Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Clin Periodontol ; 50(3): 380-395, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36384158

RESUMO

AIM: Therapeutic modulation of bacterial-induced inflammatory host response is being investigated in gingival inflammation and periodontal disease pathology. Therefore, dietary intake of the monounsaturated fatty acid (FA) oleic acid (OA (C18:1)), which is the main component of Mediterranean-style diets, and saturated FA palmitic acid (PA (C16:0)), which is a component of Western-style diets, was investigated for their modifying potential in an oral inoculation model of Porphyromonas gingivalis. MATERIALS AND METHODS: Normal-weight C57BL/6-mice received OA- or PA-enriched diets (PA-ED, OA-ED, PA/OA-ED) or normal standard diet for 16 weeks and were inoculated with P. gingivalis/placebo (n = 12/group). Gingival inflammation, alveolar bone structure, circulating lipid mediators, and in vitro cellular response were determined. RESULTS: FA treatment of P. gingivalis-lipopolysaccharide-incubated gingival fibroblasts (GFbs) modified inflammatory activation, which only PA exacerbated with concomitant TNF-α stimulation. Mice exhibited no signs of acute inflammation in gingiva or serum and no inoculation- or nutrition-associated changes of the crestal alveolar bone. However, following P. gingivalis inoculation, OA-ED improved oral trabecular bone micro-architecture and enhanced circulating pro-resolving mediators resolvin D4 (RvD4) and 4-hydroxydocosahexaenoic acid (4-HDHA), whereas PA-ED did not. In vitro experiments demonstrated significantly improved differentiation in RvD4- and 4-HDHA-treated primary osteoblast cultures and reduced the expression of osteoclastogenic factors in GF. Further, P. gingivalis infection of OA-ED animals led to a serum composition that suppressed osteoclastic differentiation in vitro. CONCLUSIONS: Our results underline the preventive impact of Mediterranean-style OA-EDs by indicating their pro-resolving nature beyond anti-inflammatory properties.


Assuntos
Dieta Mediterrânea , Ácido Oleico , Camundongos , Animais , Ácido Oleico/farmacologia , Porphyromonas gingivalis , Camundongos Endogâmicos C57BL , Osso Esponjoso , Inflamação
2.
FASEB J ; 31(10): 4566-4577, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28687611

RESUMO

Protein kinases, including the serine/threonine kinase Akt, mediate manifold bioactivities of vitamin A, although the mechanisms behind the sustained kinase activation are diffuse. To investigate the role of cellular lipids as targetable factors in Akt signaling, we combined mass spectrometry-based lipidomics with immunologic detection of Akt (Ser473) phosphorylation. A screening campaign revealed retinol (vitamin A alcohol) and all-trans retinoic acid (vitamin A acid) (RA) as hits that time-dependently (≥24 h) deplete phosphatidylcholine-bound polyunsaturated fatty acids (PUFA-PCs) from NIH-3T3 mouse fibroblasts while inducing Akt activation (EC50 ≈ 0.1-1 µM). Other mitogenic and stress-regulated kinases were hardly affected. Organized in a coregulated phospholipid subcluster, PUFA-PCs compensated for the RA-induced loss of cellular PUFA-PCs and diminished Akt activation when supplemented. The counter-regulation of phospholipids and Akt by RA was mimicked by knockdown of lysophosphatidylcholine acyltransferase-3 or the selective retinoid X receptor (RXR) agonist bexarotene and prevented by the selective RXR antagonist Hx531. Treatment of mice with retinol decreased the tissue ratio of PUFA-PC and enhanced basal Akt activation preferentially in brain, which was attributed to astrocytes in dissociated cortical cultures. Together, our findings show that RA regulates the long-term activation of Akt by changes in the phospholipid composition.-Pein, H., Koeberle, S. C., Voelkel, M., Schneider, F., Rossi, A., Thürmer, M., Loeser, K., Sautebin, L., Morrison, H., Werz, O., Koeberle, A. Vitamin A regulates Akt signaling through the phospholipid fatty acid composition.


Assuntos
Ácidos Graxos/metabolismo , Fosfolipídeos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tretinoína/farmacologia , Vitamina A/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Camundongos , Fosforilação , Receptores X de Retinoides/metabolismo , Tretinoína/metabolismo , Vitamina A/farmacologia
3.
Biochim Biophys Acta ; 1861(11): 1719-1726, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27550503

RESUMO

Stearoyl-CoA desaturase (SCD), the central enzyme in the biosynthesis of monounsaturated fatty acids, introduces a cis-Δ9 double bond into saturated fatty acids. SCD-1 has been proposed as promising target for the treatment of cancer, skin disorders and metabolic diseases, and strong efforts have been made during the last decade to develop clinical drug candidates. While the regulation and biological implications of SCD-1 have been extensively reviewed, the molecular mechanisms through which SCD-1 mediates cellular responses remained a mystery. An important aspect seems to be that SCD-1 induces adaptive stress signaling that maintains cellular persistence and fosters survival and cellular functionality under distinct pathological conditions. Here, we will first provide an overview about the function, regulation, structure and mechanism of SCD-1 and then focus on mitogenic and stress-related signal transduction pathways orchestrated by SCD-1. Moreover, we will discuss molecular mechanisms and potential lipid factors that link SCD-1 activity with initial signal transduction.


Assuntos
Transdução de Sinais , Estearoil-CoA Dessaturase/metabolismo , Estresse Fisiológico , Animais , Biocatálise , Sobrevivência Celular , Humanos , Modelos Biológicos , Estearoil-CoA Dessaturase/química
4.
Front Immunol ; 14: 1213026, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37736098

RESUMO

Introduction: Novel preventive strategies in periodontal disease target the bacterial-induced inflammatory host response to reduce associated tissue destruction. Strategies focus on the modulation of tissue-destroying inflammatory host response, particularly the reduction of inflammation and promotion of resolution. Thereby, nutrition is a potent immunometabolic non-pharmacological intervention. Human studies have demonstrated the benefit of olive oil-containing Mediterranean-style diets (MDs), the main component of which being mono-unsaturated fatty acid (FA) oleic acid (OA (C18:1)). Hence, nutritional OA strengthened the microarchitecture of alveolar trabecular bone and increased circulating pro-resolving lipid mediators following bacterial inoculation with periodontal pathogen Porphyromonas gingivalis, contrary to saturated FA palmitic acid (PA (C16:0)), which is abundant in Western-style diets. Additionally, the generalized distribution of inflammatory pathway mediators can occur in response to bacterial infection and compromise systemic tissue metabolism and bone homeostasis distant from the side of infection. Whether specific FA-enriched nutrition and periodontal inoculation are factors in systemic pathology that can be immune-modulatory targeted through dietary substitution is unknown and of clinical relevance. Methods: Normal-weight C57BL/6-mice received OA-or PA-enriched diets (PA-ED, OA-ED, PA/OA-ED) or a normal-standard diet (n=12/group) for 16 weeks and were orally infected with P. gingivalis/placebo to induce periodontal disease. Using histomorphometry and LC-MS/MS, systemic bone morphology, incorporated immunometabolic FA-species, serological markers of bone metabolism, and stress response were determined in addition to bone cell inflammation and interaction in vitro. Results: In contrast to OA-ED, PA-ED reduced systemic bone microarchitecture paralleled by increased lipotoxic PA-containing metabolite accumulation in bone. Substitution with OA reversed the bone-destructive impact of PA, which was accompanied by reduced diacylglycerols (DAG) and saturated ceramide levels. Further, PA-associated reduction in mineralization activity and concomitant pro-inflammatory activation of primary osteoblasts were diminished in cultures where PA was replaced with OA, which impacted cellular interaction with osteoclasts. Additionally, PA-ED increased osteoclast numbers in femurs in response to oral P. gingivalis infection, whereas OA-ED reduced osteoclast occurrence, which was paralleled by serologically increased levels of the stress-reducing lipokine PI(18:1/18:1). Conclusion: OA substitution reverses the bone-destructive and pro-inflammatory effects of PA and eliminates incorporated lipotoxic PA metabolites. This supports Mediterranean-style OA-based diets as a preventive intervention to target the accumulation of PA-associated lipotoxic metabolites and thereby supports systemic bone tissue resilience after oral bacterial P. gingivalis infection.


Assuntos
Doenças Periodontais , Periodontite , Camundongos , Humanos , Animais , Camundongos Endogâmicos C57BL , Ácidos Graxos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Osso e Ossos , Inflamação , Comunicação Celular
5.
Nat Commun ; 13(1): 2982, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624087

RESUMO

Cytotoxic stress activates stress-activated kinases, initiates adaptive mechanisms, including the unfolded protein response (UPR) and autophagy, and induces programmed cell death. Fatty acid unsaturation, controlled by stearoyl-CoA desaturase (SCD)1, prevents cytotoxic stress but the mechanisms are diffuse. Here, we show that 1,2-dioleoyl-sn-glycero-3-phospho-(1'-myo-inositol) [PI(18:1/18:1)] is a SCD1-derived signaling lipid, which inhibits p38 mitogen-activated protein kinase activation, counteracts UPR, endoplasmic reticulum-associated protein degradation, and apoptosis, regulates autophagy, and maintains cell morphology and proliferation. SCD1 expression and the cellular PI(18:1/18:1) proportion decrease during the onset of cell death, thereby repressing protein phosphatase 2 A and enhancing stress signaling. This counter-regulation applies to mechanistically diverse death-inducing conditions and is found in multiple human and mouse cell lines and tissues of Scd1-defective mice. PI(18:1/18:1) ratios reflect stress tolerance in tumorigenesis, chemoresistance, infection, high-fat diet, and immune aging. Together, PI(18:1/18:1) is a lipokine that links fatty acid unsaturation with stress responses, and its depletion evokes stress signaling.


Assuntos
Transdução de Sinais , Estearoil-CoA Dessaturase , Animais , Apoptose , Ácidos Graxos , Camundongos , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Resposta a Proteínas não Dobradas
6.
Nanoscale ; 13(20): 9415-9435, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34002735

RESUMO

AIM: In this study, the influence of a serum albumin (SA) and human plasma (HP) derived protein- and lipid molecule corona on the toxicity and biodegradability of different iron oxide nanoparticles (IONP) was investigated. METHODS: IONP were synthesized and physicochemically characterized regarding size, charge, and colloidal stability. The adsorbed proteins were quantified and separated by gel electrophoresis. Adsorbed lipids were profiled by ultraperformance liquid chromatography-ESI-tandem mass spectrometry. The biocompatibility was investigated using isolated erythrocytes and a shell-less hen's egg model. The biodegradability was assessed by iron release studies in artificial body fluids. RESULTS: The adsorption patterns of proteins and lipids varied depending on the surface characteristics of the IONP like charge and hydrophobicity. The biomolecule corona modified IONP displayed favorable colloidal stability and toxicological profile compared to IONP without biomolecule coronas, reducing erythrocyte aggregation and hemolysis in vitro as well as the corresponding effects ex ovo/in vivo. The coronas decreased the degradation speed of all tested IONP compared to bare particles, but, whereas all IONP degraded at the same rate for the SA corona, substantial differences were evident for IONP with HP-derived corona depending on the lipid adsorption profile. CONCLUSION: In this study the impact of the proteins and lipids in the biomolecule corona on the entire IONP application cycle from the injection process to the degradation was demonstrated.


Assuntos
Nanopartículas , Coroa de Proteína , Animais , Galinhas , Feminino , Humanos , Lipídeos , Nanopartículas Magnéticas de Óxido de Ferro , Nanopartículas/toxicidade
7.
Redox Biol ; 24: 101166, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30897408

RESUMO

The plant Garcinia kola is used in African ethno-medicine to treat various oxidation- and inflammation-related diseases but its bioactive compounds are not well characterized. Garcinoic acid (GA) is one of the few phytochemicals that have been isolated from Garcinia kola. We investigated the anti-inflammatory potential of the methanol extract of Garcinia kola seeds (NE) and purified GA, as a major phytochemical in these seeds, in lipopolysaccharide (LPS)-activated mouse RAW264.7 macrophages and its anti-atherosclerotic potential in high fat diet fed ApoE-/- mice. This study outlines an optimized procedure for the extraction and purification of GA from Garcinia kola seeds with an increased yield and a purity of >99%. We found that LPS-induced upregulation of iNos and Cox2 expression, and the formation of the respective signaling molecules nitric oxide and prostanoids, were significantly diminished by both the NE and GA. In addition, GA treatment in mice decreased intra-plaque inflammation by attenuating nitrotyrosinylation. Further, modulation of lymphocyte sub-populations in blood and spleen have been detected, showing immune regulative properties of GA. Our study provides molecular insights into the anti-inflammatory activities of Garcinia kola and reveals GA as promising natural lead for the development of multi-target drugs to treat inflammation-driven diseases.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Benzopiranos/farmacologia , Garcinia kola/química , Nozes/química , Vitamina E/análogos & derivados , Vitamina E/farmacologia , Animais , Biomarcadores , Cromatografia Líquida , Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Células RAW 264.7 , Sementes , Transdução de Sinais , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa