Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(16): 3427-3442.e22, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37421949

RESUMO

SARS-CoV-2 is associated with broad tissue tropism, a characteristic often determined by the availability of entry receptors on host cells. Here, we show that TMEM106B, a lysosomal transmembrane protein, can serve as an alternative receptor for SARS-CoV-2 entry into angiotensin-converting enzyme 2 (ACE2)-negative cells. Spike substitution E484D increased TMEM106B binding, thereby enhancing TMEM106B-mediated entry. TMEM106B-specific monoclonal antibodies blocked SARS-CoV-2 infection, demonstrating a role of TMEM106B in viral entry. Using X-ray crystallography, cryogenic electron microscopy (cryo-EM), and hydrogen-deuterium exchange mass spectrometry (HDX-MS), we show that the luminal domain (LD) of TMEM106B engages the receptor-binding motif of SARS-CoV-2 spike. Finally, we show that TMEM106B promotes spike-mediated syncytium formation, suggesting a role of TMEM106B in viral fusion. Together, our findings identify an ACE2-independent SARS-CoV-2 infection mechanism that involves cooperative interactions with the receptors heparan sulfate and TMEM106B.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Receptores Virais/metabolismo , Internalização do Vírus , Ligação Proteica , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo
2.
Nature ; 586(7830): 509-515, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32967005

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the aetiological agent of coronavirus disease 2019 (COVID-19), an emerging respiratory infection caused by the introduction of a novel coronavirus into humans late in 2019 (first detected in Hubei province, China). As of 18 September 2020, SARS-CoV-2 has spread to 215 countries, has infected more than 30 million people and has caused more than 950,000 deaths. As humans do not have pre-existing immunity to SARS-CoV-2, there is an urgent need to develop therapeutic agents and vaccines to mitigate the current pandemic and to prevent the re-emergence of COVID-19. In February 2020, the World Health Organization (WHO) assembled an international panel to develop animal models for COVID-19 to accelerate the testing of vaccines and therapeutic agents. Here we summarize the findings to date and provides relevant information for preclinical testing of vaccine candidates and therapeutic agents for COVID-19.


Assuntos
Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/prevenção & controle , Modelos Animais de Doenças , Pandemias/prevenção & controle , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/prevenção & controle , Animais , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/imunologia , COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/imunologia , Furões/virologia , Humanos , Mesocricetus/virologia , Camundongos , Pneumonia Viral/imunologia , Primatas/virologia , SARS-CoV-2 , Vacinas Virais/imunologia
3.
PLoS Pathog ; 17(4): e1009500, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33886690

RESUMO

The high transmissibility of SARS-CoV-2 is related to abundant replication in the upper airways, which is not observed for the other highly pathogenic coronaviruses SARS-CoV and MERS-CoV. We here reveal features of the coronavirus spike (S) protein, which optimize the virus towards the human respiratory tract. First, the S proteins exhibit an intrinsic temperature preference, corresponding with the temperature of the upper or lower airways. Pseudoviruses bearing the SARS-CoV-2 spike (SARS-2-S) were more infectious when produced at 33°C instead of 37°C, a property shared with the S protein of HCoV-229E, a common cold coronavirus. In contrast, the S proteins of SARS-CoV and MERS-CoV favored 37°C, in accordance with virus preference for the lower airways. Next, SARS-2-S-driven entry was efficiently activated by not only TMPRSS2, but also the TMPRSS13 protease, thus broadening the cell tropism of SARS-CoV-2. Both proteases proved relevant in the context of authentic virus replication. TMPRSS13 appeared an effective spike activator for the virulent coronaviruses but not the low pathogenic HCoV-229E virus. Activation of SARS-2-S by these surface proteases requires processing of the S1/S2 cleavage loop, in which both the furin recognition motif and extended loop length proved critical. Conversely, entry of loop deletion mutants is significantly increased in cathepsin-rich cells. Finally, we demonstrate that the D614G mutation increases SARS-CoV-2 stability, particularly at 37°C, and, enhances its use of the cathepsin L pathway. This indicates a link between S protein stability and usage of this alternative route for virus entry. Since these spike properties may promote virus spread, they potentially explain why the spike-G614 variant has replaced the early D614 variant to become globally predominant. Collectively, our findings reveal adaptive mechanisms whereby the coronavirus spike protein is adjusted to match the temperature and protease conditions of the airways, to enhance virus transmission and pathology.


Assuntos
COVID-19/metabolismo , Sistema Respiratório/metabolismo , Sistema Respiratório/virologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , COVID-19/transmissão , Coronavirus Humano 229E/metabolismo , Furina/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Peptídeo Hidrolases/metabolismo , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Temperatura , Internalização do Vírus , Replicação Viral/fisiologia
4.
Nature ; 541(7637): 412-416, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28077878

RESUMO

Picornaviruses are a leading cause of human and veterinary infections that result in various diseases, including polio and the common cold. As archetypical non-enveloped viruses, their biology has been extensively studied. Although a range of different cell-surface receptors are bound by different picornaviruses, it is unclear whether common host factors are needed for them to reach the cytoplasm. Using genome-wide haploid genetic screens, here we identify the lipid-modifying enzyme PLA2G16 (refs 8, 9, 10, 11) as a picornavirus host factor that is required for a previously unknown event in the viral life cycle. We find that PLA2G16 functions early during infection, enabling virion-mediated genome delivery into the cytoplasm, but not in any virion-assigned step, such as cell binding, endosomal trafficking or pore formation. To resolve this paradox, we screened for suppressors of the ΔPLA2G16 phenotype and identified a mechanism previously implicated in the clearance of intracellular bacteria. The sensor of this mechanism, galectin-8 (encoded by LGALS8), detects permeated endosomes and marks them for autophagic degradation, whereas PLA2G16 facilitates viral genome translocation and prevents clearance. This study uncovers two competing processes triggered by virus entry: activation of a pore-activated clearance pathway and recruitment of a phospholipase to enable genome release.


Assuntos
Citoplasma/virologia , Genoma Viral , Fatores Celulares Derivados do Hospedeiro/metabolismo , Fosfolipases A2 Independentes de Cálcio/metabolismo , Picornaviridae/genética , Picornaviridae/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Internalização do Vírus , Animais , Autofagia , Transporte Biológico , Linhagem Celular , Citoplasma/genética , Endossomos/metabolismo , Feminino , Galectinas/genética , Galectinas/metabolismo , Fatores Celulares Derivados do Hospedeiro/deficiência , Fatores Celulares Derivados do Hospedeiro/genética , Humanos , Masculino , Camundongos , Mutação , Fenótipo , Fosfolipases A2 Independentes de Cálcio/deficiência , Fosfolipases A2 Independentes de Cálcio/genética , Supressão Genética , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Vírion/genética , Vírion/metabolismo , Replicação Viral
5.
Mol Ther ; 30(9): 2952-2967, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35546782

RESUMO

The COVID-19 pandemic continues to have devastating consequences on health and economy, even after the approval of safe and effective vaccines. Waning immunity, the emergence of variants of concern, breakthrough infections, and lack of global vaccine access and acceptance perpetuate the epidemic. Here, we demonstrate that a single injection of an adenoassociated virus (AAV)-based COVID-19 vaccine elicits at least 17-month-long neutralizing antibody responses in non-human primates at levels that were previously shown to protect from viral challenge. To improve the scalability of this durable vaccine candidate, we further optimized the vector design for greater potency at a reduced dose in mice and non-human primates. Finally, we show that the platform can be rapidly adapted to other variants of concern to robustly maintain immunogenicity and protect from challenge. In summary, we demonstrate this class of AAV can provide durable immunogenicity, provide protection at dose that is low and scalable, and be adapted readily to novel emerging vaccine antigens thus may provide a potent tool in the ongoing fight against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2).


Assuntos
COVID-19 , Vacinas Virais , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Dependovirus/genética , Humanos , Macaca , Camundongos , Pandemias/prevenção & controle , SARS-CoV-2/genética
6.
Proc Natl Acad Sci U S A ; 117(43): 26955-26965, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33037151

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapidly spread around the globe after its emergence in Wuhan in December 2019. With no specific therapeutic and prophylactic options available, the virus has infected millions of people of which more than half a million succumbed to the viral disease, COVID-19. The urgent need for an effective treatment together with a lack of small animal infection models has led to clinical trials using repurposed drugs without preclinical evidence of their in vivo efficacy. We established an infection model in Syrian hamsters to evaluate the efficacy of small molecules on both infection and transmission. Treatment of SARS-CoV-2-infected hamsters with a low dose of favipiravir or hydroxychloroquine with(out) azithromycin resulted in, respectively, a mild or no reduction in virus levels. However, high doses of favipiravir significantly reduced infectious virus titers in the lungs and markedly improved lung histopathology. Moreover, a high dose of favipiravir decreased virus transmission by direct contact, whereas hydroxychloroquine failed as prophylaxis. Pharmacokinetic modeling of hydroxychloroquine suggested that the total lung exposure to the drug did not cause the failure. Our data on hydroxychloroquine (together with previous reports in macaques and ferrets) thus provide no scientific basis for the use of this drug in COVID-19 patients. In contrast, the results with favipiravir demonstrate that an antiviral drug at nontoxic doses exhibits a marked protective effect against SARS-CoV-2 in a small animal model. Clinical studies are required to assess whether a similar antiviral effect is achievable in humans without toxic effects.


Assuntos
Amidas/uso terapêutico , Antivirais/uso terapêutico , Betacoronavirus/efeitos dos fármacos , Hidroxicloroquina/uso terapêutico , Pirazinas/uso terapêutico , Amidas/farmacocinética , Animais , Chlorocebus aethiops , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Cricetinae , Modelos Animais de Doenças , Transmissão de Doença Infecciosa/prevenção & controle , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Feminino , Hidroxicloroquina/farmacocinética , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/virologia , Pirazinas/farmacocinética , SARS-CoV-2 , Resultado do Tratamento , Células Vero , Carga Viral/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
7.
Mol Ther ; 29(1): 208-224, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33002419

RESUMO

While drug resistance mutations provide the gold standard proof for drug target engagement, target deconvolution of inhibitors identified from a phenotypic screen remains challenging. Genetic screening for functional in-frame drug resistance mutations by tiling CRISPR-Cas nucleases across protein coding sequences is a method for identifying a drug's target and binding site. However, the applicability of this approach is constrained by the availability of nuclease target sites across genetic regions that mediate drug resistance upon mutation. In this study, we show that an enhanced AsCas12a variant (enAsCas12a), which harbors an expanded targeting range, facilitates screening for drug resistance mutations with increased activity and resolution in regions that are not accessible to other CRISPR nucleases, including the prototypical SpCas9. Utilizing enAsCas12a, we uncover new drug resistance mutations against inhibitors of NAMPT and KIF11. These findings demonstrate that enAsCas12a is a promising new addition to the CRISPR screening toolbox and allows targeting sites not readily accessible to SpCas9.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Resistência a Medicamentos/genética , Endonucleases/metabolismo , Testes Genéticos/métodos , Mutação , Sítios de Ligação , Ligação Proteica
8.
PLoS Pathog ; 15(5): e1007760, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31071193

RESUMO

Enterovirus A71 (EV-A71) is a non-polio neurotropic enterovirus with pandemic potential. There are no antiviral agents approved to prevent or treat EV-A71 infections. We here report on the molecular mechanism by which a novel class of tryptophan dendrimers inhibits (at low nanomolar to high picomolar concentration) EV-A71 replication in vitro. A lead compound in the series (MADAL385) prevents binding and internalization of the virus but does not, unlike classical capsid binders, stabilize the particle. By means of resistance selection, reverse genetics and cryo-EM, we map the binding region of MADAL385 to the 5-fold vertex of the viral capsid and demonstrate that a single molecule binds to each vertex. By interacting with this region, MADAL385 prevents the interaction of the virus with its cellular receptors PSGL1 and heparan sulfate, thereby blocking the attachment of EV-A71 to the host cells.


Assuntos
Antivirais/farmacologia , Capsídeo/metabolismo , Infecções por Enterovirus/metabolismo , Enterovirus/efeitos dos fármacos , Heparitina Sulfato/metabolismo , Glicoproteínas de Membrana/metabolismo , Triptofano/farmacologia , Antivirais/química , Capsídeo/efeitos dos fármacos , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Dendrímeros/química , Dendrímeros/farmacologia , Infecções por Enterovirus/tratamento farmacológico , Infecções por Enterovirus/virologia , Células HeLa , Heparitina Sulfato/antagonistas & inibidores , Humanos , Glicoproteínas de Membrana/antagonistas & inibidores , Conformação Proteica , Triptofano/química , Replicação Viral/efeitos dos fármacos
9.
Proc Natl Acad Sci U S A ; 115(2): 397-402, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29284752

RESUMO

Acute hemorrhagic conjunctivitis (AHC) is a painful, contagious eye disease, with millions of cases in the last decades. Coxsackievirus A24 (CV-A24) was not originally associated with human disease, but in 1970 a pathogenic "variant" (CV-A24v) emerged, which is now the main cause of AHC. Initially, this variant circulated only in Southeast Asia, but it later spread worldwide, accounting for numerous AHC outbreaks and two pandemics. While both CV-A24 variant and nonvariant strains still circulate in humans, only variant strains cause AHC for reasons that are yet unknown. Since receptors are important determinants of viral tropism, we set out to map the CV-A24 receptor repertoire and establish whether changes in receptor preference have led to the increased pathogenicity and rapid spread of CV-A24v. Here, we identify ICAM-1 as an essential receptor for both AHC-causing and non-AHC strains. We provide a high-resolution cryo-EM structure of a virus-ICAM-1 complex, which revealed critical ICAM-1-binding residues. These data could help identify a possible conserved mode of receptor engagement among ICAM-1-binding enteroviruses and rhinoviruses. Moreover, we identify a single capsid substitution that has been adopted by all pandemic CV-A24v strains and we reveal that this adaptation enhances the capacity of CV-A24v to bind sialic acid. Our data elucidate the CV-A24v receptor repertoire and point to a role of enhanced receptor engagement in the adaptation to the eye, possibly enabling pandemic spread.


Assuntos
Conjuntivite Hemorrágica Aguda/metabolismo , Enterovirus Humano C/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Receptores Virais/metabolismo , Sequência de Aminoácidos , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Conjuntivite Hemorrágica Aguda/epidemiologia , Conjuntivite Hemorrágica Aguda/virologia , Microscopia Crioeletrônica , Surtos de Doenças , Enterovirus Humano C/genética , Enterovirus Humano C/fisiologia , Humanos , Molécula 1 de Adesão Intercelular/química , Mutação , Ácido N-Acetilneuramínico/metabolismo , Pandemias , Filogenia , Ligação Proteica , Receptores Virais/química , Homologia de Sequência de Aminoácidos , Tropismo Viral/fisiologia
10.
Proc Natl Acad Sci U S A ; 113(5): 1399-404, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26787879

RESUMO

Enterovirus D68 (EV-D68) is an emerging pathogen that can cause severe respiratory disease and is associated with cases of paralysis, especially among children. Heretofore, information on host factor requirements for EV-D68 infection is scarce. Haploid genetic screening is a powerful tool to reveal factors involved in the entry of pathogens. We performed a genome-wide haploid screen with the EV-D68 prototype Fermon strain to obtain a comprehensive overview of cellular factors supporting EV-D68 infection. We identified and confirmed several genes involved in sialic acid (Sia) biosynthesis, transport, and conjugation to be essential for infection. Moreover, by using knockout cell lines and gene reconstitution, we showed that both α2,6- and α2,3-linked Sia can be used as functional cellular EV-D68 receptors. Importantly, the screen did not reveal a specific protein receptor, suggesting that EV-D68 can use multiple redundant sialylated receptors. Upon testing recent clinical strains, we identified strains that showed a similar Sia dependency, whereas others could infect cells lacking surface Sia, indicating they can use an alternative, nonsialylated receptor. Nevertheless, these Sia-independent strains were still able to bind Sia on human erythrocytes, raising the possibility that these viruses can use multiple receptors. Sequence comparison of Sia-dependent and Sia-independent EV-D68 strains showed that many changes occurred near the canyon that might allow alternative receptor binding. Collectively, our findings provide insights into the identity of the EV-D68 receptor and suggest the possible existence of Sia-independent viruses, which are essential for understanding tropism and disease.


Assuntos
Enterovirus Humano D/metabolismo , Receptores Virais/metabolismo , Animais , Linhagem Celular , Haploidia , Humanos , Receptores Virais/genética
11.
Rev Med Virol ; 26(1): 21-33, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26388447

RESUMO

Chronic obstructive pulmonary disease (COPD) is a life-threatening lung illness characterized by persistent and progressive airflow limitation. Exacerbations of COPD contribute to the severity of this pathology and accelerate disease progression. To date, pharmacological treatment of both stable COPD patients and patients experiencing exacerbations is mainly symptomatic with bronchodilators and steroids as the mainstay of therapy. Bacteria trigger such exacerbations in a number of cases; hence, antibiotics might be included in the treatment as well. Several respiratory viruses are frequently detected in sputum from patients during COPD exacerbations. These include influenza viruses, respiratory syncytial virus, and, most often, rhinoviruses. In this review, we discuss the potential use of an anti-rhinovirus drug for the treatment and prophylaxis of rhinovirus-induced COPD exacerbations and the path forward toward the development and use of such a drug. Copyright © 2015 John Wiley & Sons, Ltd.

12.
PLoS Pathog ; 10(4): e1004039, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24722756

RESUMO

Enteroviruses (family of the Picornaviridae) cover a large group of medically important human pathogens for which no antiviral treatment is approved. Although these viruses have been extensively studied, some aspects of the viral life cycle, in particular morphogenesis, are yet poorly understood. We report the discovery of TP219 as a novel inhibitor of the replication of several enteroviruses, including coxsackievirus and poliovirus. We show that TP219 binds directly glutathione (GSH), thereby rapidly depleting intracellular GSH levels and that this interferes with virus morphogenesis without affecting viral RNA replication. The inhibitory effect on assembly was shown not to depend on an altered reducing environment. Using TP219, we show that GSH is an essential stabilizing cofactor during the transition of protomeric particles into pentameric particles. Sequential passaging of coxsackievirus B3 in the presence of low GSH-levels selected for GSH-independent mutants that harbored a surface-exposed methionine in VP1 at the interface between two protomers. In line with this observation, enteroviruses that already contained this surface-exposed methionine, such as EV71, did not rely on GSH for virus morphogenesis. Biochemical and microscopical analysis provided strong evidence for a direct interaction between GSH and wildtype VP1 and a role for this interaction in localizing assembly intermediates to replication sites. Consistently, the interaction between GSH and mutant VP1 was abolished resulting in a relocalization of the assembly intermediates to replication sites independent from GSH. This study thus reveals GSH as a novel stabilizing host factor essential for the production of infectious enterovirus progeny and provides new insights into the poorly understood process of morphogenesis.


Assuntos
Capsídeo/metabolismo , Enterovirus Humano B/fisiologia , Infecções por Enterovirus/metabolismo , Glutationa/metabolismo , RNA Viral/biossíntese , Replicação Viral/fisiologia , Animais , Chlorocebus aethiops , Infecções por Enterovirus/genética , Glutationa/genética , Células HeLa , Humanos , Mutação , RNA Viral/genética , Células Vero
13.
Eur Heart J ; 36(42): 2909-19, 2015 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-26206211

RESUMO

AIMS: Viral myocarditis (VM) is an important cause of heart failure and sudden cardiac death in young healthy adults; it is also an aetiological precursor of dilated cardiomyopathy. We explored the role of the miR-221/-222 family that is up-regulated in VM. METHODS AND RESULTS: Here, we show that microRNA-221 (miR-221) and miR-222 levels are significantly elevated during acute VM caused by Coxsackievirus B3 (CVB3). Both miRs are expressed by different cardiac cells and by infiltrating inflammatory cells, but their up-regulation upon myocarditis is mostly exclusive for the cardiomyocyte. Systemic inhibition of miR-221/-222 in mice increased cardiac viral load, prolonged the viraemic state, and strongly aggravated cardiac injury and inflammation. Similarly, in vitro, overexpression of miR-221 and miR-222 inhibited enteroviral replication, whereas knockdown of this miR-cluster augmented viral replication. We identified and confirmed a number of miR-221/-222 targets that co-orchestrate the increased viral replication and inflammation, including ETS1/2, IRF2, BCL2L11, TOX, BMF, and CXCL12. In vitro inhibition of IRF2, TOX, or CXCL12 in cardiomyocytes significantly dampened their inflammatory response to CVB3 infection, confirming the functionality of these targets in VM and highlighting the importance of miR-221/-222 as regulators of the cardiac response to VM. CONCLUSIONS: The miR-221/-222 cluster orchestrates the antiviral and inflammatory immune response to viral infection of the heart. Its inhibition increases viral load, inflammation, and overall cardiac injury upon VM.


Assuntos
Infecções por Coxsackievirus/virologia , MicroRNAs/fisiologia , Miocardite/virologia , Animais , Infecções por Coxsackievirus/imunologia , Humanos , Imunidade Celular/imunologia , Macrófagos/imunologia , Masculino , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Miocardite/imunologia , Miócitos Cardíacos/imunologia , Linfócitos T/imunologia , Regulação para Cima , Carga Viral/imunologia , Replicação Viral/imunologia
14.
Antimicrob Agents Chemother ; 59(12): 7782-5, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26369972

RESUMO

We investigated the susceptibility of 10 enterovirus D68 (EV-D68) isolates (belonging to clusters A, B, and C) to (entero)virus inhibitors with different mechanisms of action. The 3C-protease inhibitors proved to be more efficient than enviroxime and pleconaril, which in turn were more effective than vapendavir and pirodavir. Favipiravir proved to be a weak inhibitor. Resistance to pleconaril maps to V69A in the VP1 protein, and resistance to rupintrivir maps to V104I in the 3C protease. A structural explanation of why both substitutions may cause resistance is provided.


Assuntos
Antivirais/farmacologia , Enterovirus Humano D/efeitos dos fármacos , Infecções por Enterovirus/virologia , Farmacorresistência Viral , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Oxidiazóis/farmacologia , Oxazóis , Receptores de Droga/química , Receptores de Droga/efeitos dos fármacos , Infecções Respiratórias/virologia , Proteínas Virais/química , Replicação Viral/efeitos dos fármacos
15.
J Virol ; 88(5): 3048-51, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24371067

RESUMO

Coxsackieviruses require phosphatidylinositol-4-kinase IIIß (PI4KIIIß) for replication but can bypass this need by an H57Y mutation in protein 3A (3A-H57Y). We show that mutant coxsackievirus is not outcompeted by wild-type virus during 10 passages in vitro. In mice, the mutant virus proved as virulent as wild-type virus, even when mice were treated with a PI4KIIIß inhibitor. Our data suggest that upon emergence, the 3A-H57Y mutant has the fitness to establish a resistant population with a virulence similar to that of wild-type virus.


Assuntos
1-Fosfatidilinositol 4-Quinase/metabolismo , Enterovirus/fisiologia , Aptidão Genética , Mutação , 1-Fosfatidilinositol 4-Quinase/genética , Animais , Infecções por Coxsackievirus/metabolismo , Infecções por Coxsackievirus/virologia , Enterovirus/patogenicidade , Interações Hospedeiro-Patógeno , Camundongos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Virulência/genética , Replicação Viral
16.
Med Res Rev ; 34(5): 895-917, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23722879

RESUMO

Hepatitis A virus (HAV) is a faeco-orally transmitted picornavirus and is one of the main causes of acute hepatitis worldwide. An overview of the molecular biology of HAV is presented with an emphasis on recent findings. Immune evasion strategies and a possible correlation between HAV and atopy are discussed as well. Despite the availability of efficient vaccines, antiviral drugs targeting HAV are required to treat severe cases of fulminant hepatitis, contain outbreaks, and halt the potential spread of vaccine-escape variants. Additionally, such drugs could be used to shorten the period of illness and decrease associated economical costs. Several known inhibitors of HAV with various mechanisms of action will be discussed. Since none of these molecules is readily useable in the clinic and since the availability of an anti-HAV drug would be of clinical importance, increased efforts should be targeted toward discovery and development of such antivirals.


Assuntos
Antivirais/farmacologia , Vírus da Hepatite A/efeitos dos fármacos , Antivirais/uso terapêutico , Células Cultivadas , Genoma Viral , Hepatite A/tratamento farmacológico , Vírus da Hepatite A/genética , Vírus da Hepatite A/fisiologia , Humanos , Evasão da Resposta Imune , Biossíntese de Proteínas/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Replicação Viral/efeitos dos fármacos
17.
Vaccines (Basel) ; 12(7)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39066393

RESUMO

The live-attenuated yellow fever 17D strain is a potent vaccine and viral vector. Its manufacture is based on embryonated chicken eggs or adherent Vero cells. Both processes are unsuitable for rapid and scalable supply. Here, we introduce a high-throughput workflow to identify suspension cells that are fit for the high-yield production of live YF17D-based vaccines in an intensified upstream process. The use of an automated parallel ambr15 microbioreactor system for screening and process optimization has led to the identification of two promising cell lines (AGE1.CR.pIX and HEKDyn) and the establishment of optimized production conditions, which have resulted in a >100-fold increase in virus titers compared to the current state of the art using adherent Vero cells. The process can readily be scaled up from the microbioreactor scale (15 mL) to 1 L stirred tank bioreactors. The viruses produced are genetically stable and maintain their favorable safety and immunogenicity profile, as demonstrated by the absence of neurovirulence in suckling BALB/c mice and consistent seroprotection in AG129 mice. In conclusion, the presented workflow allows for the rapid establishment of a robust, scalable, and high-yield process for the production of live-attenuated orthoflavivirus vaccines, which outperforms current standards. The approach described here can serve as a model for the development of scalable processes and the optimization of yields for other virus-based vaccines that face challenges in meeting growing demands.

18.
Nat Commun ; 15(1): 42, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168091

RESUMO

To curb viral epidemics and pandemics, antiviral drugs are needed with activity against entire genera or families of viruses. Here, we develop a cell-based multiplex antiviral assay for high-throughput screening against multiple viruses at once, as demonstrated by using three distantly related orthoflaviviruses: dengue, Japanese encephalitis and yellow fever virus. Each virus is tagged with a distinct fluorescent protein, enabling individual monitoring in cell culture through high-content imaging. Specific antisera and small-molecule inhibitors are employed to validate that multiplexing approach yields comparable inhibition profiles to single-virus infection assays. To facilitate downstream analysis, a kernel is developed to deconvolute and reduce the multidimensional quantitative data to three cartesian coordinates. The methodology is applicable to viruses from different families as exemplified by co-infections with chikungunya, parainfluenza and Bunyamwera viruses. The multiplex approach is expected to facilitate the discovery of broader-spectrum antivirals, as shown in a pilot screen of approximately 1200 drug-like small-molecules.


Assuntos
Viroses , Vírus , Humanos , Antivirais/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Técnicas de Cultura de Células , Replicação Viral
19.
Antimicrob Agents Chemother ; 57(4): 1952-6, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23335743

RESUMO

Although the genus Enterovirus contains many important human pathogens, there is no licensed drug for either the treatment or the prophylaxis of enterovirus infections. We report that fluoxetine (Prozac)--a selective serotonin reuptake inhibitor--inhibits the replication of human enterovirus B (HEV-B) and HEV-D but does not affect the replication of HEV-A and HEV-C or human rhinovirus A or B. We show that fluoxetine interferes with viral RNA replication, and we identified viral protein 2C as the target of this compound.


Assuntos
Proteínas de Transporte/metabolismo , Enterovirus Humano B/efeitos dos fármacos , Enterovirus Humano B/metabolismo , Enterovirus Humano D/efeitos dos fármacos , Enterovirus Humano D/metabolismo , Fluoxetina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Proteínas não Estruturais Virais/metabolismo , Proteínas de Transporte/genética , Enterovirus Humano B/genética , Enterovirus Humano D/genética , Proteínas não Estruturais Virais/genética
20.
NPJ Vaccines ; 8(1): 99, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433816

RESUMO

Ebola virus (EBOV) and related filoviruses such as Sudan virus (SUDV) threaten global public health. Effective filovirus vaccines are available only for EBOV, yet restricted to emergency use considering a high reactogenicity and demanding logistics. Here we present YF-EBO, a live YF17D-vectored dual-target vaccine candidate expressing EBOV glycoprotein (GP) as protective antigen. Safety of YF-EBO in mice was further improved over that of parental YF17D vaccine. A single dose of YF-EBO was sufficient to induce high levels of EBOV GP-specific antibodies and cellular immune responses, that protected against lethal infection using EBOV GP-pseudotyped recombinant vesicular stomatitis virus (rVSV-EBOV) in interferon-deficient (Ifnar-/-) mice as surrogate challenge model. Concomitantly induced yellow fever virus (YFV)-specific immunity protected Ifnar-/- mice against intracranial YFV challenge. YF-EBO could thus help to simultaneously combat both EBOV and YFV epidemics. Finally, we demonstrate how to target other highly pathogenic filoviruses such as SUDV at the root of the 2022 outbreak in Uganda.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa