Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 111(4): 778-790, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38531365

RESUMO

Selenophosphate synthetase (SEPHS) plays an essential role in selenium metabolism. Two mammalian SEPHS paralogues, SEPHS1 and SEPHS2, share high sequence identity and structural homology with SEPHS. Here, we report nine individuals from eight families with developmental delay, growth and feeding problems, hypotonia, and dysmorphic features, all with heterozygous missense variants in SEPHS1. Eight of these individuals had a recurrent variant at amino acid position 371 of SEPHS1 (p.Arg371Trp, p.Arg371Gln, and p.Arg371Gly); seven of these variants were known to be de novo. Structural modeling and biochemical assays were used to understand the effect of these variants on SEPHS1 function. We found that a variant at residue Trp352 results in local structural changes of the C-terminal region of SEPHS1 that decrease the overall thermal stability of the enzyme. In contrast, variants of a solvent-exposed residue Arg371 do not impact enzyme stability and folding but could modulate direct protein-protein interactions of SEPSH1 with cellular factors in promoting cell proliferation and development. In neuronal SH-SY5Y cells, we assessed the impact of SEPHS1 variants on cell proliferation and ROS production and investigated the mRNA expression levels of genes encoding stress-related selenoproteins. Our findings provided evidence that the identified SEPHS1 variants enhance cell proliferation by modulating ROS homeostasis. Our study supports the hypothesis that SEPHS1 plays a critical role during human development and provides a basis for further investigation into the molecular mechanisms employed by SEPHS1. Furthermore, our data suggest that variants in SEPHS1 are associated with a neurodevelopmental disorder.


Assuntos
Deficiência Intelectual , Anormalidades Musculoesqueléticas , Transtornos do Neurodesenvolvimento , Animais , Criança , Humanos , Deficiências do Desenvolvimento/genética , Éxons , Deficiência Intelectual/genética , Mamíferos/genética , Hipotonia Muscular/genética , Anormalidades Musculoesqueléticas/genética , Neuroblastoma/genética , Transtornos do Neurodesenvolvimento/genética , Espécies Reativas de Oxigênio
2.
Am J Hum Genet ; 110(11): 1959-1975, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37883978

RESUMO

Valosin-containing protein (VCP) is an AAA+ ATPase that plays critical roles in multiple ubiquitin-dependent cellular processes. Dominant pathogenic variants in VCP are associated with adult-onset multisystem proteinopathy (MSP), which manifests as myopathy, bone disease, dementia, and/or motor neuron disease. Through GeneMatcher, we identified 13 unrelated individuals who harbor heterozygous VCP variants (12 de novo and 1 inherited) associated with a childhood-onset disorder characterized by developmental delay, intellectual disability, hypotonia, and macrocephaly. Trio exome sequencing or a multigene panel identified nine missense variants, two in-frame deletions, one frameshift, and one splicing variant. We performed in vitro functional studies and in silico modeling to investigate the impact of these variants on protein function. In contrast to MSP variants, most missense variants had decreased ATPase activity, and one caused hyperactivation. Other variants were predicted to cause haploinsufficiency, suggesting a loss-of-function mechanism. This cohort expands the spectrum of VCP-related disease to include neurodevelopmental disease presenting in childhood.


Assuntos
Doenças Musculares , Transtornos do Neurodesenvolvimento , Adulto , Humanos , Proteína com Valosina/genética , Hipotonia Muscular , Mutação de Sentido Incorreto/genética
3.
Am J Hum Genet ; 108(8): 1436-1449, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34216551

RESUMO

Despite widespread clinical genetic testing, many individuals with suspected genetic conditions lack a precise diagnosis, limiting their opportunity to take advantage of state-of-the-art treatments. In some cases, testing reveals difficult-to-evaluate structural differences, candidate variants that do not fully explain the phenotype, single pathogenic variants in recessive disorders, or no variants in genes of interest. Thus, there is a need for better tools to identify a precise genetic diagnosis in individuals when conventional testing approaches have been exhausted. We performed targeted long-read sequencing (T-LRS) using adaptive sampling on the Oxford Nanopore platform on 40 individuals, 10 of whom lacked a complete molecular diagnosis. We computationally targeted up to 151 Mbp of sequence per individual and searched for pathogenic substitutions, structural variants, and methylation differences using a single data source. We detected all genomic aberrations-including single-nucleotide variants, copy number changes, repeat expansions, and methylation differences-identified by prior clinical testing. In 8/8 individuals with complex structural rearrangements, T-LRS enabled more precise resolution of the mutation, leading to changes in clinical management in one case. In ten individuals with suspected Mendelian conditions lacking a precise genetic diagnosis, T-LRS identified pathogenic or likely pathogenic variants in six and variants of uncertain significance in two others. T-LRS accurately identifies pathogenic structural variants, resolves complex rearrangements, and identifies Mendelian variants not detected by other technologies. T-LRS represents an efficient and cost-effective strategy to evaluate high-priority genes and regions or complex clinical testing results.


Assuntos
Aberrações Cromossômicas , Análise Citogenética/métodos , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Predisposição Genética para Doença , Genoma Humano , Mutação , Variações do Número de Cópias de DNA , Feminino , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Cariotipagem , Masculino , Análise de Sequência de DNA
4.
Mol Genet Metab ; 142(4): 108509, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38959600

RESUMO

OBJECTIVE: Our report describes clinical, genetic, and biochemical features of participants with a molecularly confirmed congenital disorder of glycosylation (CDG) enrolled in the Frontiers in Congenital Disorders of Glycosylation (FCDGC) Natural History cohort at year 5 of the study. METHODS: We enrolled individuals with a known or suspected CDG into the FCDGC Natural History Study, a multicenter prospective and retrospective natural history study of all genetic causes of CDG. We conducted a cross-sectional analysis of baseline study visit data from participants with confirmed CDG who were consented into the FCDGC Natural History Study (5U54NS115198) from October 2019 to November 2023. RESULTS: Three hundred thirty-three subjects consented to the FCDGC Natural History Study. Of these, 280 unique individuals had genetic data available that was consistent with a diagnosis of CDG. These 280 individuals were enrolled into the study between October 8, 2019 and November 29, 2023. One hundred forty-one (50.4%) were female, and 139 (49.6%) were male. Mean and median age at enrollment was 10.1 and 6.5 years, respectively, with a range of 0.22 to 71.4 years. The cohort encompassed individuals with disorders of N-linked protein glycosylation (57%), glycosylphosphatidylinositol anchor disorder (GPI anchor) (15%), disorders of Golgi homeostasis, trafficking and transport (12%), dolichol metabolism disorders (5%), disorders of multiple pathways (6%), and other (5%). The most frequent presenting symptom(s) leading to diagnosis were developmental delay/disability (77%), followed by hypotonia (56%) and feeding difficulties (42%). Mean and median time between first related symptom and diagnosis was 2.7 and 0.8 years, respectively. One hundred percent of individuals in our cohort had developmental differences/disabilities at the time of their baseline visit, followed by 97% with neurologic involvement, 91% with gastrointestinal (GI)/liver involvement, and 88% with musculoskeletal involvement. Severity of disease in individuals was scored on the Nijmegen Progression CDG Rating Scale (NPCRS) with 27% of scores categorized as mild, 44% moderate, and 29% severe. Of the individuals with N-linked protein glycosylation defects, 83% of those with data showed a type 1 pattern on carbohydrate deficient transferrin (CDT) analysis including 82/84 individuals with PMM2-CDG, 6% a type 2 pattern, 1% both type 1 and type 2 pattern and 10% a normal or nonspecific pattern. One hundred percent of individuals with Golgi homeostasis and trafficking defects with data showed a type 2 pattern on CDT analysis, while Golgi transport defect showed a type II pattern 73% of the time, a type 1 pattern for 7%, and 20% had a normal or nonspecific pattern. Most of the variants documented were classified as pathogenic or likely pathogenic using ACMG criteria. For the majority of the variants, the predicted molecular consequence was missense followed by nonsense and splice site, and the majority of the diagnoses are inherited in an autosomal recessive pattern but with disorders of all major nuclear inheritance included. DISCUSSION: The FCDGC Natural History Study serves as an important resource to build future research studies, improve clinical care, and prepare for clinical trial readiness. Herein is the first overview of CDG participants of the FCDGC Natural History Study.


Assuntos
Defeitos Congênitos da Glicosilação , Humanos , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/patologia , Masculino , Feminino , Estudos Transversais , Criança , Pré-Escolar , Adolescente , Glicosilação , Adulto , Estudos Retrospectivos , Lactente , Adulto Jovem , Estudos Prospectivos , Estudos de Coortes
5.
Epilepsia ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953796

RESUMO

OBJECTIVE: DYNC1H1 variants are involved on a disease spectrum from neuromuscular disorders to neurodevelopmental disorders. DYNC1H1-related epilepsy has been reported in small cohorts. We dissect the electroclinical features of 34 patients harboring de novo DYNC1H1 pathogenic variants, identify subphenotypes on the DYNC1H1-related epilepsy spectrum, and compare the genotype-phenotype correlations observed in our cohort with the literature. METHODS: Patients harboring de novo DYNC1H1 pathogenic variants were recruited through international collaborations. Clinical data were retrospectively collected. Latent class analysis was performed to identify subphenotypes. Multivariable binary logistic regression analysis was applied to investigate the association with DYNC1H1 protein domains. RESULTS: DYNC1H1-related epilepsy presented with infantile epileptic spasms syndrome (IESS) in 17 subjects (50%), and in 25% of these individuals the epileptic phenotype evolved into Lennox-Gastaut syndrome (LGS). In 12 patients (35%), focal onset epilepsy was defined. In two patients, the epileptic phenotype consisted of generalized myoclonic epilepsy, with a progressive phenotype in one individual harboring a frameshift variant. In approximately 60% of our cohort, seizures were drug-resistant. Malformations of cortical development were noticed in 79% of our patients, mostly on the lissencephaly-pachygyria spectrum, particularly with posterior predominance in a half of them. Midline and infratentorial abnormalities were additionally reported in 45% and 27% of subjects. We have identified three main classes of subphenotypes on the DYNC1H1-related epilepsy spectrum. SIGNIFICANCE: We propose a classification in which pathogenic de novo DYNC1H1 variants feature drug-resistant IESS in half of cases with potential evolution to LGS (Class 1), developmental and epileptic encephalopathy other than IESS and LGS (Class 2), or less severe focal or genetic generalized epilepsy including a progressive phenotype (Class 3). We observed an association between stalk domain variants and Class 1 phenotypes. The variants p.Arg309His and p.Arg1962His were common and associated with Class 1 subphenotype in our cohort. These findings may aid genetic counseling of patients with DYNC1H1-related epilepsy.

6.
J Inherit Metab Dis ; 46(2): 300-312, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36651831

RESUMO

ATP6AP1-CDG is an X-linked disorder typically characterized by hepatopathy, immunodeficiency, and an abnormal type II transferrin glycosylation pattern. Here, we present 11 new patients and clinical updates with biochemical characterization on one previously reported patient. We also document intrafamilial phenotypic variability and atypical presentations, expanding the symptomatology of ATP6AP1-CDG to include dystonia, hepatocellular carcinoma, and lysosomal abnormalities on hepatic histology. Three of our subjects received successful liver transplantation. We performed N-glycan profiling of total and fractionated plasma proteins for six patients and show associations with varying phenotypes, demonstrating potential diagnostic and prognostic value of fractionated N-glycan profiles. The aberrant N-linked glycosylation in purified transferrin and remaining plasma glycoprotein fractions normalized in one patient post hepatic transplant, while the increases of Man4GlcNAc2 and Man5GlcNAc2 in purified immunoglobulins persisted. Interestingly, in the single patient with isolated immune deficiency phenotype, elevated high-mannose glycans were detected on purified immunoglobulins without glycosylation abnormalities on transferrin or the remaining plasma glycoprotein fractions. Given the diverse and often tissue specific clinical presentations and the need of clinical management post hepatic transplant in ATP6AP1-CDG patients, these results demonstrate that fractionated plasma N-glycan profiling could be a valuable tool in diagnosis and disease monitoring.


Assuntos
Defeitos Congênitos da Glicosilação , ATPases Vacuolares Próton-Translocadoras , Humanos , Defeitos Congênitos da Glicosilação/genética , Glicoproteínas/metabolismo , Transferrina/metabolismo , Fenótipo , Polissacarídeos , Hidrolases/genética , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética
8.
Genet Med ; 24(4): 880-893, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35101335

RESUMO

PURPOSE: Synaptotagmin-1 (SYT1) is a critical mediator of neurotransmitter release in the central nervous system. Previously reported missense SYT1 variants in the C2B domain are associated with severe intellectual disability, movement disorders, behavioral disturbances, and electroencephalogram abnormalities. In this study, we expand the genotypes and phenotypes and identify discriminating features of this disorder. METHODS: We describe 22 individuals with 15 de novo missense SYT1 variants. The evidence for pathogenicity is discussed, including the American College of Medical Genetics and Genomics/Association for Molecular Pathology criteria, known structure-function relationships, and molecular dynamics simulations. Quantitative behavioral data for 14 cases were compared with other monogenic neurodevelopmental disorders. RESULTS: Four variants were located in the C2A domain with the remainder in the C2B domain. We classified 6 variants as pathogenic, 4 as likely pathogenic, and 5 as variants of uncertain significance. Prevalent clinical phenotypes included delayed developmental milestones, abnormal eye physiology, movement disorders, and sleep disturbances. Discriminating behavioral characteristics were severity of motor and communication impairment, presence of motor stereotypies, and mood instability. CONCLUSION: Neurodevelopmental disorder-associated SYT1 variants extend beyond previously reported regions, and the phenotypic spectrum encompasses a broader range of severities than initially reported. This study guides the diagnosis and molecular understanding of this rare neurodevelopmental disorder and highlights a key role for SYT1 function in emotional regulation, motor control, and emergent cognitive function.


Assuntos
Deficiência Intelectual , Transtornos dos Movimentos , Transtornos do Neurodesenvolvimento , Sinaptotagmina I , Cálcio/metabolismo , Genótipo , Humanos , Deficiência Intelectual/genética , Transtornos dos Movimentos/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Sinaptotagmina I/genética
9.
Mol Genet Metab ; 136(4): 296-305, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35787971

RESUMO

PURPOSE: Current newborn screening programs for Pompe disease (PD) and mucopolysaccharidosis type I (MPS I) suffer from a high false positive rate and long turnaround time for clinical follow up. This study aimed to develop a novel proteomics-based assay for rapid and accurate second-tier screening of PD and MPS I. A fast turnaround assay would enable the identification of severe cases who need immediate clinical follow up and treatment. METHODS: We developed an immunocapture coupled with mass spectrometry-based proteomics (Immuno-SRM) assay to quantify GAA and IDUA proteins in dried blood spots (DBS) and buccal swabs. Sensitivity, linearity, reproducibility, and protein concentration range in healthy control samples were determined. Clinical performance was evaluated in known PD and MPS I patients as well as pseudodeficiency and carrier cases. RESULTS: Using three 3.2 mm punches (~13.1 µL of blood) of DBS, the assay showed reproducible and sensitive quantification of GAA and IDUA. Both proteins can also be quantified in buccal swabs with high reproducibility and sensitivity. Infantile onset Pompe disease (IOPD) and severe MPS I cases are readily identifiable due to the absence of GAA and IDUA, respectively. In addition, late onset Pompe disease (LOPD) and attenuated MPS I patients showed much reduced levels of the target protein. By contrast, pseudodeficiency and carrier cases exhibited significant higher target protein levels compared to true patients. CONCLUSION: Direct quantification of endogenous GAA and IDUA peptides in DBS by Immuno-SRM can be used for second-tier screening to rapidly identify severe PD and MPS I patients with a turnaround time of <1 week. Such patients could benefit from immediate clinical follow up and possibly earlier treatment.


Assuntos
Doença de Depósito de Glicogênio Tipo II , Mucopolissacaridose I , Doença de Depósito de Glicogênio Tipo II/diagnóstico , Humanos , Recém-Nascido , Mucopolissacaridose I/diagnóstico , Triagem Neonatal , Proteômica , Reprodutibilidade dos Testes
10.
Genet Med ; 23(9): 1604-1615, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34040193

RESUMO

PURPOSE: Prolidase deficiency is a rare inborn error of metabolism causing ulcers and other skin disorders, splenomegaly, developmental delay, and recurrent infections. Most of the literature is constituted of isolated case reports. We aim to provide a quantitative description of the natural history of the condition by describing 19 affected individuals and reviewing the literature. METHODS: Nineteen patients were phenotyped per local institutional procedures. A systematic review following PRISMA criteria identified 132 articles describing 161 patients. Main outcome analyses were performed for manifestation frequency, diagnostic delay, overall survival, symptom-free survival, and ulcer-free survival. RESULTS: Our cohort presented a wide variability of severity. Autoimmune disorders were found in 6/19, including Crohn disease, systemic lupus erythematosus, and arthritis. Another immune finding was hemophagocytic lymphohistiocytosis (HLH). Half of published patients were symptomatic by age 4 and had a delayed diagnosis (mean delay 11.6 years). Ulcers were present initially in only 30% of cases, with a median age of onset at 12 years old. CONCLUSION: Prolidase deficiency has a broad range of manifestations. Symptoms at onset may be nonspecific, likely contributing to the diagnostic delay. Testing for this disorder should be considered in any child with unexplained autoimmunity, lower extremity ulcers, splenomegaly, or HLH.


Assuntos
Doença de Crohn , Úlcera da Perna , Deficiência de Prolidase , Criança , Pré-Escolar , Diagnóstico Tardio , Humanos , Fenótipo , Deficiência de Prolidase/diagnóstico , Deficiência de Prolidase/genética
11.
Genet Med ; 23(10): 1933-1943, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34172899

RESUMO

PURPOSE: Pathogenic variants in Lysyl-tRNA synthetase 1 (KARS1) have increasingly been recognized as a cause of early-onset complex neurological phenotypes. To advance the timely diagnosis of KARS1-related disorders, we sought to delineate its phenotype and generate a disease model to understand its function in vivo. METHODS: Through international collaboration, we identified 22 affected individuals from 16 unrelated families harboring biallelic likely pathogenic or pathogenic in KARS1 variants. Sequencing approaches ranged from disease-specific panels to genome sequencing. We generated loss-of-function alleles in zebrafish. RESULTS: We identify ten new and four known biallelic missense variants in KARS1 presenting with a moderate-to-severe developmental delay, progressive neurological and neurosensory abnormalities, and variable white matter involvement. We describe novel KARS1-associated signs such as autism, hyperactive behavior, pontine hypoplasia, and cerebellar atrophy with prevalent vermian involvement. Loss of kars1 leads to upregulation of p53, tissue-specific apoptosis, and downregulation of neurodevelopmental related genes, recapitulating key tissue-specific disease phenotypes of patients. Inhibition of p53 rescued several defects of kars1-/- knockouts. CONCLUSION: Our work delineates the clinical spectrum associated with KARS1 defects and provides a novel animal model for KARS1-related human diseases revealing p53 signaling components as potential therapeutic targets.


Assuntos
Perda Auditiva , Lisina-tRNA Ligase/genética , Transtornos do Neurodesenvolvimento , Alelos , Animais , Modelos Animais de Doenças , Perda Auditiva/genética , Humanos , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Peixe-Zebra/genética
12.
Genet Med ; 23(11): 2122-2137, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34345025

RESUMO

PURPOSE: Pathogenic variants in SETD1B have been associated with a syndromic neurodevelopmental disorder including intellectual disability, language delay, and seizures. To date, clinical features have been described for 11 patients with (likely) pathogenic SETD1B sequence variants. This study aims to further delineate the spectrum of the SETD1B-related syndrome based on characterizing an expanded patient cohort. METHODS: We perform an in-depth clinical characterization of a cohort of 36 unpublished individuals with SETD1B sequence variants, describing their molecular and phenotypic spectrum. Selected variants were functionally tested using in vitro and genome-wide methylation assays. RESULTS: Our data present evidence for a loss-of-function mechanism of SETD1B variants, resulting in a core clinical phenotype of global developmental delay, language delay including regression, intellectual disability, autism and other behavioral issues, and variable epilepsy phenotypes. Developmental delay appeared to precede seizure onset, suggesting SETD1B dysfunction impacts physiological neurodevelopment even in the absence of epileptic activity. Males are significantly overrepresented and more severely affected, and we speculate that sex-linked traits could affect susceptibility to penetrance and the clinical spectrum of SETD1B variants. CONCLUSION: Insights from this extensive cohort will facilitate the counseling regarding the molecular and phenotypic landscape of newly diagnosed patients with the SETD1B-related syndrome.


Assuntos
Epilepsia , Histona-Lisina N-Metiltransferase , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Epilepsia/diagnóstico , Epilepsia/genética , Histona-Lisina N-Metiltransferase/genética , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Masculino , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Convulsões/diagnóstico , Convulsões/genética
13.
Am J Med Genet A ; 185(3): 827-835, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33296147

RESUMO

CHRNB1 encodes the ß subunit of the acetylcholine receptor (AChR) at the neuromuscular junction. Inherited defects in the neuromuscular junction can lead to congenital myasthenia syndrome (CMS), a clinically and genetically heterogeneous group of disorders which includes fetal akinesia deformation sequence (FADS) on the severe end of the spectrum. Here, we report two unrelated families with biallelic CHRNB1 variants, and in each family, one child presented with lethal FADS. We contrast the diagnostic odysseys in the two families, one of which lasted 16 years while the other, utilizing rapid exome sequencing, led to specific treatment in the first 2 weeks of life. Furthermore, we note that CHRNB1 variants may be under-recognized because in both families, one of the variants is a single exon deletion that has been previously described but may not easily be detected in clinically available genetic testing.


Assuntos
Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Mutação , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/patologia , Receptores Nicotínicos/genética , Adulto , Feminino , Humanos , Recém-Nascido , Masculino , Linhagem , Prognóstico , Estudos Retrospectivos
14.
Am J Med Genet A ; 185(1): 213-218, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33044030

RESUMO

Glycosylation is a critical post/peri-translational modification required for the appropriate development and function of the immune system. As an example, abnormalities in glycosylation can cause antibody deficiency and reduced lymphocyte signaling, although the phenotype can be complex given the diverse roles of glycosylation. Human MGAT2 encodes N-acetylglucosaminyltransferase II, which is a critical enzyme in the processing of oligomannose to complex N-glycans. Complex N-glycans are essential for immune system functionality, but only one individual with MGAT2-CDG has been described to have an abnormal immunologic evaluation. MGAT2-CDG (CDG-IIa) is a congenital disorder of glycosylation (CDG) associated with profound global developmental disability, hypotonia, early onset epilepsy, and other multisystem manifestations. Here, we report a 4-year old female with MGAT2-CDG due to a novel homozygous pathogenic variant in MGAT2, a 4-base pair deletion, c.1006_1009delGACA. In addition to clinical features previously described in MGAT2-CDG, she experienced episodic asystole, persistent hypogammaglobulinemia, and defective ex vivo mitogen and antigen proliferative responses, but intact specific vaccine antibody titers. Her infection history has been mild despite the testing abnormalities. We compare this patient to the 15 previously reported patients in the literature, thus expanding both the genotypic and phenotypic spectrum for MGAT2-CDG.


Assuntos
Arritmias Cardíacas/genética , Defeitos Congênitos da Glicosilação/genética , Doenças do Sistema Imunitário/genética , N-Acetilglucosaminiltransferases/genética , Arritmias Cardíacas/complicações , Arritmias Cardíacas/imunologia , Arritmias Cardíacas/patologia , Pré-Escolar , Defeitos Congênitos da Glicosilação/complicações , Defeitos Congênitos da Glicosilação/imunologia , Defeitos Congênitos da Glicosilação/patologia , Feminino , Glicosilação , Homozigoto , Humanos , Doenças do Sistema Imunitário/complicações , Doenças do Sistema Imunitário/imunologia , Doenças do Sistema Imunitário/patologia , Mutação/genética , N-Acetilglucosaminiltransferases/imunologia , Fenótipo
15.
Clin Chem ; 66(1): 199-206, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32609854

RESUMO

BACKGROUND: Exome sequencing has become a commonly used clinical diagnostic test. Multiple studies have examined the diagnostic utility and individual laboratory performance of exome testing; however, no previous study has surveyed and compared the data quality from multiple clinical laboratories. METHODS: We examined sequencing data from 36 clinical exome tests from 3 clinical laboratories. Exome data were compared in terms of overall characteristics and coverage of specific genes and nucleotide positions. The sets of genes examined included genes in Consensus Coding Sequence (CCDS) (n = 17723), a subset of genes clinically relevant to epilepsy (n = 108), and genes that are recommended for reporting of secondary findings (n = 57; excludes X-linked genes). RESULTS: The average exome nucleotide coverage (≥20×) of each laboratory varied at 96.49% (CV = 3%), 96.54% (CV = 1%), and 91.68% (CV = 4%), for laboratories A, B, and C, respectively. For CCDS genes, the average number of completely covered genes varied at 12184 (CV = 29%), 11687 (CV = 13%), and 5989 (CV = 37%), for laboratories A, B, and C, respectively. With smaller subsets of genes related to epilepsy and secondary findings, the CV revealed low consistency, with a maximum CV seen in laboratory C for both epilepsy genes (CV = 60%) and secondary findings genes (CV = 71%). CONCLUSIONS: Poor consistency in complete gene coverage was seen in the clinical exome laboratories surveyed. The degree of consistency varied widely between the laboratories.


Assuntos
Exoma/genética , Proteína BRCA1/genética , Epilepsia/genética , Epilepsia/patologia , Éxons , Guias como Assunto , Humanos , Laboratórios Hospitalares/normas , Proteína 1 Homóloga a MutL/genética , Sequenciamento do Exoma
16.
J Pediatr ; 226: 202-212.e1, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32553838

RESUMO

OBJECTIVES: To evaluate the clinical usefulness of rapid exome sequencing (rES) in critically ill children with likely genetic disease using a standardized process at a single institution. To provide evidence that rES with should become standard of care for this patient population. STUDY DESIGN: We implemented a process to provide clinical-grade rES to eligible children at a single institution. Eligibility included (a) recommendation of rES by a consulting geneticist, (b) monogenic disorder suspected, (c) rapid diagnosis predicted to affect inpatient management, (d) pretest counseling provided by an appropriate provider, and (e) unanimous approval by a committee of 4 geneticists. Trio exome sequencing was sent to a reference laboratory that provided verbal report within 7-10 days. Clinical outcomes related to rES were prospectively collected. Input from geneticists, genetic counselors, pathologists, neonatologists, and critical care pediatricians was collected to identify changes in management related to rES. RESULTS: There were 54 patients who were eligible for rES over a 34-month study period. Of these patients, 46 underwent rES, 24 of whom (52%) had at least 1 change in management related to rES. In 20 patients (43%), a molecular diagnosis was achieved, demonstrating that nondiagnostic exomes could change medical management in some cases. Overall, 84% of patients were under 1 month old at rES request and the mean turnaround time was 9 days. CONCLUSIONS: rES testing has a significant impact on the management of critically ill children with suspected monogenic disease and should be considered standard of care for tertiary institutions who can provide coordinated genetics expertise.


Assuntos
Sequenciamento do Exoma , Doenças Genéticas Inatas/diagnóstico , Testes Genéticos , Adolescente , Criança , Pré-Escolar , Cuidados Críticos , Estado Terminal , Feminino , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/terapia , Humanos , Lactente , Recém-Nascido , Masculino , Seleção de Pacientes , Estudos Retrospectivos
18.
Genet Med ; 21(3): 601-607, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30245509

RESUMO

PURPOSE: TANGO2-related disorders were first described in 2016 and prior to this publication, only 15 individuals with TANGO2-related disorder were described in the literature. Primary features include metabolic crisis with rhabdomyolysis, encephalopathy, intellectual disability, seizures, and cardiac arrhythmias. We assess whether genotype and phenotype of TANGO2-related disorder has expanded since the initial discovery and determine the efficacy of exome sequencing (ES) as a diagnostic tool for detecting variants. METHODS: We present a series of 14 individuals from 11 unrelated families with complex medical and developmental histories, in whom ES or microarray identified compound heterozygous or homozygous variants in TANGO2. RESULTS: The initial presentation of patients with TANGO2-related disorders can be variable, including primarily neurological presentations. We expand the phenotype and genotype for TANGO2, highlighting the variability of the disorder. CONCLUSION: TANGO2-related disorders can have a more diverse clinical presentation than previously anticipated. We illustrate the utility of routine ES data reanalysis whereby discovery of novel disease genes can lead to a diagnosis in previously unsolved cases and the need for additional copy-number variation analysis when ES is performed.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Adolescente , Translocador Nuclear Receptor Aril Hidrocarboneto/fisiologia , Encefalopatias/genética , Criança , Pré-Escolar , Variações do Número de Cópias de DNA/genética , Deficiências do Desenvolvimento/genética , Exoma , Família , Feminino , Genótipo , Humanos , Deficiência Intelectual/genética , Masculino , Linhagem , Fenótipo , Convulsões/genética , Sequenciamento do Exoma/métodos
19.
Am J Med Genet A ; 179(11): 2228-2232, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31321892

RESUMO

Primrose syndrome (PRIMS), a rare genetic disorder with several clinical findings including intellectual disability, macrocephaly, typical facial features, and muscle wasting, is caused by heterozygous variants in the ZBTB20 gene. We report the cases of two males diagnosed with PRIMS at different ages, emphasizing the likely progressive nature of the disorder, as well as the differences and similarities of presentation during infancy and adulthood. Patient 1 is a 2-year-old American male with a medical history marked by impaired hearing, developmental delays, and fainting spells. Patient 2 is a 28-year-old Brazilian male, who presents with a phenotype similar to that seen in Patient 1 with additional features of ectopic calcifications and prominent muscular and skeletal abnormalities. Additionally, Patient 2 has a history of fainting spells and diminished body height and weight, with the latter features having only been reported in one PRIMS patient so far. Both Patients 1 and 2 were found to carry heterozygous likely pathogenic missense variants, detected in the last coding exon of ZBTB20 (c.1822T>C, p.Cys608Arg, de novo, and c.1873A>G, p.Met625Val, respectively), consistent with PRIMS. Overall, these case reports highlight PRIMS's likely progressive nature and contribute to the understanding of the natural history of this condition.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Calcinose/diagnóstico , Calcinose/genética , Otopatias/diagnóstico , Otopatias/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Atrofia Muscular/diagnóstico , Atrofia Muscular/genética , Mutação , Proteínas do Tecido Nervoso/genética , Fenótipo , Fatores de Transcrição/genética , Humanos , Lactente , Masculino
20.
J Genet Couns ; 28(2): 283-291, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30964580

RESUMO

Exome sequencing (ES) has revolutionized molecular diagnosis in children with genetic disease over the past decade. However, exome sequencing in the inpatient setting has traditionally been discouraged, in part due to an increased risk of providers failing to retrieve and act upon results, as many patients are discharged before results return. The development of rapid turn-around-times (TATs) for genomic testing has begun to shift this paradigm. Rapid exome sequencing (rES) is increasingly being used as a diagnostic tool for critically ill infants with likely genetic disease and presents significant challenges to execute. We implemented a program, entitled the Rapid Inpatient Genomic Testing (RIGhT) project, to identify critically ill children for whom a molecular diagnosis is likely to change inpatient management. Two important goals of the RIGhT project were to provide appropriate genetic counseling, and to develop protocols to ensure efficient test coordination- both of which relied heavily on laboratory and clinic-based genetic counselors (GCs). Here, rES was performed on 27 inpatient trios from October 2016 to August 2018; laboratory and clinical GCs encountered significant challenges in the coordination of this testing. The GCs involved retrospectively reviewed these cases and identified three common challenges encountered during pretest counseling and coordination. The aim of this paper is to define these challenges using illustrative case examples that highlight the importance of including GCs to support rES programs.


Assuntos
Conselheiros , Sequenciamento do Exoma , Aconselhamento Genético , Testes Genéticos , Unidades de Terapia Intensiva Pediátrica , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa