Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37763451

RESUMO

The temperature resistance of glued timber, which is crucial for glued wood construction, represents a significant assessment criterion. To gain insights into this aspect, this study utilized methods such as a shear strength test in accordance with EN 302-1:2013-06 under thermal loading (from 20 °C to 200 °C), and Differential Scanning Calorimetry (DSC) to determine the glass transition temperature (Tg). An increase in thermal load resulted in a decrease in shear strength and an increase in wood breakage. A hierarchy of adhesive groups was established based on strength performance and wood failure percentage (WFP) at 200 °C. Thermoset adhesives (MF: Melamine Formaldehyde, PRF: Phenol Resorcinol Formaldehyde) led the ranking, followed by elastomer adhesives (1C-PUR: One-Component Polyurethane, EPI: Emulsion Polymer Isocyanate), with thermoplastic adhesive (PVAc: Polyvinyl Acetate) last. Thermoset adhesives further cured under heat. PUR adhesives exhibited higher strength performance at 150 °C and lower temperatures.

2.
Materials (Basel) ; 15(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36500102

RESUMO

The mechanical properties of cured wood adhesive films were tested in a dry state by means of nanoindentation. These studies have found that the application of adhesives have an effect on the accuracy of the hardness and elastic modulus determination. The highest values of hardness among the tested adhesives at 20 °C have condensation resins: MF (0.64 GPa) and RPF (0.52 GPa). Then the decreasing EPI (0.43 GPa), PUR (0.23 GPa) and PVAc (0.14 GPa) adhesives. The values of the elastic modulus look a little bit different. The highest values among the tested adhesives at 20 °C have EPI (11.97 GPa), followed by MF (10.54 GPa), RPF (7.98 GPa), PVAc (4.71 GPa) and PUR (3.37 GPa). X-ray micro-computed tomography was used to evaluate the adhesive joint by the determination of the voids. It has been proven that this value depends on the type of adhesive, glue quantity and reactivity. The highest values of the void ratio achieve the PUR (17.26%) adhesives, then PVAc (13.97%), RRF (6.88%), MF (1.78%) and EPI (0.03%). The ratio of the gaps increases with the higher joint thickness. A too high proportion of voids may weaken the adhesive joint.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa