Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Cell ; 139(5): 945-56, 2009 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19945378

RESUMO

Compelling evidence indicates that the CRISPR-Cas system protects prokaryotes from viruses and other potential genome invaders. This adaptive prokaryotic immune system arises from the clustered regularly interspaced short palindromic repeats (CRISPRs) found in prokaryotic genomes, which harbor short invader-derived sequences, and the CRISPR-associated (Cas) protein-coding genes. Here, we have identified a CRISPR-Cas effector complex that is comprised of small invader-targeting RNAs from the CRISPR loci (termed prokaryotic silencing (psi)RNAs) and the RAMP module (or Cmr) Cas proteins. The psiRNA-Cmr protein complexes cleave complementary target RNAs at a fixed distance from the 3' end of the integral psiRNAs. In Pyrococcus furiosus, psiRNAs occur in two size forms that share a common 5' sequence tag but have distinct 3' ends that direct cleavage of a given target RNA at two distinct sites. Our results indicate that prokaryotes possess a unique RNA silencing system that functions by homology-dependent cleavage of invader RNAs.


Assuntos
Proteínas Arqueais/imunologia , Pyrococcus furiosus/imunologia , Interferência de RNA , RNA Arqueal/imunologia , Proteínas Arqueais/metabolismo , Sequência de Bases , Pyrococcus furiosus/genética , Pyrococcus furiosus/metabolismo , Pyrococcus furiosus/virologia , RNA Arqueal/química , RNA Arqueal/genética , RNA Arqueal/metabolismo , RNA Viral/imunologia , Pequeno RNA não Traduzido
2.
Genes Dev ; 30(4): 447-59, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26848045

RESUMO

CRISPR-Cas systems eliminate nucleic acid invaders in bacteria and archaea. The effector complex of the Type III-B Cmr system cleaves invader RNAs recognized by the CRISPR RNA (crRNA ) of the complex. Here we show that invader RNAs also activate the Cmr complex to cleave DNA. As has been observed for other Type III systems, Cmr eliminates plasmid invaders in Pyrococcus furiosus by a mechanism that depends on transcription of the crRNA target sequence within the plasmid. Notably, we found that the target RNA per se induces DNA cleavage by the Cmr complex in vitro. DNA cleavage activity does not depend on cleavage of the target RNA but notably does require the presence of a short sequence adjacent to the target sequence within the activating target RNA (rPAM [RNA protospacer-adjacent motif]). The activated complex does not require a target sequence (or a PAM) in the DNA substrate. Plasmid elimination by the P. furiosus Cmr system also does not require the Csx1 (CRISPR-associated Rossman fold [CARF] superfamily) protein. Plasmid silencing depends on the HD nuclease and Palm domains of the Cmr2 (Cas10 superfamily) protein. The results establish the Cmr complex as a novel DNA nuclease activated by invader RNAs containing a crRNA target sequence and a rPAM.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas CRISPR-Cas/fisiologia , Desoxirribonucleases/metabolismo , Inativação Gênica/fisiologia , Plasmídeos/genética , RNA/metabolismo , Proteínas de Bactérias/genética , Clivagem do DNA , Ativação Enzimática , Ligação Proteica , Pyrococcus furiosus/fisiologia
3.
Genes Dev ; 29(4): 356-61, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25691466

RESUMO

To acquire the ability to recognize and destroy virus and plasmid invaders, prokaryotic CRISPR-Cas systems capture fragments of DNA within the host CRISPR locus. Our results indicate that the process of adaptation by a Type II-A CRISPR-Cas system in Streptococcus thermophilus requires Cas1, Cas2, and Csn2. Surprisingly, we found that Cas9, previously identified as the nuclease responsible for ultimate invader destruction, is also essential for adaptation. Cas9 nuclease activity is dispensable for adaptation. In addition, our studies revealed extensive, unbiased acquisition of the self-targeting host genome sequence by the CRISPR-Cas system that is masked in the presence of active target destruction.


Assuntos
Adaptação Fisiológica/fisiologia , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Genoma Bacteriano/genética , Streptococcus thermophilus/enzimologia , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo
4.
Genes Dev ; 28(21): 2432-43, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25367038

RESUMO

The effector complex of the Cmr/type III-B CRISPR (clustered regularly interspaced short palindromic repeat)-Cas (CRISPR-associated) system cleaves RNAs recognized by the CRISPR RNA (crRNA) of the complex and includes six protein subunits of unknown functions. Using reconstituted Pyrococcus furiosus Cmr complexes, we found that each of the six Cmr proteins plays a critical role in either crRNA interaction or target RNA capture. Cmr2, Cmr3, Cmr4, and Cmr5 are all required for formation of a crRNA-containing complex detected by native gel electrophoresis, and the conserved 5' repeat sequence tag and 5'-OH group of the crRNA are essential for the interaction. Interestingly, capture of the complementary target RNA additionally requires both Cmr1 and Cmr6. In detailed functional studies, we determined that P. furiosus Cmr complexes cleave target RNAs at 6-nucleotide (nt) intervals in the region of complementarity, beginning 5 nt downstream from the crRNA tag and continuing to within ∼14 nt of the 3' end of the crRNA. Our findings indicate that Cmr3 recognizes the signature crRNA tag sequence (and depends on protein-protein interactions with Cmr2, Cmr4, and Cmr5), each Cmr4 subunit mediates a target RNA cleavage, and Cmr1 and Cmr6 mediate an essential interaction between the 3' region of the crRNA and the target RNA.


Assuntos
Proteínas Associadas a CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas de Membrana Transportadoras/metabolismo , Subunidades Proteicas/metabolismo , Pyrococcus furiosus/metabolismo , Clivagem do RNA , RNA/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Proteínas Associadas a CRISPR/química , Proteínas de Membrana Transportadoras/química , Modelos Moleculares , Multimerização Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Pyrococcus furiosus/genética
5.
Mol Cell ; 45(3): 292-302, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22227116

RESUMO

Small RNAs target invaders for silencing in the CRISPR-Cas pathways that protect bacteria and archaea from viruses and plasmids. The CRISPR RNAs (crRNAs) contain sequence elements acquired from invaders that guide CRISPR-associated (Cas) proteins back to the complementary invading DNA or RNA. Here, we have analyzed essential features of the crRNAs associated with the Cas RAMP module (Cmr) effector complex, which cleaves targeted RNAs. We show that Cmr crRNAs contain an 8 nucleotide 5' sequence tag (also found on crRNAs associated with other CRISPR-Cas pathways) that is critical for crRNA function and can be used to engineer crRNAs that direct cleavage of novel targets. We also present data that indicate that the Cmr complex cleaves an endogenous complementary RNA in Pyrococcus furiosus, providing direct in vivo evidence of RNA targeting by the CRISPR-Cas system. Our findings indicate that the CRISPR RNA-Cmr protein pathway may be exploited to cleave RNAs of interest.


Assuntos
Sequências Repetidas Invertidas , Pyrococcus furiosus/genética , Clivagem do RNA , RNA Arqueal/isolamento & purificação , Proteínas Arqueais/isolamento & purificação , Sequência de Bases , Engenharia Genética , Loci Gênicos , Imunoprecipitação , Substâncias Macromoleculares/isolamento & purificação , Dados de Sequência Molecular , Pyrococcus furiosus/metabolismo , RNA Antissenso , Análise de Sequência de RNA
6.
RNA Biol ; 16(4): 449-460, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29995577

RESUMO

CRISPR-Cas systems provide prokaryotes with RNA-based adaptive immunity against viruses and plasmids. A unique feature of Type III CRISPR-Cas systems is that they selectively target transcriptionally-active invader DNA, and can cleave both the expressed RNA transcripts and source DNA. The Type III-A effector crRNP (CRISPR RNA-Cas protein complex), which contains Cas proteins Csm1-5, recognizes and degrades invader RNA and DNA in a crRNA-guided, manner. Interestingly, Type III-A systems also employ Csm6, an HEPN family ribonuclease that does not stably associate with the Type III-A effector crRNP, but nevertheless contributes to defense via mechanistic details that are still being determined. Here, we investigated the mechanism of action of Csm6 in Type III-A CRISPR-Cas systems from Lactococcus lactis, Staphylococcus epidermidis, and Streptococcus thermophilus expressed in Escherichia coli. We found that L. lactis and S. epidermidis Csm6 cleave RNA specifically after purines in vitro, similar to the activity reported for S. thermophilus Csm6. Moreover, L. lactis Csm6 functions as a divalent metal-independent, single strand-specific endoribonuclease that depends on the conserved HEPN domain. In vivo, we show that deletion of csm6 or expression of an RNase-defective form of Csm6 disrupts crRNA-dependent loss of plasmid DNA in all three systems expressed in E. coli. Mutations in the Csm1 palm domain, which are known to deactivate Csm6 ribonuclease activity, also prevent plasmid loss in the three systems. The results indicate that Csm6 ribonuclease activity rather than Csm1-mediated DNase activity effects anti-plasmid immunity by the three Type III-A systems investigated.


Assuntos
Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Imunidade , Plasmídeos/genética , Ribonucleases/metabolismo , Sequência de Bases , Endorribonucleases/metabolismo , Imunidade/efeitos dos fármacos , Lactobacillus/efeitos dos fármacos , Lactobacillus/genética , Metais/farmacologia , Mutação/genética , Purinas/metabolismo , Staphylococcus epidermidis/genética
7.
Mol Cell ; 42(3): 297-307, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21549308

RESUMO

Specific information about how telomerase acts in vivo is necessary for understanding telomere dynamics in human tumor cells. Our results imply that, under homeostatic telomere length-maintenance conditions, only one molecule of telomerase acts at each telomere during every cell division and processively adds ∼60 nt to each end. In contrast, multiple molecules of telomerase act at each telomere when telomeres are elongating (nonequilibrium conditions). Telomerase extension is less processive during the first few weeks following the reversal of long-term treatment with the telomerase inhibitor Imetelstat (GRN163L), a time when Cajal bodies fail to deliver telomerase RNA to telomeres. This result implies that processing of telomerase by Cajal bodies may affect its processivity. Overexpressed telomerase is also less processive than the endogenously expressed telomerase. These findings reveal two major distinct extension modes adopted by telomerase in vivo.


Assuntos
Homeostase , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo , Western Blotting , Linhagem Celular Tumoral , Corpos Enovelados/metabolismo , Fase G1 , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Modelos Genéticos , Oligonucleotídeos/farmacologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fase S , Telomerase/antagonistas & inibidores , Telomerase/genética
8.
RNA ; 22(2): 216-24, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26647461

RESUMO

Prokaryotes are frequently exposed to potentially harmful invasive nucleic acids from phages, plasmids, and transposons. One method of defense is the CRISPR-Cas adaptive immune system. Diverse CRISPR-Cas systems form distinct ribonucleoprotein effector complexes that target and cleave invasive nucleic acids to provide immunity. The Type III-B Cmr effector complex has been found to target the RNA and DNA of the invader in the various bacterial and archaeal organisms where it has been characterized. Interestingly, the gene encoding the Csx1 protein is frequently located in close proximity to the Cmr1-6 genes in many genomes, implicating a role for Csx1 in Cmr function. However, evidence suggests that Csx1 is not a stably associated component of the Cmr effector complex, but is necessary for DNA silencing by the Cmr system in Sulfolobus islandicus. To investigate the function of the Csx1 protein, we characterized the activity of recombinant Pyrococcus furiosus Csx1 against various nucleic acid substrates. We show that Csx1 is a metal-independent, endoribonuclease that acts selectively on single-stranded RNA and cleaves specifically after adenosines. The RNA cleavage activity of Csx1 is dependent upon a conserved HEPN motif located within the C-terminal domain of the protein. This motif is also key for activity in other known ribonucleases. Collectively, the findings indicate that invader silencing by Type III-B CRISPR-Cas systems relies both on RNA and DNA nuclease activities from the Cmr effector complex as well as on the affiliated, trans-acting Csx1 endoribonuclease.


Assuntos
Proteínas Associadas a CRISPR/química , Sistemas CRISPR-Cas , Endorribonucleases/química , Pyrococcus furiosus/genética , RNA Arqueal/química , Adenosina/metabolismo , Motivos de Aminoácidos , Proteínas Arqueais , Sequência de Bases , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/imunologia , Endorribonucleases/genética , Endorribonucleases/imunologia , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Pyrococcus furiosus/imunologia , RNA Arqueal/genética , RNA Arqueal/imunologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Sulfolobus/genética , Sulfolobus/imunologia
9.
Mol Cell ; 39(6): 939-49, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-20864039

RESUMO

Box C/D small nucleolar and Cajal body ribonucleoprotein particles (sno/scaRNPs) direct site-specific 2'-O-methylation of ribosomal and spliceosomal RNAs and are critical for gene expression. Here we report crystal structures of an archaeal box C/D RNP containing three core proteins (fibrillarin, Nop56/58, and L7Ae) and a half-mer box C/D guide RNA paired with a substrate RNA. The structure reveals a guide-substrate RNA duplex orientation imposed by a composite protein surface and the conserved GAEK motif of Nop56/58. Molecular modeling supports a dual C/D RNP structure that closely mimics that recently visualized by electron microscopy. The substrate-bound dual RNP model predicts an asymmetric protein distribution between the RNP that binds and methylates the substrate RNA. The predicted asymmetric nature of the holoenzyme is consistent with previous biochemical data on RNP assembly and provides a simple solution for accommodating base-pairing between the C/D guide RNA and large ribosomal and spliceosomal substrate RNAs.


Assuntos
Modelos Moleculares , Pyrococcus furiosus/enzimologia , Ribonucleoproteínas Nucleolares Pequenas/química , Proteínas Arqueais/química , Proteínas Arqueais/genética , Sítios de Ligação/fisiologia , Biocatálise , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Cristalografia por Raios X , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Metiltransferases/química , Metiltransferases/genética , Metiltransferases/metabolismo , Mutagênese Insercional/fisiologia , Proteínas Nucleares/química , Proteínas Nucleares/genética , Conformação de Ácido Nucleico , Multimerização Proteica/fisiologia , Estrutura Quaternária de Proteína/fisiologia , Pyrococcus furiosus/genética , RNA Arqueal/química , RNA Arqueal/metabolismo , RNA Nucleolar Pequeno/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Ribonucleoproteínas Nucleolares Pequenas/genética , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Deleção de Sequência/fisiologia
10.
Trends Genet ; 30(3): 111-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24555991

RESUMO

To combat potentially deadly viral infections, prokaryotic microbes enlist small RNA-based adaptive immune systems (CRISPR-Cas systems) that protect through sequence-specific recognition and targeted destruction of viral nucleic acids (either DNA or RNA depending on the system). Here, we summarize rapid progress made in redirecting the nuclease activities of these microbial immune systems to bind and cleave DNA or RNA targets of choice, by reprogramming the small guide RNAs of the various CRISPR-Cas complexes. These studies have demonstrated the potential of Type II CRISPR-Cas systems both as efficient and versatile genome-editing tools and as potent and specific regulators of gene expression in a broad range of cell types (including human) and organisms. Progress is also being made in developing a Type III RNA-targeting CRISPR-Cas system as a novel gene knockdown platform to investigate gene function and modulate gene expression for metabolic engineering in microbes.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Técnicas Genéticas , Células Procarióticas/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Endorribonucleases/metabolismo , Humanos , Edição de RNA/genética
11.
RNA ; 21(6): 1147-58, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25904135

RESUMO

CRISPR-Cas immune systems function to defend prokaryotes against potentially harmful mobile genetic elements including viruses and plasmids. The multiple CRISPR-Cas systems (Types I, II, and III) each target destruction of foreign nucleic acids via structurally and functionally diverse effector complexes (crRNPs). CRISPR-Cas effector complexes are comprised of CRISPR RNAs (crRNAs) that contain sequences homologous to the invading nucleic acids and Cas proteins specific to each immune system type. We have previously characterized a crRNP in Pyrococcus furiosus (Pfu) that contains Cmr (Type III-B) Cas proteins associated with one of two size classes of crRNAs and cleaves complementary target RNAs. Here, we have isolated and characterized two additional native Pfu crRNPs containing either Csa (Type I-A) or Cst (Type I-G) Cas proteins and distinct profiles of associated crRNAs. For each complex, the Cas proteins were identified by mass spectrometry and immunoblotting and the crRNAs by RNA sequencing and Northern blot analysis. The crRNAs associated with both the Csa and Cst complexes originate from all seven Pfu CRISPR loci and contain identical 5' ends (8-nt repeat-derived 5' tag sequences) but heterogeneous 3' ends (containing variable amounts of downstream repeat sequences). These crRNA forms are distinct from Cmr-associated crRNAs, indicating different 3' end processing pathways following primary cleavage of common pre-crRNAs. Like other previously characterized Type I CRISPR-Cas effector complexes, we predict that the newly identified Pfu Csa and Cst crRNPs each function to target invading DNA, adding an additional layer of protection beyond that afforded by the previously characterized RNA targeting Cmr complex.


Assuntos
Sistemas CRISPR-Cas , Pyrococcus furiosus/genética , Pyrococcus furiosus/metabolismo , RNA Arqueal/genética , Ribonucleoproteínas/isolamento & purificação , Proteínas Arqueais/isolamento & purificação , Proteínas Arqueais/metabolismo , Proteínas Associadas a CRISPR/isolamento & purificação , Proteínas Associadas a CRISPR/metabolismo , Espectrometria de Massas , Dados de Sequência Molecular , RNA Arqueal/metabolismo , Ribonucleoproteínas/metabolismo , Análise de Sequência de RNA
12.
Extremophiles ; 21(1): 95-107, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27582008

RESUMO

CRISPR-Cas immune systems defend prokaryotes against viruses and plasmids. CRISPR RNAs (crRNAs) associate with various CRISPR-associated (Cas) protein modules to form structurally and functionally diverse (Type I-VI) crRNP immune effector complexes. Previously, we identified three, co-existing effector complexes in Pyrococcus furiosus -Type I-A (Csa), Type I-G (Cst), and Type III-B (Cmr)-and demonstrated that each complex functions in vivo to eliminate invader DNA. Here, we reconstitute functional Cst crRNP complexes in vitro from recombinant Cas proteins and synthetic crRNAs and investigate mechanisms of crRNP assembly and invader DNA recognition and destruction. All four known Cst-affiliated Cas proteins (Cas5t, Cst1, Cst2, and Cas3) are required for activity, but each subunit plays a distinct role. Cas5t and Cst2 comprise a minimal set of proteins that selectively interact with crRNA. Further addition of Cst1, enables the four subunit crRNP (Cas5t, Cst1, Cst2, crRNA) to specifically bind complementary, double-stranded DNA targets and to recruit the Cas3 effector nuclease, which catalyzes cleavages at specific sites within the displaced, non-target DNA strand. Our results indicate that Type I-G crRNPs selectively bind target DNA in a crRNA and, protospacer adjacent motif dependent manner to recruit a dedicated Cas3 nuclease for invader DNA destruction.


Assuntos
Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Pyrococcus/metabolismo , Proteínas Associadas a CRISPR/genética , Ligação Proteica , Pyrococcus/genética
13.
Nucleic Acids Res ; 43(3): 1749-58, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25589547

RESUMO

CRISPR-Cas systems are RNA-based immune systems that protect prokaryotes from invaders such as phages and plasmids. In adaptation, the initial phase of the immune response, short foreign DNA fragments are captured and integrated into host CRISPR loci to provide heritable defense against encountered foreign nucleic acids. Each CRISPR contains a ∼100-500 bp leader element that typically includes a transcription promoter, followed by an array of captured ∼35 bp sequences (spacers) sandwiched between copies of an identical ∼35 bp direct repeat sequence. New spacers are added immediately downstream of the leader. Here, we have analyzed adaptation to phage infection in Streptococcus thermophilus at the CRISPR1 locus to identify cis-acting elements essential for the process. We show that the leader and a single repeat of the CRISPR locus are sufficient for adaptation in this system. Moreover, we identified a leader sequence element capable of stimulating adaptation at a dormant repeat. We found that sequences within 10 bp of the site of integration, in both the leader and repeat of the CRISPR, are required for the process. Our results indicate that information at the CRISPR leader-repeat junction is critical for adaptation in this Type II-A system and likely other CRISPR-Cas systems.


Assuntos
Adaptação Fisiológica , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Fagos de Streptococcus/fisiologia , Streptococcus thermophilus/virologia , Sequência de Bases , DNA Viral , Dados de Sequência Molecular , Homologia de Sequência do Ácido Nucleico , Fagos de Streptococcus/genética
14.
Nucleic Acids Res ; 43(21): 10353-63, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26519471

RESUMO

CRISPR-Cas systems silence plasmids and viruses in prokaryotes. CRISPR-Cas effector complexes contain CRISPR RNAs (crRNAs) that include sequences captured from invaders and direct CRISPR-associated (Cas) proteins to destroy corresponding invader nucleic acids. Pyrococcus furiosus (Pfu) harbors three CRISPR-Cas immune systems: a Cst (Type I-G) system with an associated Cmr (Type III-B) module at one locus, and a partial Csa (Type I-A) module (lacking known invader sequence acquisition and crRNA processing genes) at another locus. The Pfu Cmr complex cleaves complementary target RNAs, and Csa systems have been shown to target DNA, while the mechanism by which Cst complexes silence invaders is unknown. In this study, we investigated the function of the Cst as well as Csa system in Pfu strains harboring a single CRISPR-Cas system. Plasmid transformation assays revealed that the Cst and Csa systems both function by DNA silencing and utilize similar flanking sequence information (PAMs) to identify invader DNA. Silencing by each system specifically requires its associated Cas3 nuclease. crRNAs from the 7 shared CRISPR loci in Pfu are processed for use by all 3 effector complexes, and Northern analysis revealed that individual effector complexes dictate the profile of mature crRNA species that is generated.


Assuntos
Sistemas CRISPR-Cas , Pyrococcus furiosus/genética , Proteínas Associadas a CRISPR/metabolismo , DNA/metabolismo , Desoxirribonucleases/metabolismo , Plasmídeos/genética , RNA Arqueal/metabolismo
15.
Nucleic Acids Res ; 43(10): 5120-9, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25925567

RESUMO

Functions of prokaryotic Argonautes (pAgo) have long remained elusive. Recently, Argonautes of the bacteria Rhodobacter sphaeroides and Thermus thermophilus were demonstrated to be involved in host defense. The Argonaute of the archaeon Pyrococcus furiosus (PfAgo) belongs to a different branch in the phylogenetic tree, which is most closely related to that of RNA interference-mediating eukaryotic Argonautes. Here we describe a functional and mechanistic characterization of PfAgo. Like the bacterial counterparts, archaeal PfAgo contributes to host defense by interfering with the uptake of plasmid DNA. PfAgo utilizes small 5'-phosphorylated DNA guides to cleave both single stranded and double stranded DNA targets, and does not utilize RNA as guide or target. Thus, with respect to function and specificity, the archaeal PfAgo resembles bacterial Argonautes much more than eukaryotic Argonautes. These findings demonstrate that the role of Argonautes is conserved through the bacterial and archaeal domains of life and suggests that eukaryotic Argonautes are derived from DNA-guided DNA-interfering host defense systems.


Assuntos
Proteínas Arqueais/metabolismo , Proteínas Argonautas/metabolismo , Endodesoxirribonucleases/metabolismo , Pyrococcus furiosus/enzimologia , Proteínas Arqueais/química , Proteínas Argonautas/química , Domínio Catalítico , DNA/metabolismo , Clivagem do DNA , Endodesoxirribonucleases/química , Plasmídeos/genética , Plasmídeos/metabolismo , Pyrococcus furiosus/genética , Transformação Genética
16.
Mol Microbiol ; 93(1): 98-112, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24811454

RESUMO

CRISPR-Cas systems are small RNA-based immune systems that protect prokaryotes from invaders such as viruses and plasmids. We have investigated the features and biogenesis of the CRISPR (cr)RNAs in Streptococcus thermophilus (Sth) strain DGCC7710, which possesses four different CRISPR-Cas systems including representatives from the three major types of CRISPR-Cas systems. Our results indicate that the crRNAs from each CRISPR locus are specifically processed into divergent crRNA species by Cas proteins (and non-coding RNAs) associated with the respective locus. We find that the Csm Type III-A and Cse Type I-E crRNAs are specifically processed by Cas6 and Cse3 (Cas6e), respectively, and retain an 8-nucleotide CRISPR repeat sequence tag 5' of the invader-targeting sequence. The Cse Type I-E crRNAs also retain a 21-nucleotide 3' repeat tag. The crRNAs from the two Csn Type II-A systems in Sth consist of a 5'-truncated targeting sequence and a 3' tag; however, these are distinct in size between the two. Moreover, the Csn1 (Cas9) protein associated with one Csn locus functions specifically in the production of crRNAs from that locus. Our findings indicate that multiple CRISPR-Cas systems can function independently in crRNA biogenesis within a given organism - an important consideration in engineering coexisting CRISPR-Cas pathways.


Assuntos
Sistemas CRISPR-Cas , RNA Bacteriano/metabolismo , Streptococcus thermophilus/metabolismo , Proteínas de Bactérias/metabolismo , Modelos Genéticos , Análise de Sequência de RNA , Streptococcus thermophilus/genética
17.
Biochem Soc Trans ; 41(6): 1416-21, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24256230

RESUMO

Using the hyperthermophile Pyrococcus furiosus, we have delineated several key steps in CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) invader defence pathways. P. furiosus has seven transcriptionally active CRISPR loci that together encode a total of 200 crRNAs (CRISPR RNAs). The 27 Cas proteins in this organism represent three distinct pathways and are primarily encoded in two large gene clusters. The Cas6 protein dices CRISPR locus transcripts to generate individual invader-targeting crRNAs. The mature crRNAs include a signature sequence element (the 5' tag) derived from the CRISPR locus repeat sequence that is important for function. crRNAs are tailored into distinct species and integrated into three distinct crRNA-Cas protein complexes that are all candidate effector complexes. The complex formed by the Cmr [Cas module RAMP (repeat-associated mysterious proteins)] (subtype III-B) proteins cleaves complementary target RNAs and can be programmed to cleave novel target RNAs in a prokaryotic RNAi-like manner. Evidence suggests that the other two CRISPR-Cas systems in P. furiosus, Csa (Cas subtype Apern) (subtype I-A) and Cst (Cas subtype Tneap) (subtype I-B), target invaders at the DNA level. Studies of the CRISPR-Cas systems from P. furiosus are yielding fundamental knowledge of mechanisms of crRNA biogenesis and silencing for three of the diverse CRISPR-Cas pathways, and reveal that organisms such as P. furiosus possess an arsenal of multiple RNA-guided mechanisms to resist diverse invaders. Our knowledge of the fascinating CRISPR-Cas pathways is leading in turn to our ability to co-opt these systems for exciting new biomedical and biotechnological applications.


Assuntos
Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/imunologia , DNA/imunologia , Pyrococcus furiosus/genética , Pyrococcus furiosus/imunologia , RNA/imunologia , DNA/genética , Modelos Moleculares , RNA/genética
18.
RNA Biol ; 10(5): 828-40, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23535213

RESUMO

CRISPR-Cas systems are RNA-guided immune systems that protect prokaryotes against viruses and other invaders. The CRISPR locus encodes crRNAs that recognize invading nucleic acid sequences and trigger silencing by the associated Cas proteins. There are multiple CRISPR-Cas systems with distinct compositions and mechanistic processes. Thermococcus kodakarensis (Tko) is a hyperthermophilic euryarchaeon that has both a Type I-A Csa and a Type I-B Cst CRISPR-Cas system. We have analyzed the expression and composition of crRNAs from the three CRISPRs in Tko by RNA deep sequencing and northern analysis. Our results indicate that crRNAs associated with these two CRISPR-Cas systems include an 8-nucleotide conserved sequence tag at the 5' end. We challenged Tko with plasmid invaders containing sequences targeted by endogenous crRNAs and observed active CRISPR-Cas-mediated silencing. Plasmid silencing was dependent on complementarity with a crRNA as well as on a sequence element found immediately adjacent to the crRNA recognition site in the target termed the PAM (protospacer adjacent motif). Silencing occurred independently of the orientation of the target sequence in the plasmid, and appears to occur at the DNA level, presumably via DNA degradation. In addition, we have directed silencing of an invader plasmid by genetically engineering the chromosomal CRISPR locus to express customized crRNAs directed against the plasmid. Our results support CRISPR engineering as a feasible approach to develop prokaryotic strains that are resistant to infection for use in industry.


Assuntos
Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Engenharia Genética , Plasmídeos/genética , RNA Arqueal/genética , Thermococcus/genética , Vírus de Archaea/genética , Regulação da Expressão Gênica em Archaea , Sequenciamento de Nucleotídeos em Larga Escala , Plasmídeos/metabolismo , Análise de Sequência de RNA , Thermococcus/metabolismo
19.
J Cell Sci ; 123(Pt 14): 2464-72, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20592184

RESUMO

The core components of telomerase are telomerase RNA (TR) and telomerase reverse transcriptase (TERT). In vertebrate cells, TR and TERT have been reported to associate with intranuclear structures, including Cajal bodies and nucleoli as well as telomeres. Here, we examined the time course of both TR localization and assembly of TR with TERT in Xenopus oocytes. The major trafficking pathway for microinjected TR is through Cajal bodies into the nucleoplasm, with a fraction of TR found in nucleoli at later time points. Telomerase assembly precedes nucleolar localization of TR, and TR mutants that do not localize to nucleoli form active enzyme, indicating that localization of TR to nucleoli is not required for assembly with TERT. Assembly of telomerase coincides with Cajal-body localization; however, assembly is also unaffected by a CAB-box mutation (which significantly reduces association with Cajal bodies), suggesting that Cajal-body localization is not important for assembly. Our results suggest that assembly of TR with TERT occurs in the nucleoplasm. Unexpectedly, however, our experiments reveal that disruption of the CAB box does not eliminate early targeting to Cajal bodies, indicating that a role for Cajal bodies in telomerase assembly cannot be excluded on the basis of existing knowledge.


Assuntos
Núcleo Celular/metabolismo , Oócitos/metabolismo , RNA/metabolismo , Telomerase/metabolismo , Proteínas de Xenopus/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Ciclo Celular/genética , Nucléolo Celular/metabolismo , Células Cultivadas , Clonagem Molecular , Corpos Enovelados/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Microinjeções , Oócitos/patologia , Multimerização Proteica , Transporte Proteico , RNA/genética , Telomerase/genética , Xenopus , Proteínas de Xenopus/genética
20.
RNA ; 16(11): 2181-8, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20884784

RESUMO

The CRISPR-Cas system provides many prokaryotes with acquired resistance to viruses and other mobile genetic elements. The core components of this defense system are small, host-encoded prokaryotic silencing (psi)RNAs and Cas (CRISPR-associated) proteins. Invader-derived sequences within the psiRNAs guide Cas effector proteins to recognize and silence invader nucleic acids. Critical for CRISPR-Cas defense is processing of the psiRNAs from the primary transcripts of the host CRISPR (clustered regularly interspaced short palindromic repeat) locus. Cas6, a previously identified endoribonuclease present in a wide range of prokaryotes with the CRISPR-Cas system, binds and cleaves within the repeat sequences that separate the individual invader targeting elements in the CRISPR locus transcript. In the present study, we investigated several key aspects of the mechanism of function of Cas6 in psiRNA biogenesis. RNA footprinting reveals that Pyrococcus furiosus Cas6 binds to a 7-nt (nucleotide) sequence near the 5' end of the CRISPR RNA repeat sequence, 14 nt upstream of the Cas6 cleavage site. In addition, analysis of the cleavage activity of P. furiosus Cas6 proteins with mutations at conserved residues suggests that a triad comprised of Tyr31, His46, and Lys52 plays a critical role in catalysis, consistent with a possible general acid-base RNA cleavage mechanism for Cas6. Finally, we show that P. furiosus Cas6 remains stably associated with its cleavage products, suggesting additional roles for Cas6 in psiRNA biogenesis.


Assuntos
Endorribonucleases/metabolismo , Pyrococcus furiosus/enzimologia , RNA/metabolismo , Sequência de Bases , Sítios de Ligação , Biocatálise , Endorribonucleases/genética , Inativação Gênica , Mutação , RNA/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa