describe an improved version of the Genomic Peptide Finder (GPF), which aligns de novo predicted amino acid sequences to the genomic DNA sequence of an organism while correcting for peptide sequencing errors and accounting for the possibility of splicing. We have coupled GPF and the gene finding program AUGUSTUS in a way that provides automatic structural annotations of the Chlamydomonas reinhardtii genome, using highly unbiased GPF evidence. A comparison of the AUGUSTUS gene set incorporating GPF evidence to the standard JGI FM4 (Filtered Models 4) gene set reveals 932 GPF peptides that are not contained in the Filtered Models 4 gene set. Furthermore, the GPF evidence improved the AUGUSTUS gene models by altering 65 gene models and adding three previously unidentified genes.


Assuntos
Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Biologia Computacional/métodos , Genômica/métodos , Proteômica/métodos , Algoritmos , Sequência de Aminoácidos , Sequência de Bases , Bases de Dados Genéticas , Éxons/genética , Genoma de Planta/genética , Íntrons/genética , Espectrometria de Massas , Dados de Sequência Molecular , Peptídeos/análise , Peptídeos/genética , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Sítios de Splice de RNA/genética , Homologia de Sequência de Aminoácidos , Software
5.
Curr Genet ; 57(3): 151-68, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21533645

RESUMO

The unicellular green alga Chlamydomonas reinhardtii has emerged to be an important model organism for the study of oxygenic eukaryotic photosynthesis as well as other processes occurring in the chloroplast. However, the chloroplast proteome in C. reinhardtii has only recently been comprehensively characterized, made possible by proteomics emerging as an accessible and powerful tool over the last decade. In this review, we introduce a compiled list of 996 experimentally chloroplast-localized proteins for C. reinhardtii, stemming largely from our previous proteomic dataset comparing chloroplasts and mitochondria samples to localize proteins. In order to get a taste of some cellular functions taking place in the C. reinhardtii chloroplast, we will focus this review particularly on metabolic differences between chloroplasts of C. reinhardtii and higher plants. Areas that will be covered are photosynthesis, chlorophyll biosynthesis, carbon metabolism, fermentative metabolism, ferredoxins and ferredoxin-interacting proteins.


Assuntos
Chlamydomonas reinhardtii/genética , Cloroplastos/genética , Fotossíntese/genética , Proteoma/metabolismo , Proteômica/métodos , Chlamydomonas reinhardtii/metabolismo , Ferredoxinas/genética , Ferredoxinas/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteoma/genética
6.
Front Microbiol ; 11: 793, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425914

RESUMO

Screening for bacteria with abilities to accumulate valuable intracellular compounds from an environmental community is difficult and requires strategic methods. Combining the experimental procedure for phenotyping living cells in a microbial community with the cell recovery necessary for further cultivation will allow for an efficient initial screening process. In this study, we developed a strategy for the isolation of polyphosphate-accumulating organisms (PAOs) by combining (i) nontoxic fluorescence staining of polyphosphate granules in viable microbial cells and (ii) fluorescence-activated cell sorting (FACS) for the rapid detection and collection of target cells. To implement this screening approach, cells from wastewater sludge samples were stained with 4'6-diamidino-2-phenylindole (DAPI) to target cells with high polyphosphate (polyP) accumulation. We found a staining procedure (10 µg/ml of DAPI for 30 min) that can visualize polyP granules while maintaining viability for the majority of the cells (>60%). The polyP positive cells were recovered by FACS, purified by colony isolation and phylogenetically identified by 16S rRNA gene sequencing. Follow-up analysis confirmed that these isolates accumulate polyP, indicating that DAPI can be implemented in staining living cells and FACS can effectively and rapidly screen and isolate individual cells from a complex microbial community.

7.
Microbes Environ ; 35(1)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32009018

RESUMO

We previously demonstrated that a simple modification in the preparation of agar media, i.e., autoclaving phosphate and agar separately (termed the "PS protocol"), improved the culturability of aerobic microorganisms by reducing the generation of reactive oxygen species. We herein investigated the effects of the PS protocol on the cultivation of anaerobic microorganisms using sludge from a wastewater treatment system as a microbial source. The application of the PS protocol increased colony numbers and the frequency of phylogenetically novel isolates under aerobic, nitrate reduction, and fermentation conditions. The PS protocol is useful for isolating both aerobic and anaerobic microorganisms.


Assuntos
Bactérias Anaeróbias/crescimento & desenvolvimento , Bactérias Anaeróbias/isolamento & purificação , Técnicas Bacteriológicas/métodos , Meios de Cultura/química , Ágar , Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/metabolismo , Contagem de Colônia Microbiana , Fermentação , Nitratos/metabolismo , Fosfatos , Filogenia , RNA Ribossômico 16S/genética , Esgotos/microbiologia , Esterilização
8.
Environ Microbiol Rep ; 11(2): 227-235, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30298689

RESUMO

Hymenobacter nivis P3T is a heterotrophic bacterium isolated from Antarctic red snow generated by algal blooms. Despite being non-photosynthetic, H. nivis was dominantly found in the red snow environment that is exposed to high light and UV irradiation, suggesting that this species can flourish under such harsh conditions. In order to further understand the adaptive strategies on the snow surface environment of Antarctica, the genome of H. nivis P3T was sequenced and analyzed, which identified genes putatively encoding for light-reactive proteins such as proteorhodopsin, phytochrome, photolyase and several copies of cryptochromes. Culture-based experiments revealed that H. nivis P3T growth was significantly enhanced under light conditions, while dark conditions had increased extracellular polymeric substances. Furthermore, the expression of several putative light-reactive proteins was determined by proteomic analysis. These results indicate that H. nivis P3T is able to potentially utilize light, which may explain its dominance on the red snow surface environment of Antarctica. ORIGINALITY-SIGNIFICANCE STATEMENT: The role of proteorhodopsin in heterotrophic bacteria is not well-characterized, as only a handful of proteorhodopsin-harbouring isolates were shown to have a light-enhanced phenotype through culture-based experiments to date. This is the first study that demonstrates light-stimulated growth and protein expression evidence of photoactive proteins for a non-marine psychrophile and for a member of the genus Hymenobacter. It is also the first study that provides comprehensive proteome information for this genus. This study presents significant results in understanding the adaptive mechanism of a heterotrophic non-photosynthetic bacterium thriving on the snow surface environment of Antarctica as well as demonstrating the role of light-utilization in promoting growth, possibly through proteorhodopsin.


Assuntos
Proteínas de Bactérias/genética , Bacteroidetes/fisiologia , Bacteroidetes/efeitos da radiação , Expressão Gênica , Processos Heterotróficos , Regiões Antárticas , Proteínas de Bactérias/metabolismo , DNA Bacteriano/genética , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Matriz Extracelular de Substâncias Poliméricas/efeitos da radiação , Genoma Bacteriano/genética , Luz , Proteômica , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/metabolismo , Análise de Sequência de DNA
9.
ISME J ; 13(6): 1469-1483, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30742016

RESUMO

In the symbiosis of the bean bug Riptortus pedestris with Burkholderia insecticola, the bacteria occupy an exclusive niche in the insect midgut and favor insect development and reproduction. In order to understand how the symbiotic bacteria stably colonize the midgut crypts and which services they provide to the host, we compared the cytology, physiology, and transcriptomics of free-living and midgut-colonizing B. insecticola. The analyses revealed that midgut-colonizing bacteria were smaller in size and had lower DNA content, they had increased stress sensitivity, lost motility, and an altered cell surface. Transcriptomics revealed what kinds of nutrients are provided by the bean bug to the Burkholderia symbiont. Transporters and metabolic pathways of diverse sugars such as rhamnose and ribose, and sulfur compounds like sulfate and taurine were upregulated in the midgut-colonizing symbionts. Moreover, pathways enabling the assimilation of insect nitrogen wastes, i.e. allantoin and urea, were also upregulated. The data further suggested that the midgut-colonizing symbionts produced all essential amino acids and B vitamins, some of which are scarce in the soybean food of the host insect. Together, these findings suggest that the Burkholderia symbiont is fed with specific nutrients and also recycles host metabolic wastes in the insect gut, and in return, the bacterial symbiont provides the host with essential nutrients limited in the insect food, contributing to the rapid growth and enhanced reproduction of the bean bug host.


Assuntos
Proteínas de Bactérias/genética , Burkholderia/fisiologia , Heterópteros/microbiologia , Animais , Proteínas de Bactérias/metabolismo , Burkholderia/classificação , Burkholderia/genética , Burkholderia/isolamento & purificação , Meios de Cultura/metabolismo , Trato Gastrointestinal/microbiologia , Heterópteros/crescimento & desenvolvimento , Heterópteros/fisiologia , Simbiose/fisiologia , Transcriptoma
10.
Front Microbiol ; 8: 1481, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824603

RESUMO

Psychrophilic algae blooms can be observed coloring the snow during the melt season in alpine snowfields. These algae are important primary producers on the snow surface environment, supporting the microbial community that coexists with algae, which includes heterotrophic bacteria and fungi. In this study, we analyzed the microbial community of green and red-colored snow containing algae from Mount Asahi, Japan. We found that Chloromonas spp. are the dominant algae in all samples analyzed, and Chlamydomonas is the second-most abundant genus in the red snow. For the bacterial community profile, species belonging to the subphylum Betaproteobacteria were frequently detected in both green and red snow, while members of the phylum Bacteroidetes were also prominent in red snow. Furthermore, multiple independently obtained strains of Chloromonas sp. from inoculates of red snow resulted in the growth of Betaproteobacteria with the alga and the presence of bacteria appears to support growth of the xenic algal cultures under laboratory conditions. The dominance of Betaproteobacteria in algae-containing snow in combination with the detection of Chloromonas sp. with Betaproteobacteria strains suggest that these bacteria can utilize the available carbon source in algae-rich environments and may in turn promote algal growth.

11.
Microbes Environ ; 31(4): 449-455, 2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-27867159

RESUMO

The oxidation ditch process is one of the most economical approaches currently used to simultaneously remove organic carbon, nitrogen, and also phosphorus (P) from wastewater. However, limited information is available on biological P removal in this process. In the present study, microorganisms contributing to P removal in a full-scale oxidation ditch reactor were investigated using culture-dependent and -independent approaches. A microbial community analysis based on 16S rRNA gene sequencing revealed that a phylotype closely related to Dechloromonas spp. in the family Rhodocyclaceae dominated in the oxidation ditch reactor. This dominant Dechloromonas sp. was successfully isolated and subjected to fluorescent staining for polyphosphate, followed by microscopic observations and a spectrofluorometric analysis, which clearly demonstrated that the Dechloromonas isolate exhibited a strong ability to accumulate polyphosphate within its cells. These results indicate the potential key role of Dechloromonas spp. in efficient P removal in the oxidation ditch wastewater treatment process.


Assuntos
Polifosfatos/metabolismo , Rhodocyclaceae/classificação , Rhodocyclaceae/isolamento & purificação , Águas Residuárias/microbiologia , Biota , Análise por Conglomerados , Citosol/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Microscopia de Fluorescência , Filogenia , RNA Ribossômico 16S/genética , Rhodocyclaceae/genética , Rhodocyclaceae/metabolismo , Análise de Sequência de DNA , Espectrometria de Fluorescência , Coloração e Rotulagem
12.
J Vis Exp ; (85)2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24686495

RESUMO

The introduced protocol provides a tool for the analysis of multiprotein complexes in the thylakoid membrane, by revealing insights into complex composition under different conditions. In this protocol the approach is demonstrated by comparing the composition of the protein complex responsible for cyclic electron flow (CEF) in Chlamydomonas reinhardtii, isolated from genetically different strains. The procedure comprises the isolation of thylakoid membranes, followed by their separation into multiprotein complexes by sucrose density gradient centrifugation, SDS-PAGE, immunodetection and comparative, quantitative mass spectrometry (MS) based on differential metabolic labeling ((14)N/(15)N) of the analyzed strains. Detergent solubilized thylakoid membranes are loaded on sucrose density gradients at equal chlorophyll concentration. After ultracentrifugation, the gradients are separated into fractions, which are analyzed by mass-spectrometry based on equal volume. This approach allows the investigation of the composition within the gradient fractions and moreover to analyze the migration behavior of different proteins, especially focusing on ANR1, CAS, and PGRL1. Furthermore, this method is demonstrated by confirming the results with immunoblotting and additionally by supporting the findings from previous studies (the identification and PSI-dependent migration of proteins that were previously described to be part of the CEF-supercomplex such as PGRL1, FNR, and cyt f). Notably, this approach is applicable to address a broad range of questions for which this protocol can be adopted and e.g. used for comparative analyses of multiprotein complex composition isolated from distinct environmental conditions.


Assuntos
Espectrometria de Massas/métodos , Complexos Multiproteicos/análise , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/metabolismo , Marcação por Isótopo/métodos , Complexos Multiproteicos/química , Isótopos de Nitrogênio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa