Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(4): 2452-2464, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38241715

RESUMO

The mechanism of catalytic C-H functionalization of alkanes by Fe-oxo complexes is often suggested to involve a hydrogen atom transfer (HAT) step with the formation of a radical-pair intermediate followed by diverging pathways for radical rebound, dissociation, or desaturation. Recently, we showed that in some Fe-oxo reactions, the radical pair is a nonstatistical-type intermediate and dynamic effects control rebound versus dissociation pathway selectivity. However, the effect of the solvent cage on the stability and lifetime of the radical-pair intermediate has never been analyzed. Moreover, because of the extreme complexity of motion that occurs during dynamics trajectories, the underlying physical origin of pathway selectivity has not yet been determined. For the reaction between [(TQA_Cl)FeIVO]+ and cyclohexane, here, we report explicit solvent trajectories and machine learning analysis on transition-state sampled features (e.g., vibrational, velocity, and geometric) that identified the transferring hydrogen atom kinetic energy as the most important factor controlling rebound versus nonrebound dynamics trajectories, which provides an explanation for our previously proposed dynamic matching effect in fast rebound trajectories that bypass the radical-pair intermediate. Manual control of the reaction trajectories confirmed the importance of this feature and provides a mechanism to enhance or diminish selectivity for the rebound pathway. This led to a general catalyst design principle and proof-of-principle catalyst design that showcases how to control rebound versus dissociation reaction pathway selectivity.

2.
Phys Chem Chem Phys ; 23(21): 12309-12320, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34018524

RESUMO

Quasiclassical trajectory analysis is now a standard tool to analyze non-minimum energy pathway motion of organic reactions. However, due to the large amount of information associated with trajectories, quantitative analysis of the dynamic origin of reaction selectivity is complex. For the electrocyclic ring opening of cyclopropyl radical, more than 4000 trajectories were run showing that allyl radicals are formed through a mixture of disrotatory intrinsic reaction coordinate (IRC) motion as well as conrotatory non-IRC motion. Geometric, vibrational mode, and atomic velocity transition-state features from these trajectories were used for supervised machine learning analysis with classification algorithms. Accuracy >80% with a random forest model enabled quantitative and qualitative assessment of transition-state trajectory features controlling disrotatory IRC versus conrotatory non-IRC motion. This analysis revealed that there are two key vibrational modes where their directional combination provides prediction of IRC versus non-IRC motion.

3.
J Phys Chem A ; 124(23): 4813-4826, 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32412755

RESUMO

Experimentally, the thermal gas-phase deazetization of 2,3-diazabicyclo[2.2.1]hept-2-ene (1) results in the loss of N2 and the formation of bicyclo products 3 (exo) and 4 (endo) in a nonstatistical ratio, with preference for the exo product. Here, we report unrestricted M06-2X quasiclassical trajectories initialized from the concerted N2 ejection transition state that were able to replicate the experimental preference to form 3. We found that the 3:4 ratio results from the relative amounts of very fast (ballistic) exotype trajectories versus trajectories that lead to the 1,3-diradical intermediate 2. These quasiclassical trajectories provided a set of transition-state vibrational, velocity, momenta, and geometric features for the machine learning analysis. A selection of popular supervised classification algorithms (e.g., random forest) provided poor prediction of trajectory outcomes based on only transition-state vibrational quanta and energy features. However, these machine learning models provided more accurate predictions using atomic velocities and atomic positions, attaining ∼70% accuracy using initial conditions and between 85 and 95% accuracy at later reaction time steps. This increased accuracy allowed the feature importance analysis to reveal that, at the later-time analysis, the methylene bridge out-of-plane bending is correlated with trajectory outcomes for the formation of either the exo product or toward the diradical intermediate. Possible reasons for the struggle of machine learning algorithms to classify trajectories based on transition-state features is the heavily overlapping feature values, the finite but very large possible vibrational mode combinations, and the possibility of chaos as trajectories propagate. We examined this chaos by comparing a set of nearly identical trajectories that differed by only a very small scaling of the kinetic energies resulting from the transition-state reaction coordinate.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa