Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(11): E2556-E2565, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29463701

RESUMO

Bone deficits are frequent in HIV-1-infected patients. We report here that osteoclasts, the cells specialized in bone resorption, are infected by HIV-1 in vivo in humanized mice and ex vivo in human joint biopsies. In vitro, infection of human osteoclasts occurs at different stages of osteoclastogenesis via cell-free viruses and, more efficiently, by transfer from infected T cells. HIV-1 infection markedly enhances adhesion and osteolytic activity of human osteoclasts by modifying the structure and function of the sealing zone, the osteoclast-specific bone degradation machinery. Indeed, the sealing zone is broader due to F-actin enrichment of its basal units (i.e., the podosomes). The viral protein Nef is involved in all HIV-1-induced effects partly through the activation of Src, a regulator of podosomes and of their assembly as a sealing zone. Supporting these results, Nef-transgenic mice exhibit an increased osteoclast density and bone defects, and osteoclasts derived from these animals display high osteolytic activity. Altogether, our study evidences osteoclasts as host cells for HIV-1 and their pathological contribution to bone disorders induced by this virus, in part via Nef.


Assuntos
Reabsorção Óssea/etiologia , Infecções por HIV/complicações , HIV-1/fisiologia , Osteoclastos/virologia , Actinas/metabolismo , Animais , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Reabsorção Óssea/fisiopatologia , Osso e Ossos/metabolismo , Adesão Celular , Feminino , Infecções por HIV/metabolismo , Infecções por HIV/patologia , Infecções por HIV/virologia , HIV-1/genética , Humanos , Camundongos , Osteoclastos/citologia , Osteoclastos/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo
2.
Small ; 15(47): e1903892, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31617319

RESUMO

Thin films of the molecular spin-crossover complex [Fe(HB(1,2,4-triazol-1-yl)3 )2 ] undergo spin transition above room temperature, which can be exploited in sensors, actuators, and information processing devices. Variable temperature viscoelastic mapping of the films by atomic force microscopy reveals a pronounced decrease of the elastic modulus when going from the low spin (5.2 ± 0.4 GPa) to the high spin (3.6 ± 0.2 GPa) state, which is also accompanied by increasing energy dissipation. This technique allows imaging, with high spatial resolution, of the formation of high spin puddles around film defects, which is ascribed to local strain relaxation. On the other hand, no clustering process due to cooperative phenomena was observed. This experimental approach sets the stage for the investigation of spin transition at the nanoscale, including phase nucleation and evolution as well as local strain effects.

3.
Nano Lett ; 18(10): 6326-6333, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30232897

RESUMO

In vivo, immune cells migrate through a wide variety of tissues, including confined and constricting environments. Deciphering how cells apply forces when infiltrating narrow areas is a critical issue that requires innovative experimental procedures. To reveal the distribution and dynamics of the forces of cells migrating in confined environments, we designed a device combining microchannels of controlled dimensions with integrated deformable micropillars serving as sensors of nanoscale subcellular forces. First, a specific process composed of two steps of photolithography and dry etching was tuned to obtain micrometric pillars of controlled stiffness and dimensions inside microchannels. Second, an image-analysis workflow was developed to automatically evaluate the amplitude and direction of the forces applied on the micropillars by migrating cells. Using this workflow, we show that this microdevice is a sensor of forces with a limit of detection down to 64 pN. Third, by recording pillar movements during the migration of macrophages inside the confining microchannels, we reveal that macrophages bent the pillars with typical forces of 0.3 nN and applied higher forces at the cell edges than around their nuclei. When the degree of confinement was increased, we found that forces were redirected from inward to outward. By providing a microdevice that allows the analysis of force direction and force magnitude developed by confined cells, our work paves the way for investigating the mechanical behavior of cells migrating though 3D constricted environments.


Assuntos
Técnicas de Cultura de Células , Núcleo Celular/química , Dispositivos Lab-On-A-Chip , Macrófagos/química , Técnicas Biossensoriais/métodos , Adesão Celular/genética , Movimento Celular/genética , Núcleo Celular/genética , Microambiente Celular/genética , Voluntários Saudáveis , Humanos , Fenômenos Mecânicos , Monócitos/química
4.
Small ; 13(27)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28558136

RESUMO

The realization of 3D architectures for the study of cell growth, proliferation, and differentiation is a task of fundamental importance for both technological and biological communities involved in the development of biomimetic cell culture environments. Here we report the fabrication of 3D freestanding scaffolds, realized by multiphoton direct laser writing and seeded with neuroblastoma cells, and their multitechnique characterization using advanced 3D fluorescence imaging approaches. The high accuracy of the fabrication process (≈200 nm) allows a much finer control of the micro- and nanoscale features compared to other 3D printing technologies based on fused deposition modeling, inkjet printing, selective laser sintering, or polyjet technology. Scanning electron microscopy (SEM) provides detailed insights about the morphology of both cells and cellular interconnections around the 3D architecture. On the other hand, the nature of the seeding in the inner core of the 3D scaffold, inaccessible by conventional SEM imaging, is unveiled by light sheet fluorescence microscopy and multiphoton confocal imaging highlighting an optimal cell colonization both around and within the 3D scaffold as well as the formation of long neuritic extensions. The results open appealing scenarios for the use of the developed 3D fabrication/3D imaging protocols in several neuroscientific contexts.


Assuntos
Materiais Biocompatíveis/química , Imageamento Tridimensional/métodos , Polímeros/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Linhagem Celular Tumoral , Humanos , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência
5.
Biomed Microdevices ; 19(3): 60, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28677098

RESUMO

We present a new strategy for fabricating a silicon nanopore device allowing straightforward fluidic integration and electrical as well as optical monitoring. The device presents nanopores of diameters 10 nm to 160 nm, and could therefore be used to obtain solvent-free free-standing lipid bilayers from small unilamellar vesicles (SUV) or large unilamellar vesicles (LUV). The silicon chip fabrication process only requires front side processing of a silicon-on-insulator (SOI) substrate. A polydimethylsiloxane (PDMS) microfluidic interface is assembled on the silicon chip for fluidic handling and electrical addressing. We detail the electrical specifications of our device and some perspectives showing that the use of an SOI substrate is a convenient way to reduce the electrical noise in a silicon nanopore device without the need of a photolitographic patterned passivation layer. We then demonstrate simultaneous electrical and optical monitoring by capturing negatively charged fluorescent nanoparticles. Finally, in the perspective of solvent-free free-standing lipid bilayers, we show that incubation of SUV results in a drastic increase of the device electrical resistance, which is likely due to the formation of a free-standing lipid bilayer sealing the nanopores. Graphical abstract ᅟ.


Assuntos
Corantes Fluorescentes/química , Dispositivos Lab-On-A-Chip , Bicamadas Lipídicas/química , Nanopartículas/química , Nanoporos , Imagem Óptica , Dimetilpolisiloxanos/química , Impedância Elétrica
6.
Langmuir ; 30(11): 3132-41, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24568716

RESUMO

There is an increasing interest to express and study membrane proteins in vitro. New techniques to produce and insert functional membrane proteins into planar lipid bilayers have to be developed. In this work, we produce a tethered lipid bilayer membrane (tBLM) to provide sufficient space for the incorporation of the integral membrane protein (IMP) Aquaporin Z (AqpZ) between the tBLM and the surface of the sensor. We use a gold (Au)-coated sensor surface compatible with mechanical sensing using a quartz crystal microbalance with dissipation monitoring (QCM-D) or optical sensing using the surface plasmon resonance (SPR) method. tBLM is produced by vesicle fusion onto a thin gold film, using phospholipid-polyethylene glycol (PEG) as a spacer. Lipid vesicles are composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-poly(ethyleneglycol)-2000-N-[3-(2-pyridyldithio)propionate], so-called DSPE-PEG-PDP, at different molar ratios (respectively, 99.5/0.5, 97.5/2.5, and 95/5 mol %), and tBLM formation is characterized using QCM-D, SPR, and atomic force technology (AFM). We demonstrate that tBLM can be produced on the gold surface after rupture of the vesicles using an α helical (AH) peptide, derived from hepatitis C virus NS5A protein, to assist the fusion process. A cell-free expression system producing the E. coli integral membrane protein Aquaporin Z (AqpZ) is directly incubated onto the tBLMs for expression and insertion of the IMP at the upper side of tBLMs. The incorporation of AqpZ into bilayers is monitored by QCM-D and compared to a control experiment (without plasmid in the cell-free expression system). We demonstrate that an IMP such as AqpZ, produced by a cell-free expression system without any protein purification, can be incorporated into an engineered tBLM preassembled at the surface of a gold-coated sensor.


Assuntos
Aquaporinas/biossíntese , Aquaporinas/genética , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/genética , Ouro/química , Bicamadas Lipídicas/química , Aquaporinas/química , Técnicas Biossensoriais , Membrana Celular/química , Proteínas de Escherichia coli/química , Polietilenoglicóis/química , Propionatos/química , Piridinas/química , Propriedades de Superfície
7.
Proc Natl Acad Sci U S A ; 107(49): 21016-21, 2010 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-21081699

RESUMO

Podosomes are unique cellular entities specifically found in macrophages and involved in cell-matrix interactions, matrix degradation, and 3D migration. They correspond to a core of F-actin surrounded at its base by matrix receptors. To investigate the structure/function relationships of podosomes, soft lithography, atomic force microscopy (AFM), and correlative fluorescence microscopy were used to characterize podosome physical properties in macrophages differentiated from human blood monocytes. Podosome formation was restricted to delineated areas with micropatterned fibrinogen to facilitate AFM analyses. Podosome height and stiffness were measured with great accuracy in living macrophages (578 ± 209 nm and 43.8 ± 9.3 kPa) and these physical properties were independent of the nature of the underlying matrix. In addition, time-lapse AFM revealed that podosomes harbor two types of overlapping periodic stiffness variations throughout their lifespan, which depend on F-actin and myosin II activity. This report shows that podosome biophysical properties are amenable to AFM, allowing the study of podosomes in living macrophages at nanoscale resolution and the analysis of their intimate dynamics. Such an approach opens up perspectives to better understand the mechanical functionality of podosomes under physiological and pathological contexts.


Assuntos
Actinas/ultraestrutura , Macrófagos/ultraestrutura , Estruturas Citoplasmáticas/ultraestrutura , Citoesqueleto , Matriz Extracelular/ultraestrutura , Dureza , Humanos , Microscopia de Força Atômica/métodos , Miosina Tipo II
8.
Elife ; 112022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35727134

RESUMO

Osteoclasts are unique in their capacity to degrade bone tissue. To achieve this process, osteoclasts form a specific structure called the sealing zone, which creates a close contact with bone and confines the release of protons and hydrolases for bone degradation. The sealing zone is composed of actin structures called podosomes nested in a dense actin network. The organization of these actin structures inside the sealing zone at the nano scale is still unknown. Here, we combine cutting-edge microscopy methods to reveal the nanoscale architecture and dynamics of the sealing zone formed by human osteoclasts on bone surface. Random illumination microscopy allowed the identification and live imaging of densely packed actin cores within the sealing zone. A cross-correlation analysis of the fluctuations of actin content at these cores indicates that they are locally synchronized. Further examination shows that the sealing zone is composed of groups of synchronized cores linked by α-actinin1 positive filaments, and encircled by adhesion complexes. Thus, we propose that the confinement of bone degradation mediators is achieved through the coordination of islets of actin cores and not by the global coordination of all podosomal subunits forming the sealing zone.


Assuntos
Reabsorção Óssea , Podossomos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Reabsorção Óssea/metabolismo , Citoesqueleto/metabolismo , Humanos , Osteoclastos/metabolismo , Podossomos/metabolismo
9.
Small ; 7(23): 3385-91, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21997948

RESUMO

Nanopatterned thin films of the metal-organic framework {Fe(bpac)[Pt(CN)4]} (bpac=bis(4-pyridyl)acetylene) are elaborated by the combination of a sequential assembly process and a lithographic method. Raman microspectroscopy is used to probe the temperature dependence of the spin state of the iron(II) ions in the films (40-90 nm in thickness), and reveals an incomplete but cooperative spin transition comparable to that of the bulk material. Adsorption/desorption of pyridine guest molecules is found to have a substantial influence on the spin-crossover properties of the thin layers. This interplay between host-guest and spin-crossover properties in thin films and nanopatterns demonstrates the potential ability of using this kind of material as a microsensor.


Assuntos
Nanoestruturas/química , Marcadores de Spin , Cianetos/química , Metais Pesados/química , Microscopia de Força Atômica , Nanoestruturas/ultraestrutura , Análise Espectral Raman , Temperatura de Transição
10.
Langmuir ; 26(3): 1557-60, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-19950983

RESUMO

Microtransfer molding has been used to fabricate homogeneous micropatterns and nanopatterns of spin crossover nanoparticles of [Fe(NH(2)trz)](tos)(2) over a large area. We show that the use of an aprotic solvent (n-octane) may lead to successful results. Very well organized micropatterns are obtained, showing spin crossover phenomenon. Dark field optical and AFM images and Raman microspectrometry results are reported.

11.
J Vis Exp ; (136)2018 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-29985327

RESUMO

In numerous biological contexts, animal cells need to interact physically with their environment by developing mechanical forces. Among these, traction forces have been well-characterized, but there is a lack of techniques allowing the measurement of the protrusion forces exerted by cells orthogonally to their substrate. We designed an experimental setup to measure the protrusion forces exerted by adherent cells on their substrate. Cells plated on a compliant Formvar sheet deform this substrate and the resulting topography is mapped by atomic force microscopy (AFM) at the nanometer scale. Force values are then extracted from an analysis of the deformation profile based on the geometry of the protrusive cellular structures. Hence, the forces exerted by the individual protruding units of a living cell can be measured over time. This technique will enable the study of force generation and its regulation in the many cellular processes involving protrusion. Here, we describe its application to measure the protrusive forces generated by podosomes formed by human macrophages.


Assuntos
Fenômenos Fisiológicos Celulares/fisiologia , Macrófagos/fisiologia , Microscopia de Força Atômica/métodos , Podossomos/fisiologia , Animais , Humanos
12.
ACS Nano ; 11(4): 4028-4040, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28355484

RESUMO

Determining how cells generate and transduce mechanical forces at the nanoscale is a major technical challenge for the understanding of numerous physiological and pathological processes. Podosomes are submicrometer cell structures with a columnar F-actin core surrounded by a ring of adhesion proteins, which possess the singular ability to protrude into and probe the extracellular matrix. Using protrusion force microscopy, we have previously shown that single podosomes produce local nanoscale protrusions on the extracellular environment. However, how cellular forces are distributed to allow this protruding mechanism is still unknown. To investigate the molecular machinery of protrusion force generation, we performed mechanical simulations and developed quantitative image analyses of nanoscale architectural and mechanical measurements. First, in silico modeling showed that the deformations of the substrate made by podosomes require protrusion forces to be balanced by local traction forces at the immediate core periphery where the adhesion ring is located. Second, we showed that three-ring proteins are required for actin polymerization and protrusion force generation. Third, using DONALD, a 3D nanoscopy technique that provides 20 nm isotropic localization precision, we related force generation to the molecular extension of talin within the podosome ring, which requires vinculin and paxillin, indicating that the ring sustains mechanical tension. Our work demonstrates that the ring is a site of tension, balancing protrusion at the core. This local coupling of opposing forces forms the basis of protrusion and reveals the podosome as a nanoscale autonomous force generator.


Assuntos
Podossomos/química , Actinas/química , Actinas/metabolismo , Fenômenos Biomecânicos , Adesão Celular , Células Cultivadas , Simulação por Computador , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Mecanotransdução Celular , Monócitos/citologia , Monócitos/metabolismo , Nanoestruturas/química , Tamanho da Partícula , Paxilina/química , Paxilina/metabolismo , Podossomos/ultraestrutura , Propriedades de Superfície , Talina/química , Talina/metabolismo , Vinculina/química , Vinculina/metabolismo
13.
ACS Nano ; 9(4): 3800-13, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25791988

RESUMO

Podosomes are mechanosensitive adhesion cell structures that are capable of applying protrusive forces onto the extracellular environment. We have recently developed a method dedicated to the evaluation of the nanoscale forces that podosomes generate to protrude into the extracellular matrix. It consists in measuring by atomic force microscopy (AFM) the nanometer deformations produced by macrophages on a compliant Formvar membrane and has been called protrusion force microscopy (PFM). Here we perform time-lapse PFM experiments and investigate spatial correlations of force dynamics between podosome pairs. We use an automated procedure based on finite element simulations that extends the analysis of PFM experimental data to take into account podosome architecture and organization. We show that protrusion force varies in a synchronous manner for podosome first neighbors, a result that correlates with phase synchrony of core F-actin temporal oscillations. This dynamic spatial coordination between podosomes suggests a short-range interaction that regulates their mechanical activity.


Assuntos
Actinas/metabolismo , Fenômenos Mecânicos , Podossomos/metabolismo , Actinas/química , Fenômenos Biomecânicos , Análise de Elementos Finitos , Humanos , Macrófagos/citologia , Microscopia de Força Atômica , Modelos Moleculares , Monócitos/citologia , Conformação Proteica
14.
Adv Mater ; 26(18): 2889-93, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24510733

RESUMO

Quantitative atomic force microscopy is used in conjunction with microwire heaters for high-resolution imaging of the Young's modulus changes across the spin-state transition. When going from the high spin to the low spin state, a significant stiffening is observed.

15.
Nat Commun ; 5: 5343, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25385672

RESUMO

Podosomes are adhesion structures formed in monocyte-derived cells. They are F-actin-rich columns perpendicular to the substrate surrounded by a ring of integrins. Here, to measure podosome protrusive forces, we designed an innovative experimental setup named protrusion force microscopy (PFM), which consists in measuring by atomic force microscopy the deformation induced by living cells onto a compliant Formvar sheet. By quantifying the heights of protrusions made by podosomes onto Formvar sheets, we estimate that a single podosome generates a protrusion force that increases with the stiffness of the substratum, which is a hallmark of mechanosensing activity. We show that the protrusive force generated at podosomes oscillates with a constant period and requires combined actomyosin contraction and actin polymerization. Finally, we elaborate a model to explain the mechanical and oscillatory activities of podosomes. Thus, PFM shows that podosomes are mechanosensing cell structures exerting a protrusive force.


Assuntos
Relógios Biológicos/fisiologia , Macrófagos/fisiologia , Mecanotransdução Celular/fisiologia , Microscopia de Força Atômica/métodos , Podossomos/fisiologia , Actinas/fisiologia , Actinas/ultraestrutura , Extensões da Superfície Celular/fisiologia , Extensões da Superfície Celular/ultraestrutura , Células Cultivadas , Humanos , Macrófagos/citologia , Macrófagos/ultraestrutura , Microscopia Eletrônica de Varredura , Modelos Biológicos , Simulação de Dinâmica Molecular , Podossomos/ultraestrutura
16.
Dalton Trans ; 42(45): 16021-8, 2013 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23925373

RESUMO

Surface-relief photonic gratings of the spin-crossover metal-organic framework {Fe(bpac)[Pt(CN)4]} (bpac = bis(4-pyridyl)acetylene) were elaborated by the combination of a sequential assembly process and lithographic methods. Optical diffraction, surface plasmon resonance spectroscopy and Raman micro-spectroscopy were used to investigate the temperature dependence of the spin state of the iron(II) ions and the concomitant change of the refractive index of the grating material. The refractive index change associated with the high spin ((5)T) to low spin ((1)A) transition was found to be as high as Δn = 0.08 ± 0.005, which was attributed to the pronounced mass density difference between the two spin states. While the grating thickness (15-90 nm) had no influence on the spin-crossover properties of the gratings, the adsorption of aromatic guest molecules was found to have a substantial effect both on the spin transition temperature and the completeness of the transition.

17.
Nanoscale ; 5(12): 5288-93, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23657625

RESUMO

Plasmonic resonance properties of a series of lithographically patterned gold nanorod arrays, spin coated by thin films of an iron(II)-triazole type spin crossover complex, were investigated upon heating/cooling and also under 633 nm laser irradiation. In both cases a reversible shift of the localised surface plasmon resonance wavelength was observed and quantitatively linked to the refractive index change accompanying the spin transition. These results show that molecular spin state switching can be very efficiently triggered by the photo-thermal effect, which - in turn - allows for an active tuning of the plasmon resonance.

18.
Langmuir ; 23(21): 10706-14, 2007 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-17803329

RESUMO

It is well-established that, during microcontact printing (muCP) using poly(dimethylsiloxane) (PDMS)-based stamps, some unexpected siloxane fragments can be transferred from the stamp to the surface of the sample. This so-called contamination effect coexists with the delivery of the molecules constituting the ink and by this way influences the printing process. The real impact of this contamination for the muCP technique is still partially unknown. In this work, we investigate the kinetics of this contamination process through the surface characterization of both the sample and the stamp after imprinting. The way both the curing conditions of the PDMS material and the contact time influence the degree of contamination of the surface is investigated on silicon and glass substrates. We propose a cleaning process of the stamp during several hours which eliminates any trace of contamination during printing. We show that hydrophobicity recovery of PDMS surfaces after hydrophilic treatment using oxygen plasma is considerably slowed down when the PDMS material is cleaned using our procedure. Finally, by comparing cleaned and uncleaned PDMS stamps, we show the influence of contamination on the quality of muCP using fluorescent DNA molecules as an ink. Surprisingly, we observe that the amount of DNA molecules transferred during muCP is higher for the uncleaned stamp, highlighting the positive impact of the presence of low molecular weight siloxane fragments on the muCP process. This result is attributed to the better adsorption of oligonucleotides on the stamp surface in presence of these contaminating molecules.


Assuntos
Dimetilpolisiloxanos/química , Oligonucleotídeos/química , Silicones/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa