RESUMO
Aluminum salts have been successfully utilized as adjuvants to enhance the immunogenicity of vaccine antigens since the 1930s. However, the cellular mechanisms behind the immune adjuvanticity effect of these materials in antigen-presenting cells are poorly understood. In this study, we investigated the uptake and trafficking of aluminum oxy-hydroxide (AlOOH), in RAW 264.7 murine and U-937 human macrophages-like cells. Furthermore, we determined the impact that the adsorption to AlOOH particulates has on the trafficking of a Bordetella pertussis vaccine candidate, the genetically detoxified pertussis toxin (gdPT). Our results indicate that macrophages internalize AlOOH by constitutive macropinocytosis assisted by the filopodial protrusions that capture the adjuvant particles. Moreover, we show that AlOOH has the capacity to nonspecifically adsorb IgG, engaging opsonic phagocytosis, which is a feature that may allow for more effective capture and uptake of adjuvant particles by antigen-presenting cells (APCs) at the site of vaccine administration. We found that AlOOH traffics to endolysosomal compartments that hold degradative properties. Importantly, while we show that gdPT escapes degradative endolysosomes and traffics toward the retrograde pathway, as reported for the wild-type pertussis toxin, the adsorption to AlOOH diverts gdPT to traffic to the adjuvant's lysosome-type compartments, which may be key for MHC-II-driven antigen presentation and activation of CD4+ T cell. Thus, our findings establish a direct link between antigen adsorption to AlOOH and the intracellular trafficking of antigens within antigen-presenting cells and bring to light a new potential mechanism for aluminum adjuvancy. Moreover, the in-vitro single-cell approach described herein provides a general framework and tools for understanding critical attributes of other vaccine formulations.
Assuntos
Hidróxido de Alumínio , Alumínio , Adjuvantes Imunológicos/farmacologia , Alumínio/farmacologia , Hidróxido de Alumínio/farmacologia , Animais , Humanos , Lisossomos , Macrófagos , Camundongos , Toxina Pertussis/genética , Toxina Pertussis/farmacologia , Vacina contra Coqueluche/farmacologiaRESUMO
Birnaviruses are members of the Birnaviridae family, responsible for major economic losses to poultry and aquaculture. The family is composed of nonenveloped viruses with a segmented double-stranded RNA (dsRNA) genome. Infectious bursal disease virus (IBDV), the prototypic family member, is the etiological agent of Gumboro disease, a highly contagious immunosuppressive disease in the poultry industry worldwide. We previously demonstrated that IBDV hijacks the endocytic pathway for establishing the viral replication complexes on endosomes associated with the Golgi complex (GC). Here, we report that IBDV reorganizes the GC to localize the endosome-associated replication complexes without affecting its secretory functionality. By analyzing crucial proteins involved in the secretory pathway, we showed the essential requirement of Rab1b for viral replication. Rab1b comprises a key regulator of GC transport and we demonstrate that transfecting the negative mutant Rab1b N121I or knocking down Rab1b expression by RNA interference significantly reduces the yield of infectious viral progeny. Furthermore, we showed that the Rab1b downstream effector Golgi-specific BFA resistance factor 1 (GBF1), which activates the small GTPase ADP ribosylation factor 1 (ARF1), is required for IBDV replication, since inhibiting its activity by treatment with brefeldin A (BFA) or golgicide A (GCA) significantly reduces the yield of infectious viral progeny. Finally, we show that ARF1 dominant negative mutant T31N overexpression hampered IBDV infection. Taken together, these results demonstrate that IBDV requires the function of the Rab1b-GBF1-ARF1 axis to promote its replication, making a substantial contribution to the field of birnavirus-host cell interactions. IMPORTANCE Birnaviruses are unconventional members of the dsRNA viruses, with the lack of a transcriptionally active core being the main differential feature. This structural trait, among others that resemble those of the plus single-stranded (+ssRNA) viruses features, suggests that birnaviruses might follow a different replication program from that conducted by prototypical dsRNA members and the hypothesis that birnaviruses could be evolutionary links between +ssRNA and dsRNA viruses has been argued. Here, we present original data showing that IBDV-induced GC reorganization and the cross talk between IBDV and the Rab1b-GBF1-ARF1 mediate the intracellular trafficking pathway. The replication of several +ssRNA viruses depends on the cellular protein GBF1, but its role in the replication process is not clear. Thus, our findings make a substantial contribution to the field of birnavirus-host cell interactions and provide further evidence supporting the proposed evolutionary connection role of birnaviruses, an aspect which we consider especially relevant for researchers working in the virology field.
Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Vírus da Doença Infecciosa da Bursa/fisiologia , Via Secretória/fisiologia , Replicação Viral/fisiologia , Proteínas rab1 de Ligação ao GTP/metabolismo , Fator 1 de Ribosilação do ADP/genética , Animais , Brefeldina A/farmacologia , Linhagem Celular , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Interações Hospedeiro-Patógeno , Piridinas/farmacologia , Quinolinas/farmacologia , Via Secretória/efeitos dos fármacos , Compartimentos de Replicação Viral/metabolismo , Replicação Viral/efeitos dos fármacos , Proteínas rab1 de Ligação ao GTP/genéticaRESUMO
Infectious bursal disease virus (IBDV) is the archetypal member of the family Birnaviridae and the etiological agent of Gumboro disease, a highly contagious immunosuppressive infection of concern to the global poultry sector for its adverse health effects in chicks. Unlike most double-stranded RNA (dsRNA) viruses, which enclose their genomes within specialized cores throughout their viral replication cycle, birnaviruses organize their bisegmented dsRNA genome in ribonucleoprotein (RNP) structures. Recently, we demonstrated that IBDV exploits endosomal membranes for replication. The establishment of IBDV replication machinery on the cytosolic leaflet of endosomal compartments is mediated by the viral protein VP3 and its intrinsic ability to target endosomes. In this study, we identified the early endosomal phosphatidylinositol 3-phosphate [PtdIns(3)P] as a key host factor of VP3 association with endosomal membranes and consequent establishment of IBDV replication complexes in early endosomes. Indeed, our data reveal a crucial role for PtdIns(3)P in IBDV replication. Overall, our findings provide new insights into the replicative strategy of birnaviruses and strongly suggest that it resembles those of positive-strand RNA (+ssRNA) viruses, which replicate in association with host membranes. Furthermore, our findings support the role of birnaviruses as evolutionary intermediaries between +ssRNA and dsRNA viruses and, importantly, demonstrate a novel role for PtdIns(3)P in the replication of a dsRNA virus.IMPORTANCEInfectious bursal disease virus (IBDV) infects chicks and is the causative agent of Gumboro disease. During IBDV outbreaks in recent decades, the emergence of very virulent variants and the lack of effective prevention/treatment strategies to fight this disease have had devastating consequences for the poultry industry. IBDV belongs to the peculiar family Birnaviridae Unlike most dsRNA viruses, birnaviruses organize their genomes in ribonucleoprotein complexes and replicate in a core-independent manner. We recently demonstrated that IBDV exploits host cell endosomes as platforms for viral replication, a process that depends on the VP3 viral protein. In this study, we delved deeper into the molecular characterization of IBDV-endosome association and investigated the role of host cell phosphatidylinositide lipids in VP3 protein localization and IBDV infection. Together, our findings demonstrate that PtdIns(3)P serves as a scaffold for the association of VP3 to endosomes and reveal its essential role for IBDV replication.
Assuntos
Endossomos/metabolismo , Vírus da Doença Infecciosa da Bursa/fisiologia , Fosfatos de Fosfatidilinositol/metabolismo , Compartimentos de Replicação Viral/metabolismo , Animais , Linhagem Celular , Endossomos/virologia , Membranas Intracelulares/metabolismo , Codorniz , Proteínas Estruturais Virais/metabolismo , Replicação ViralRESUMO
Diacylglycerol (DAG) is a key signaling lipid and intermediate in lipid metabolism. Our knowledge of DAG distribution and dynamics in cell membranes is limited. Using live-cell fluorescence microscopy we investigated the localization of yeast cytosolic-facing pools of DAG in response to conditions where lipid homeostasis and DAG levels were known to be altered. Two main pools were monitored over time using DAG sensors. One pool was associated with vacuolar membranes and the other localized to sites of polarized growth. Dynamic changes in DAG distribution were observed during resumption of growth from stationary phase, when DAG is used to support phospholipid synthesis for membrane proliferation. Vacuolar membranes experienced constant morphological changes displaying DAG enriched microdomains coexisting with liquid-disordered areas demarcated by Vph1. Formation of these domains was dependent on triacylglycerol (TAG) lipolysis. DAG domains and puncta were closely connected to lipid droplets. Lack of conversion of DAG to phosphatidate in growth conditions dependent on TAG mobilization, led to the accumulation of DAG in a vacuolar-associated compartment, impacting the polarized distribution of DAG at budding sites. DAG polarization was also regulated by phosphatidylserine synthesis/traffic and sphingolipid synthesis in the Golgi.
Assuntos
Diglicerídeos/metabolismo , Microdomínios da Membrana/metabolismo , Fosfolipídeos/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismoRESUMO
Phagocytosis is an evolutionarily conserved process. In Protozoa, phagocytosis fulfills a feeding mechanism, while in Metazoa, phagocytosis diversified to play multiple organismal roles, including immune defence, tissue homeostasis, and remodeling. Accordingly, phagocytes display a high level of plasticity in their capacity to recognize, engulf, and process targets that differ in composition and morphology. Here, we review how phagocytosis adapts to its multiple roles and discuss in particular the effect of target morphology in phagocytic uptake and phagosome maturation.
Assuntos
Fenômenos Fisiológicos Celulares , Fagocitose/fisiologia , Fagossomos/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Humanos , Transdução de SinaisRESUMO
Birnaviruses are unconventional members of the group of double-stranded RNA (dsRNA) viruses that are characterized by the lack of a transcriptionally active inner core. Instead, the birnaviral particles organize their genome in ribonucleoprotein complexes (RNPs) composed by dsRNA segments, the dsRNA-binding VP3 protein, and the virally encoded RNA-dependent RNA polymerase (RdRp). This and other structural features suggest that birnaviruses may follow a completely different replication program from that followed by members of the Reoviridae family, supporting the hypothesis that birnaviruses are the evolutionary link between single-stranded positive RNA (+ssRNA) and dsRNA viruses. Here we demonstrate that infectious bursal disease virus (IBDV), a prototypical member of the Birnaviridae family, hijacks endosomal membranes of infected cells through the interaction of a viral protein, VP3, with the phospholipids on the cytosolic leaflet of these compartments for replication. Employing a mutagenesis approach, we demonstrated that VP3 domain PATCH 2 (P2) mediates the association of VP3 with the endosomal membranes. To determine the role of VP3 P2 in the context of the virus replication cycle, we used avian cells stably overexpressing VP3 P2 for IBDV infection. Importantly, the intra- and extracellular virus yields, as well as the intracellular levels of VP2 viral capsid protein, were significantly diminished in cells stably overexpressing VP3 P2. Together, our results indicate that the association of VP3 with endosomes has a relevant role in the IBDV replication cycle. This report provides direct experimental evidence for membranous compartments such as endosomes being required by a dsRNA virus for its replication. The results also support the previously proposed role of birnaviruses as an evolutionary link between +ssRNA and dsRNA viruses.IMPORTANCE Infectious bursal disease (IBD; also called Gumboro disease) is an acute, highly contagious immunosuppressive disease that affects young chickens and spreads worldwide. The etiological agent of IBD is infectious bursal disease virus (IBDV). This virus destroys the central immune organ (bursa of Fabricius), resulting in immunosuppression and reduced responses of chickens to vaccines, which increase their susceptibility to other pathogens. IBDV is a member of Birnaviridae family, which comprises unconventional members of dsRNA viruses, whose replication strategy has been scarcely studied. In this report we show that IBDV hijacks the endosomes of the infected cells for establishing viral replication complexes via the association of the ribonucleoprotein complex component VP3 with the phospholipids in the cytosolic leaflet of endosomal membranes. We show that this interaction is mediated by the VP3 PATCH 2 domain and demonstrate its relevant role in the context of viral infection.
Assuntos
Endossomos/virologia , Vírus da Doença Infecciosa da Bursa/fisiologia , Fosfolipídeos/metabolismo , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/metabolismo , Animais , Linhagem Celular , Células HeLa , Humanos , Vírus da Doença Infecciosa da Bursa/patogenicidade , Mutagênese , Domínios Proteicos , Codorniz , Proteínas Estruturais Virais/química , Replicação ViralRESUMO
The ruminal bacteria Pseudobutyrivibrio xylanivorans strain 2 (P. xylanivorans 2), that mediates the digestion of plant fiber, is considered an attractive candidate for probiotics. Adherence to the epithelium of the digestive tract of the host is one of the major requirements for probiotics. In this study, we assessed the adhesion of P. xylanivorans 2 to SW480â¯cells and characterized this process utilizing multiple microscopy approaches. Our results indicate that a multiplicity of infection of 200â¯CFU/cell allows the highest bacteria to cell binding ratio, with a lower percentage of auto-agglutination events. The comparison of the adherence capacity subjected heat-shock treatment (100⯰C, 1â¯min), which produces the denaturalization of proteins at the bacterial surface, as opposed untreated P. xylanivorans, suggested that this bacteria may attach to SW480â¯cells utilizing a proteinaceous structure. Confocal microscopy analyses indicate that P. xylanivorans 2 attachment induces the formation of F-actin-enriched areas on the surface of SW480â¯cells. Transmission electron microscopy (TEM) revealed the formation of a structure similar to a pedestal in the area of the epithelial cell surface, where the bacterium rests. Finally, a casual finding of TEM analysis of transverse and longitudinal thin-sections of P. xylanivorans 2, revealed irregular intra-cytoplasmic structures compatibles with the so-called bacterial microcompartments. This is the first ultrastructural description of bacterial microcompartments-like structures in the genus Pseudobutyrivibrio.
Assuntos
Aderência Bacteriana , Clostridiales/fisiologia , Células Epiteliais/microbiologia , Linhagem Celular , Humanos , Microscopia , Microscopia Confocal , Microscopia Eletrônica de Transmissão , TemperaturaRESUMO
The adhesin Legionella collagen-like (Lcl) protein can bind to extracellular matrix components and mediate the binding of Legionella pneumophila to host cells. In this study, electrochemical impedance spectroscopy (EIS) and surface plasmon resonance (SPR)-based biosensors were employed to characterize these interactions between glycosaminoglycans (GAGs) and the adhesin Lcl protein. Fucoidan displayed a high affinity (KD 18 nM) for Lcl protein. Chondroitin sulfate A and dermatan sulfate differ in the position of a carboxyl group replacing D-glucuronate with D-iduronate. Our results indicated that the presence of D-iduronate in dermatan sulfate strongly hindered its interaction with Lcl. These biophysical studies provided valuable information in our understanding of adhesin-ligand interactions related to Legionella pneumophila infections.
Assuntos
Técnicas Biossensoriais , Colágeno/metabolismo , Glicosaminoglicanos/metabolismo , Legionella pneumophila/química , Adesinas Bacterianas/metabolismo , Ligação ProteicaRESUMO
Macrophages eliminate pathogens and cell debris through phagocytosis, a process by which particulate matter is engulfed and sequestered into a phagosome. Nascent phagosomes are innocuous organelles resembling the plasma membrane. However, through a maturation process, phagosomes are quickly remodeled by fusion with endosomes and lysosomes to form the phagolysosome. Phagolysosomes are highly acidic and degradative leading to particle decomposition. Phagosome maturation is intimately dependent on the endosomal pathway, during which diverse cargoes are sorted for recycling to the plasma membrane or for degradation in lysosomes. Not surprisingly, various regulators of the endosomal pathway are also required for phagosome maturation, including phosphatidylinositol-3-phosphate, an early endosomal regulator. However, phosphatidylinositol-3-phosphate can be modified by the lipid kinase PIKfyve into phosphatidylinositol-3,5-bisphosphate, which controls late endosome/lysosome functions. The role of phosphatidylinositol-3,5-bisphosphate in macrophages and phagosome maturation remains basically unexplored. Using Fcγ receptor-mediated phagocytosis as a model, we describe our research showing that inhibition of PIKfyve hindered certain steps of phagosome maturation. In particular, PIKfyve antagonists delayed removal of phosphatidylinositol-3-phosphate and reduced acquisition of LAMP1 and cathepsin D, both common lysosomal proteins. Consistent with this, the degradative capacity of phagosomes was reduced but phagosomes appeared to still acidify. We also showed that trafficking to lysosomes and their degradative capacity was reduced by PIKfyve inhibition. Overall, we provide evidence that PIKfyve, likely through phosphatidylinositol-3,5-bisphosphate synthesis, plays a significant role in endolysosomal and phagosome maturation in macrophages.
Assuntos
Endossomos/metabolismo , Macrófagos/metabolismo , Fagossomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Aminopiridinas/farmacologia , Animais , Catepsina D/metabolismo , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Camundongos , Fagocitose , Fosfatos de Fosfatidilinositol/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Transporte Proteico , Receptores de IgG/metabolismoRESUMO
Although only partially understood, multicellular behavior is relatively common in bacterial pathogens. Bacterial aggregates can resist various host defenses and colonize their environment more efficiently than planktonic cells. For the waterborne pathogen Legionella pneumophila, little is known about the roles of autoaggregation or the parameters which allow cell-cell interactions to occur. Here, we determined the endogenous and exogenous factors sufficient to allow autoaggregation to take place in L. pneumophila. We show that isolates from Legionella species which do not produce the Legionella collagen-like protein (Lcl) are deficient in autoaggregation. Targeted deletion of the Lcl-encoding gene (lpg2644) and the addition of Lcl ligands impair the autoaggregation of L. pneumophila. In addition, Lcl-induced autoaggregation requires divalent cations. Escherichia coli producing surface-exposed Lcl is able to autoaggregate and shows increased biofilm production. We also demonstrate that L. pneumophila infection of Acanthamoeba castellanii and Hartmanella vermiformis is potentiated under conditions which promote Lcl dependent autoaggregation. Overall, this study shows that L. pneumophila is capable of autoaggregating in a process that is mediated by Lcl in a divalent-cation-dependent manner. It also reveals that Lcl potentiates the ability of L. pneumophila to come in contact, attach, and infect amoebae.
Assuntos
Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Legionella pneumophila/fisiologia , Fagócitos/microbiologia , Acanthamoeba castellanii/microbiologia , Proteínas de Bactérias/genética , Cátions Bivalentes/metabolismo , Escherichia coli/genética , Escherichia coli/fisiologia , Deleção de Genes , Legionella pneumophila/genética , Lobosea/microbiologiaRESUMO
The ability to channel excess fatty acids into neutral lipids like triacylglycerol (TAG) is a critical strategy used by cells to maintain lipid homeostasis. Upon activation to acyl-CoA, fatty acids become readily available as substrates for acyltransferases involved in neutral lipid synthesis. Neutral lipids are then packed into organelles derived from the endoplasmic reticulum called lipid particles (LPs). The first acylation step in the de novo pathway for TAG synthesis is catalyzed by glycerol-3-phosphate acyltransferases (GPATs). Two isoforms, Gat1p/Gpt2p and Gat2p/Sct1p, are present in the yeast Saccharomyces cerevisiae. Previous evidence indicated that these enzymes contribute differentially to the synthesis of TAG in actively growing cells. In this work we studied the role of the yeast GPATs in the formation of LPs induced by a surplus of oleic acid. Yeast lacking Gat1p (but not Gat2p) were sensitive to oleate and failed to accumulate LPs induced by this unsaturated fatty acid. It is shown that oleate induces dephosphorylation of Gat1p as well as an increment in its levels. Most importantly, we identified novel Gat1p crescent structures that are formed in the presence of oleate. These structures are connected with the endoplasmic reticulum and are intimately associated with LPs. No such structures were observed for Gat2p. A crucial point of control of lipid fluxes at the GPAT step is proposed.
Assuntos
Retículo Endoplasmático/enzimologia , Fatores de Transcrição GATA/metabolismo , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Ácido Oleico/farmacologia , Saccharomyces cerevisiae/metabolismo , Triglicerídeos/metabolismo , Retículo Endoplasmático/genética , Fatores de Transcrição GATA/genética , Glicerol-3-Fosfato O-Aciltransferase/genética , Fosforilação , Saccharomyces cerevisiae/genética , Triglicerídeos/genéticaRESUMO
BACKGROUND & AIMS: The Helicobacter pylori toxin vacuolating cytotoxin (VacA) promotes gastric colonization, and its presence (VacA(+)) is associated with more-severe disease. The exact mechanisms by which VacA contributes to infection are unclear. We previously found that limited exposure to VacA induces autophagy of gastric cells, which eliminates the toxin; we investigated whether autophagy serves as a defense mechanism against H pylori infection. METHODS: We investigated the effect of VacA on autophagy in human gastric epithelial cells and primary gastric cells from mice. Expression of p62, a marker of autophagy, was also assessed in gastric tissues from patients infected with toxigenic (VacA(+)) or nontoxigenic strains. We analyzed the effect of VacA on autophagy in peripheral blood monocytes obtained from subjects with different genotypes of ATG16L1, which regulates autophagy. We performed genotyping for ATG16L1 in 2 cohorts of infected and uninfected subjects. RESULTS: Prolonged exposure of human gastric epithelial cells and mouse gastric cells to VacA disrupted induction of autophagy in response to the toxin, because the cells lacked cathepsin D in autophagosomes. Loss of autophagy resulted in the accumulation of p62 and reactive oxygen species. Gastric biopsy samples from patients infected with VacA(+), but not nontoxigenic strains of H pylori, had increased levels of p62. Peripheral blood monocytes isolated from individuals with polymorphisms in ATG16L1 that increase susceptibility to Crohn's disease had reduced induction of autophagy in response to VacA(+) compared to cells from individuals that did not have these polymorphisms. The presence of the ATG16L1 Crohn's disease risk variant increased susceptibility to H pylori infection in 2 separate cohorts. CONCLUSIONS: Autophagy protects against infection with H pylori; the toxin VacA disrupts autophagy to promote infection, which could contribute to inflammation and eventual carcinogenesis.
Assuntos
Autofagia/fisiologia , Proteínas de Bactérias/fisiologia , Infecções por Helicobacter/etiologia , Helicobacter pylori , Alelos , Animais , Proteínas de Bactérias/genética , Catepsina D/fisiologia , Doença de Crohn/etiologia , Doença de Crohn/genética , Genótipo , Humanos , Imunidade Inata , Camundongos , Fagossomos/fisiologiaRESUMO
Legionella, the aetiological agent responsible for Legionellosis, is an opportunistic pathogen that infects humans upon the inhalation of contaminated aerosolized water droplets. Legionella is pleomorphic and its different morphotypes exhibit varying degrees of virulence. While the filamentous forms of Legionella pneumophila (Lp) have been reported in patient samples since the first description of legionellosis, their role in disease has not been studied. Our results show that both E-cadherin and ß1 integrin receptors mediate filamentous Lp (FLp) attachment to lung epithelial cells (LECs). The activation of these receptors induces the formation of actin enriched membrane surface structures that we designated 'hooks' and 'membrane wraps'. These structures entrap the filaments on the cell surface leading to their gradual internalization through a zipper mechanism of phagocytosis dependent on actomyosin activity. The supply of E-cadherin receptors from the recycling pathway and ß1 integrins released from focal adhesion turnover are required to sustain this process. Intracellular FLp inhabits a vacuolar compartment where filaments differentiate into short rods and replicate to produce infective progeny. Here we are reporting a first description of the invasion mechanism used by FLp to invade LECs. Therefore, filamentous morphotype of Lp can induce its own uptake by LECs and has the potential ability to cause disease.
Assuntos
Células Epiteliais/microbiologia , Legionella pneumophila/patogenicidade , Fagocitose , Actomiosina/metabolismo , Aderência Bacteriana , Caderinas/metabolismo , Linhagem Celular , Humanos , Integrina beta1/metabolismo , Legionella pneumophila/citologia , Ligação ProteicaRESUMO
Phagosome resolution is a newly defined, terminal stage in the process of phagocytosis. During this phase, phagolysosomes are fragmented into smaller vesicles, which we called phagosome-derived vesicles (PDVs). PDVs gradually accumulate within macrophages, while the phagosomes diminish in size until the organelles are no longer detectable. Although PDVs share the same maturation markers as phagolysosomes, they are heterogeneous in size and very dynamic, which makes PDVs difficult to track. Thus, to analyze PDV populations in cells, we developed methods to differentiate PDVs from the phagosomes in which they were derived and further assess their characteristics. In this chapter, we describe two microscopy-based methods that can be used to quantify different aspects of phagosome resolution: volumetric analysis of phagosome shrinkage and PDV accumulation and co-occurrence analysis of various membrane markers with PDVs.
Assuntos
Microscopia , Fagossomos , Fagocitose , MacrófagosRESUMO
Filamentous targets are internalized via phagocytic cups that last for several minutes before closing to form a phagosome. This characteristic offers the possibility to study key events in phagocytosis with greater spatial and temporal resolution than is possible to achieve using spherical particles, for which the transition from a phagocytic cup to an enclosed phagosome occurs within a few seconds after particle attachment. In this chapter, we provide methodologies to prepare filamentous bacteria and describe how they can be used as targets to study different aspects of phagocytosis.
Assuntos
Fagocitose , Fagossomos , Bactérias , CitoesqueletoRESUMO
The rapid diagnosis of Legionellosis is crucial for the effective treatment of this disease. Currently, most clinical laboratories utilize rapid immunoassays that are sufficient for the detection of Legionella serogroup 1, but not other clinically relevant serogroups. In this report, the development of a disposable immunochip system is described in connection with electrochemical impedance spectroscopy and fluorescence microscopy. The immunochips were prepared by covalently immobilizing fluorophore-conjugated L. pneumophilaantibodies on Au chips. The analytical performance of the immunochips was optimized as a prescreening tool for L. pneumophila. The versatile immunochips described here can be easily adapted for the monitoring of all Legionella serogroups in clinical and environmental samples.
Assuntos
Espectroscopia Dielétrica , Legionella pneumophila , Legionelose/diagnóstico , Técnicas Analíticas Microfluídicas , Humanos , Imunoquímica , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/tendências , Microscopia de FluorescênciaRESUMO
Legionella pneumophila is an accidental pathogen that replicates intracellularly within the Legionella-containing vacuole (LCV) in macrophages. Within an hour of infection, L. pneumophila secretes effectors to manipulate Rab1 and intercept ER-derived vesicles to the LCV. The downstream consequences of interrupted ER trafficking on the Golgi of macrophages are not clear. We examined the Golgi structure and function in L. pneumophila-infected human U937 macrophages. Intriguingly, the size of the Golgi in infected macrophages remained similar to uninfected macrophages. Furthermore, TEM analysis also did not reveal any significant changes in the ultrastructure of the Golgi in L. pneumophila-infected cells. Drug-induced Golgi disruption impacted bacterial replication in human macrophages, suggesting that an intact organelle is important for bacteria growth. To probe for Golgi functionality after L. pneumophila infection, we assayed glycosylation levels using fluorescent lectins. Golgi O-glycosylation levels, visualized by the fluorescent cis-Golgi lectin, Helix pomatia agglutinin (HPA), significantly decreased over time as infection progressed, compared to control cells. N-glycosylation levels in the Golgi, as measured by L-PHA lectin staining, were not impacted by L. pneumophila infection. To understand the mechanism of reduced O-glycans in the Golgi we monitored UDP-GalNAc transporter levels in infected macrophages. The solute carrier family 35 membrane A2 (SLC35A2) protein levels were significantly reduced in L. pneumophila-infected U937 and HeLa cells and L. pneumophila growth in human macrophages benefitted from GalNAc supplementation. The pronounced reduction in Golgi HPA levels was dependent on the translocation apparatus DotA expression in bacteria and occurred in a ubiquitin-independent manner. Thus, L. pneumophila infection of human macrophages maintains and requires an intact host Golgi ultrastructure despite known interference of ER-Golgi trafficking. Finally, L. pneumophila infection blocks the formation of O-linked glycans and reduces SLC35A2 protein levels in infected human macrophages.
RESUMO
Various vaccine quality attributes should be monitored to ensure consistency, potency, purity, and safety of vaccine products prior to lot release. Vaccine particle size and protein antigen aggregation are two important considerations for particle-adsorbed vaccines. In this study, we evaluated the use of imaging flow cytometry as a potential all-in-one platform to measure adjuvant particle size and to detect protein aggregates through a combination of brightfield microscopy, side scatter detection, and fluorescence microscopy. An aluminum phosphate adjuvant was analyzed for size using the brightfield function, and the size measurement was compared against laser diffraction. Heat-induced protein aggregates of either unadsorbed antigens or aluminum phosphate adjuvant-adsorbed antigens were stained with the fluorescent ProteoStat aggregation dye, followed by detection and analysis using a combination of the brightfield and fluorescence microscopy functions. The change in aggregation of unadsorbed antigens was confirmed using dynamic light scattering. These results demonstrate the versatility of the imaging flow cytometry platform for the evaluation of multiple vaccine quality characteristics.
Assuntos
Agregados Proteicos , Vacinas , Adjuvantes Imunológicos/farmacologia , Adjuvantes Farmacêuticos , Antígenos , Citometria de Fluxo , Corantes FluorescentesRESUMO
Legionellosis is mostly caused by Legionella pneumophila and is defined by a severe respiratory illness with a case fatality rate ranging from 5 to 80%. In vitro and in vivo, interactions of L. pneumophila with lung epithelial cells are mediated by the sulfated glycosaminoglycans (GAGs) of the host extracellular matrix. In this study, we have identified several Legionella heparin binding proteins. We have shown that one of these proteins, designated Lcl, is a polymorphic adhesin of L. pneumophila that is produced during legionellosis. Homologues of Lcl are ubiquitous in L. pneumophila serogroups but are undetected in other Legionella species. Recombinant Lcl binds to GAGs, and a Δlpg2644 mutant demonstrated reduced binding to GAGs and human lung epithelial cells. Importantly, we showed that the Δlpg2644 strain is dramatically impaired in biofilm formation. These data delineate the role of Lcl in the GAG binding properties of L. pneumophila and provide molecular evidence regarding its role in L. pneumophila adherence and biofilm formation.
Assuntos
Adesinas Bacterianas/fisiologia , Biofilmes/crescimento & desenvolvimento , Glicosaminoglicanos/metabolismo , Legionella pneumophila/fisiologia , Doença dos Legionários/microbiologia , Pulmão/microbiologia , Mucosa Respiratória/microbiologia , Sequência de Aminoácidos , Células Cultivadas , Matriz Extracelular/fisiologia , Heparina/metabolismo , Humanos , Doença dos Legionários/fisiopatologia , Pulmão/fisiopatologia , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Mucosa Respiratória/fisiopatologiaRESUMO
Salmonella invades mammalian cells by inducing membrane ruffling and macropinocytosis through actin remodelling. Because phosphoinositides are central to actin assembly, we have studied the dynamics of phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P(2)) in HeLa cells during invasion by Salmonella typhimurium. Here we show that the outermost parts of the ruffles induced by invasion show a modest enrichment in PtdIns(4,5)P(2), but that PtdIns(4,5)P(2) is virtually absent from the invaginating regions. Rapid disappearance of PtdIns(4,5)P(2) requires the expression of the Salmonella phosphatase SigD (also known as SopB). Deletion of SigD markedly delays fission of the invaginating membranes, indicating that elimination of PtdIns(4,5)P(2) may be required for rapid formation of Salmonella-containing vacuoles. Heterologous expression of SigD is sufficient to promote the disappearance of PtdIns(4,5)P(2), to reduce the rigidity of the membrane skeleton, and to induce plasmalemmal invagination and fission. Hydrolysis of PtdIns(4,5)P(2) may be a common and essential feature of membrane fission during several internalization processes including invasion, phagocytosis and possibly endocytosis.