Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37175601

RESUMO

The limited ability of mammals to regenerate has garnered significant attention, particularly in regard to skin wound healing (WH), which is a critical step for regeneration. In human adults, skin WH results in the formation of scars following injury or trauma, regardless of severity. This differs significantly from the scarless WH observed in the fetal skin of mammals or anamniotes. This review investigates the role of molecular players involved in scarless WH, which are lost or repressed in adult mammalian WH systems. Specifically, we analyze the physiological role of Anterior Gradient (AGR) family proteins at different stages of the WH regulatory network. AGR is activated in the regeneration of lower vertebrates at the stage of wound closure and, accordingly, is important for WH. Mammalian AGR2 is expressed during scarless WH in embryonic skin, while in adults, the activity of this gene is normally inhibited and is observed only in the mucous epithelium of the digestive tract, which is capable of full regeneration. The combination of AGR2 unique potencies in postnatal mammals makes it possible to consider it as a promising candidate for enhancing WH processes.


Assuntos
Cicatriz , Cicatrização , Animais , Humanos , Cicatrização/fisiologia , Cicatriz/patologia , Pele/patologia , Mamíferos , Epitélio/patologia , Mucoproteínas/genética , Proteínas Oncogênicas/genética
2.
Genesis ; 57(5): e23293, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30912273

RESUMO

The Agr family genes, Ag1, Agr2, and Agr3, encode for the thioredoxin domain containing secreted proteins and are specific only for vertebrates. These proteins are attracting increasing attention due to their involvement in many physiological and pathological processes, including exocrine secretion, cancer, regeneration of the body appendages, and the early brain development. At the same time, the mode by which Agrs regulate intracellular processes are poorly understood. Despite that the receptor to Agr2, the membrane anchored protein Prod1, has been firstly discovered in Urodeles, and it has been shown to interact with Agr2 in the regenerating limb, no functional homologs of Prod1 were identified in other vertebrates. This raises the question of the mechanisms by which Agrs can regulate regeneration in other lower vertebrates. Recently, we have identified that Tfp4 (three-fingers Protein 4), the structural and functional homolog of Prod1 in Anurans, interacts with Agr2 in Xenopus laevis embryos. In the present work we show by several methods that the activity of Tfp4 is essential for the tadpole tail regeneration as well as for the early eye and forebrain development during embryogenesis. These data show for the first time the common molecular mechanism of regeneration regulation in amphibians by interaction of Prod1 and Agr2 proteins.


Assuntos
Arginase/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Regeneração/fisiologia , Proteínas de Xenopus/metabolismo , Animais , Proteínas de Transporte/metabolismo , Desenvolvimento Embrionário , Extremidades/embriologia , Larva/genética , Larva/metabolismo , Organogênese , Ligação Proteica/fisiologia , Regeneração/genética , Tiorredoxinas/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-38817123

RESUMO

The ability to regenerate large body appendages is an ancestral trait of vertebrates, which varies across different animal groups. While anamniotes (fish and amphibians) commonly possess this ability, it is notably restricted in amniotes (reptiles, birds, and mammals). In this review, we explore the factors contributing to the loss of regenerative capabilities in amniotes. First, we analyse the potential negative impacts on appendage regeneration caused by four evolutionary innovations: advanced immunity, skin keratinization, whole-body endothermy, and increased body size. These innovations emerged as amniotes transitioned to terrestrial habitats and were correlated with a decline in regeneration capability. Second, we examine the role played by the loss of regeneration-related enhancers and genes initiated by these innovations in the fixation of an inability to regenerate body appendages at the genomic level. We propose that following the cessation of regenerative capacity, the loss of highly specific regeneration enhancers could represent an evolutionarily neutral event. Consequently, the loss of such enhancers might promptly follow the suppression of regeneration as a side effect of evolutionary innovations. By contrast, the loss of regeneration-related genes, due to their pleiotropic functions, would only take place if such loss was accompanied by additional evolutionary innovations that compensated for the loss of pleiotropic functions unrelated to regeneration, which would remain even after participation of these genes in regeneration was lost. Through a review of the literature, we provide evidence that, in many cases, the loss in amniotes of genes associated with body appendage regeneration in anamniotes was significantly delayed relative to the time when regenerative capability was lost. We hypothesise that this delay may be attributed to the necessity for evolutionary restructuring of developmental mechanisms to create conditions where the loss of these genes was a beneficial innovation for the organism. Experimental investigation of the downregulation of genes involved in the regeneration of body appendages in anamniotes but absent in amniotes offers a promising avenue to uncover evolutionary innovations that emerged from the loss of these genes. We propose that the vast majority of regeneration-related genes lost in amniotes (about 150 in humans) may be involved in regulating the early stages of limb and tail regeneration in anamniotes. Disruption of this stage, rather than the late stage, may not interfere with the mechanisms of limb and tail bud development during embryogenesis, as these mechanisms share similarities with those operating in the late stage of regeneration. Consequently, the most promising approach to restoring regeneration in humans may involve creating analogs of embryonic limb buds using stem cell-based tissue-engineering methods, followed by their transfer to the amputation stump. Due to the loss of many genes required specifically during the early stage of regeneration, this approach may be more effective than attempting to induce both early and late stages of regeneration directly in the stump itself.

4.
Biol Direct ; 18(1): 45, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37568147

RESUMO

BACKGROUND: It is generally accepted that most evolutionary transformations at the phenotype level are associated either with rearrangements of genomic regulatory elements, which control the activity of gene networks, or with changes in the amino acid contents of proteins. Recently, evidence has accumulated that significant evolutionary transformations could also be associated with the loss/emergence of whole genes. The targeted identification of such genes is a challenging problem for both bioinformatics and evo-devo research. RESULTS: To solve this problem we propose the WINEGRET method, named after the first letters of the title. Its main idea is to search for genes that satisfy two requirements: first, the desired genes were lost/emerged at the same evolutionary stage at which the phenotypic trait of interest was lost/emerged, and second, the expression of these genes changes significantly during the development of the trait of interest in the model organism. To verify the first requirement, we do not use existing databases of orthologs, but rely purely on gene homology and local synteny by using some novel quickly computable conditions. Genes satisfying the second requirement are found by deep RNA sequencing. As a proof of principle, we used our method to find genes absent in extant amniotes (reptiles, birds, mammals) but present in anamniotes (fish and amphibians), in which these genes are involved in the regeneration of large body appendages. As a result, 57 genes were identified. For three of them, c-c motif chemokine 4, eotaxin-like, and a previously unknown gene called here sod4, essential roles for tail regeneration were demonstrated. Noteworthy, we established that the latter gene belongs to a novel family of Cu/Zn-superoxide dismutases lost by amniotes, SOD4. CONCLUSIONS: We present a method for targeted identification of genes whose loss/emergence in evolution could be associated with the loss/emergence of a phenotypic trait of interest. In a proof-of-principle study, we identified genes absent in amniotes that participate in body appendage regeneration in anamniotes. Our method provides a wide range of opportunities for studying the relationship between the loss/emergence of phenotypic traits and the loss/emergence of specific genes in evolution.


Assuntos
Mamíferos , Animais
5.
Front Cell Dev Biol ; 9: 738940, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34676214

RESUMO

Warm-blooded vertebrates regenerate lost limbs and their parts in general much worse than fishes and amphibians. We previously hypothesized that this reduction in regenerative capability could be explained in part by the loss of some genes important for the regeneration in ancestors of warm-blooded vertebrates. One of such genes could be ag1, which encodes secreted protein disulfide isomerase of the Agr family. Ag1 is activated during limb and tail regeneration in the frog Xenopus laevis tadpoles and is absent in warm-blooded animals. The essential role of another agr family gene, agr2, in limb regeneration was demonstrated previously in newts. However, agr2, as well as the third member of agr family, agr3, are present in all vertebrates. Therefore, it is important to verify if the activity of ag1 lost by warm-blooded vertebrates is also essential for regeneration in amphibians, which could be a further argument in favor of our hypothesis. Here, we show that in the Xenopus laevis tadpoles in which the expression of ag1 or agr2 was artificially suppressed, regeneration of amputated tail tips was also significantly reduced. Importantly, overexpression of any of these agrs or treatment of tadpoles with any of their recombinant proteins resulted in the restoration of tail regeneration in the refractory period when these processes are severely inhibited in normal development. These findings demonstrate the critical roles of ag1 and agr2 in regeneration in frogs and present indirect evidence that the loss of ag1 in evolution could be one of the prerequisites for the reduction of regenerative ability in warm-blooded vertebrates.

6.
Cell Rep ; 29(4): 1027-1040.e6, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31644900

RESUMO

The molecular basis of higher regenerative capacity of cold-blooded animals comparing to warm-blooded ones is poorly understood. Although this difference in regenerative capacities is commonly thought to be a result of restructuring of the same regulatory gene network, we hypothesized that it may be due to loss of some genes essential for regeneration. We describe here a bioinformatic method that allowed us to identify such genes. For investigation in depth we selected one of them encoding transmembrane protein, named "c-Answer." Using the Xenopus laevis frog as a model cold-blooded animal, we established that c-Answer regulates regeneration of body appendages and telencephalic development through binding to fibroblast growth factor receptors (FGFRs) and P2ry1 receptors and promoting MAPK/ERK and purinergic signaling. This suggests that elimination of c-answer in warm-blooded animals could lead to decreased activity of at least two signaling pathways, which in turn might contribute to changes in mechanisms regulating regeneration and telencephalic development.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Neurogênese , Regeneração , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Biologia Computacional , Sistema de Sinalização das MAP Quinases , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Receptores Purinérgicos P2Y1/genética , Receptores Purinérgicos P2Y1/metabolismo , Xenopus laevis
7.
Nucleic Acids Res ; 34(8): 2247-57, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16670431

RESUMO

To be effective, antisense molecules should be stable in biological fluids, non-toxic, form stable and specific duplexes with target RNAs and readily penetrate through cell membranes without non-specific effects on cell function. We report herein that negatively charged DNA mimics representing chiral analogues of peptide nucleic acids with a constrained trans-4-hydroxy-N-acetylpyrrolidine-2-phosphonate backbone (pHypNAs) meet these criteria. To demonstrate this, we compared silencing potency of these compounds with that of previously evaluated as efficient gene knockdown molecules hetero-oligomers consisting of alternating phosphono-PNA monomers and PNA-like monomers based on trans-4-hydroxy-L-proline (HypNA-pPNAs). Antisense potential of pHypNA mimics was confirmed in a cell-free translation assay with firefly luciferase as well as in a living cell assay with green fluorescent protein. In both cases, the pHypNA antisense oligomers provided a specific knockdown of a target protein production. Confocal microscopy showed that pHypNAs, when transfected into living cells, demonstrated efficient cellular uptake with distribution in the cytosol and nucleus. Also, the high potency of pHypNAs for down-regulation of Ras-like GTPase Ras-dva in Xenopus embryos was demonstrated in comparison with phosphorodiamidate morpholino oligomers. Therefore, our data suggest that pHypNAs are novel antisense agents with potential widespread in vitro and in vivo applications in basic research involving live cells and intact organisms.


Assuntos
Inativação Gênica , Hidroxiprolina/química , Oligonucleotídeos Antissenso/química , Organofosfonatos/química , Ácidos Nucleicos Peptídicos/química , Animais , Transporte Biológico , Sistema Livre de Células , Células Cultivadas , DNA/química , Mimetismo Molecular , Proteínas Monoméricas de Ligação ao GTP/genética , Oligonucleotídeos Antissenso/síntese química , Oligonucleotídeos Antissenso/metabolismo , Ácidos Nucleicos Peptídicos/síntese química , Ácidos Nucleicos Peptídicos/metabolismo , Biossíntese de Proteínas , Xenopus , Proteínas de Xenopus/genética
8.
Sci Rep ; 8(1): 13035, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158598

RESUMO

In contrast to amniotes (reptiles, birds and mammals), anamniotes (fishes and amphibians) can effectively regenerate body appendages such as fins, limbs and tails. Why such a useful capability was progressively lost in amniotes remains unknown. As we have hypothesized recently, one of the reasons for this could be loss of some genes regulating the regeneration in evolution of amniotes. Here, we demonstrate the validity of this hypothesis by showing that genes of small GTPases Ras-dva1 and Ras-dva2, that had been lost in a stepwise manner during evolution of amniotes and disappeared completely in placental mammals, are important for regeneration in anamniotes. Both Ras-dva genes are quickly activated in regenerative wound epithelium and blastema forming in the amputated adult Danio rerio fins and Xenopus laevis tadpoles' tails and hindlimb buds. Down-regulation of any of two Ras-dva genes in fish and frog resulted in a retardation of regeneration accompanied by down-regulation of the regeneration marker genes. On the other hand, Ras-dva over-expression in tadpoles' tails restores regeneration capacity during the refractory period when regeneration is blocked due to natural reasons. Thus our data on Ras-dva genes, which were eliminated in amniotes but play role in anamniotes regeneration regulation, satisfy our hypothesis.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Regeneração , Animais , Xenopus laevis , Peixe-Zebra
9.
Stem Cell Investig ; 4: 60, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28725656

RESUMO

In Danio rerio (zebrafish), members of the vent gene-family (vox/vega1, vent/vega2) are considered as ventralizing factors. We investigated not only the expression of their mRNAs by in situ hybridization at different stages of embryonic development, but also the spatial distribution of the encoded proteins by whole-mount immunostaining. We showed vox mRNA to be available in embryos since early cleavage and later on. Vent mRNA appeared after zygotic genome activation only. The vox and vent proteins were revealed at stage of eight blastomeres. At blastula and gastrula the vox and vent protein staining areas completely overlapped those of the mRNAs. They were expressed uniformly throughout the embryo except for a small region of clearing on the dorsal side. From the bud stage throughout somitogenesis, the vox and vent proteins staining progressively covered the embryos except for dorsal side: at the bud stage it resembled that of mRNA and at the beginning of somitogenesis it was clearly seen along the axis structures. At the pharyngula period stages the proteins were located in neural crest zone, but their mRNAs appeared to be in the tail tips. Thus during embryogenesis, the spatial distributions of a protein and its mRNA may not always quite coincide. We observed such mismatches in embryos at the cleavage stage and in the pharyngula period.

10.
Sci Rep ; 5: 8123, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25630240

RESUMO

Agr family includes three groups of genes, Ag1, Agr2 and Agr3, which encode the thioredoxin domain-containing secreted proteins and have been shown recently to participate in regeneration of the amputated body appendages in amphibians. By contrast, higher vertebrates have only Agr2 and Agr3, but lack Ag1, and have low ability to regenerate the body appendages. Thus, one may hypothesize that loss of Ag1 in evolution could be an important event that led to a decline of the regenerative capacity in higher vertebrates. To test this, we have studied now the expression and role of Ag1 in the regeneration of fins of a representative of another large group of lower vertebrates, the fish Danio rerio. As a result, we have demonstrated that amputation of the Danio fins, like amputation of the body appendages in amphibians, elicits an increase of Ag1 expression in cells of the stump. Furthermore, down-regulation of DAg1 by injections of Vivo-morpholino antisense oligonucleotides resulted in a retardation of the fin regeneration. These data are in a good agreement with the assumption that the loss of Ag1 in higher vertebrates ancestors could lead to the reduction of the regenerative capacity in their modern descendants.


Assuntos
Nadadeiras de Animais/fisiologia , Isomerases de Dissulfetos de Proteínas/metabolismo , Regeneração , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Apoptose/efeitos dos fármacos , DNA Complementar/genética , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Marcação In Situ das Extremidades Cortadas , Injeções , Morfolinos/administração & dosagem , Morfolinos/farmacologia , Reação em Cadeia da Polimerase , Biossíntese de Proteínas , Isomerases de Dissulfetos de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regeneração/genética , Fatores de Tempo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
11.
Biol Open ; 3(3): 192-203, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24570397

RESUMO

We previously found that the small GTPase Ras-dva1 is essential for the telencephalic development in Xenopus laevis because Ras-dva1 controls the Fgf8-mediated induction of FoxG1 expression, a key telencephalic regulator. In this report, we show, however, that Ras-dva1 and FoxG1 are expressed in different groups of cells; whereas Ras-dva1 is expressed in the outer layer of the anterior neural fold, FoxG1 and Fgf8 are activated in the inner layer from which the telencephalon is derived. We resolve this paradox by demonstrating that Ras-dva1 is involved in the transduction of Fgf8 signal received by cells in the outer layer, which in turn send a feedback signal that stimulates FoxG1 expression in the inner layer. We show that this feedback signal is transmitted by secreted Agr proteins, the expression of which is activated in the outer layer by mediation of Ras-dva1 and the homeodomain transcription factor Otx2. In turn, Agrs are essential for maintaining Fgf8 and FoxG1 expression in cells at the anterior neural plate border. Our finding reveals a novel feedback loop mechanism based on the exchange of Fgf8 and Agr signaling between neural and non-neural compartments at the anterior margin of the neural plate and demonstrates a key role of Ras-dva1 in this mechanism.

12.
Sci Rep ; 3: 1279, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23412115

RESUMO

Previous studies have shown that Agr genes, which encode thioredoxin domain-containing secreted proteins, play a critical role in limb regeneration in salamanders. To determine the evolutionary conservation of Agr function, it is important to examine whether Agrs play a similar role in species with a different type of regeneration. Here, we refined the phylogeny of Agrs, revealing three subfamilies: Ag1, Agr2 and Agr3. Importantly, we established that Ag1 was lost in higher vertebrates, which correlates with their decreased regeneration ability. In Xenopus laevis tadpoles (anamniotes), which have all three Agr subfamilies and a high regenerating capacity, Agrs were activated in the stumps of tails and hindlimb buds that were amputated at stage 52. However, Agrs were not up-regulated when the hindlimb buds were amputated at stage 57, the stage at which their regeneration capacity is lost. Our findings indicate the general importance of Agrs for body appendages regeneration in amphibians.


Assuntos
Regeneração/genética , Proteínas de Xenopus/genética , Animais , Genes , Membro Posterior/fisiologia , Larva , Filogenia , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/fisiologia , Proteínas de Xenopus/fisiologia , Xenopus laevis
13.
Gene Expr Patterns ; 11(1-2): 156-61, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21056124

RESUMO

Small GTPases of the recently discovered Ras-dva family are specific to the Vertebrate phylum. In Xenopus laevis, Ras-dva-1 is expressed during gastrulation and neurulation in the anterior ectoderm where it regulates the early development of the forebrain and cranial placodes (Tereshina et al., 2006). In the present work, we studied the expression of Ras-dva-1 at later developmental stages. As a result, the Ras-dva-1 expression was revealed in the eye retina, epiphysis (pineal gland), hypophysis (pituitary), branchial arches, pharynx, oesophagus, stomach and gall bladder of swimming tadpoles. Additionally, we investigated for the first time the expression pattern of Ras-dva-2. This gene encodes a protein belonging to a novel sub-group of Ras-dva GTPases that we identified by phylogenetic analysis within Ras-dva family. In contrast to Ras-dva-1, Ras-dva-2 is not expressed before the swimming tadpole stage. At the swimming tadpole stage, however, Ras-dva-2 transcripts can be detected in the eye retina and brain. Later in development, the expression of Ras-dva-2 can also be revealed in the mesonephros and stomach.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Animais , Embrião não Mamífero/metabolismo , Larva/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas de Xenopus/genética , Xenopus laevis/metabolismo
14.
Development ; 133(3): 485-94, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16410411

RESUMO

Ras-like small GTPases are involved in the regulation of many processes essential for the specification of the vertebrate body plan. Recently, we identified the gene of novel small GTPase Ras-dva, which is specifically expressed at the anterior margin of the neural plate of the Xenopus laevis embryo. Now, we demonstrate that Ras-dva and its homologs in other species constitute a novel protein family, distinct from the previously known families of small GTPases. We show that the expression of Ras-dva begins during gastrulation throughout the anterior ectoderm and is activated by the homeodomain transcription factor Otx2; however, later on, Ras-dva expression is inhibited in the anterior neural plate by another homeodomain factor Xanf1. Downregulation of Ras-dva functioning by the dominant-negative mutant or by the antisense morpholino oligonucleotides results in severe malformations of the forebrain and derivatives of the cranial placodes. Importantly, although the observed abnormalities can be rescued by co-injection of the Ras-dva mRNA, they cannot be rescued by the mRNA of the closest Ras-dva homolog from another family of small GTPases, Ras. This fact indicates functional specificity of the Ras-dva signaling pathway. At the molecular level, downregulation of Ras-dva inhibits the expression of several regulators of the anterior neural plate and folds patterning, such as Otx2, BF-1 (also known as Foxg1), Xag2, Pax6, Slug and Sox9, and interferes with FGF8 signaling within the anterior ectoderm. By contrast, expression of the epidermal regulator BMP4 and its target genes, Vent1, Vent2b and Msx1, is upregulated. Together, the data obtained indicate that Ras-dva is an essential component of the signaling network that patterns the early anterior neural plate and the adjacent ectoderm in the Xenopus laevis embryos.


Assuntos
Padronização Corporal , Ectoderma , Desenvolvimento Embrionário , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Proteínas ras/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Regulação para Baixo , Ectoderma/citologia , Ectoderma/fisiologia , Fator 8 de Crescimento de Fibroblasto/genética , Fator 8 de Crescimento de Fibroblasto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/metabolismo , Filogenia , Homologia de Sequência de Aminoácidos , Transdução de Sinais/fisiologia , Proteínas de Xenopus/genética , Xenopus laevis/anatomia & histologia , Proteínas ras/classificação , Proteínas ras/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa