Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
BMC Genomics ; 18(1): 533, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28716048

RESUMO

BACKGROUND: The ubiquitin 26S proteasome system (UPS) selectively degrades cellular proteins, which results in physiological changes to eukaryotic cells. F-box proteins are substrate adaptors within the UPS and are responsible for the diversity of potential protein targets. Plant genomes are enriched in F-box genes, but the vast majority of these have unknown roles. This work investigated the Arabidopsis F-box gene F-BOX STRESS INDUCED 1 (FBS1) for its effects on gene expression in order elucidate its previously unknown biological function. RESULTS: Using publically available Affymetrix ATH1 microarray data, we show that FBS1 is significantly co-expressed in abiotic stresses with other well-characterized stress response genes, including important stress-related transcriptional regulators. This gene suite is most highly expressed in roots under cold and salt stresses. Transcriptome analysis of fbs1-1 knock-out plants grown at a chilling temperature shows that hundreds of genes require FBS1 for appropriate expression, and that these genes are enriched in those having roles in both abiotic and biotic stress responses. Based on both this genome-wide expression data set and quantitative real-time PCR (qPCR) analysis, it is apparent that FBS1 is required for elevated expression of many jasmonic acid (JA) genes that have established roles in combatting environmental stresses, and that it also controls a subset of JA biosynthesis genes. FBS1 also significantly impacts abscisic acid (ABA) regulated genes, but this interaction is more complex, as FBS1 has both positive and negative effects on ABA-inducible and ABA-repressible gene modules. One noteworthy effect of FBS1 on ABA-related stress processes, however, is the restraint it imposes on the expression of multiple class I LIPID TRANSFER PROTEIN (LTP) gene family members that have demonstrated protective effects in water deficit-related stresses. CONCLUSION: FBS1 impacts plant stress responses by regulating hundreds of genes that respond to the plant stress hormones JA and ABA. The positive effect that FBS1 has on JA processes and the negative effect it has on at least some ABA processes indicates that it in part regulates cellular responses balanced between these two important stress hormones. More broadly then, FBS1 may aid plant cells in switching between certain biotic (JA) and abiotic (ABA) stress responses. Finally, because FBS1 regulates a subset of JA biosynthesis and response genes, we conclude that it might have a role in tuning hormone responses to particular circumstances at the transcriptional level.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Ciclopentanos/metabolismo , Perfilação da Expressão Gênica , Proteínas de Choque Térmico/genética , Oxilipinas/metabolismo , Estresse Fisiológico/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Temperatura Baixa , Proteínas de Choque Térmico/metabolismo
2.
J Exp Bot ; 65(4): 1141-51, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24574484

RESUMO

Warm temperature promotes flowering in Arabidopsis thaliana and this response involves multiple signalling pathways. To understand the temporal dynamics of temperature perception, tests were carried out to determine if there was a daily window of enhanced sensitivity to warm temperature (28 °C). Warm temperature applied during daytime, night-time, or continuously elicited earlier flowering, but the effects of each treatment were unequal. Plants exposed to warm night (WN) conditions flowered nearly as early as those in constant warm (CW) conditions, while treatment with warm days (WD) caused later flowering than either WN or CW. Flowering in each condition relied to varying degrees on the activity of CO , FT , PIF4 , and PIF5 , as well as the action of unknown genes. The combination of signalling pathways involved in flowering depended on the time of the temperature cue. WN treatments caused a significant advance in the rhythmic expression waveform of CO, which correlated with pronounced up-regulation of FT expression, while WD caused limited changes in CO expression and no stimulation of FT expression. WN- and WD-induced flowering was partially CO independent and, unexpectedly, dependent on PIF4 and PIF5 . pif4-2, pif5-3, and pif4-2 pif5-3 mutants had delayed flowering under all three warm conditions. The double mutant was also late flowering in control conditions. In addition, WN conditions alone imposed selective changes to PIF4 and PIF5 expression. Thus, the PIF4 and PIF5 transcription factors promote flowering by at least two means: inducing FT expression in WN and acting outside of FT by an unknown mechanism in WD.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica de Plantas , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Relógios Circadianos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Flores/efeitos da radiação , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/fisiologia , Hipocótilo/efeitos da radiação , Luz , Mutação , Fotoperíodo , Plantas Geneticamente Modificadas , Transdução de Sinais , Temperatura , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima
3.
Nature ; 448(7154): 661-5, 2007 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-17637677

RESUMO

Jasmonate and related signalling compounds have a crucial role in both host immunity and development in plants, but the molecular details of the signalling mechanism are poorly understood. Here we identify members of the jasmonate ZIM-domain (JAZ) protein family as key regulators of jasmonate signalling. JAZ1 protein acts to repress transcription of jasmonate-responsive genes. Jasmonate treatment causes JAZ1 degradation and this degradation is dependent on activities of the SCF(COI1) ubiquitin ligase and the 26S proteasome. Furthermore, the jasmonoyl-isoleucine (JA-Ile) conjugate, but not other jasmonate-derivatives such as jasmonate, 12-oxo-phytodienoic acid, or methyl-jasmonate, promotes physical interaction between COI1 and JAZ1 proteins in the absence of other plant proteins. Our results suggest a model in which jasmonate ligands promote the binding of the SCF(COI1) ubiquitin ligase to and subsequent degradation of the JAZ1 repressor protein, and implicate the SCF(COI1)-JAZ1 protein complex as a site of perception of the plant hormone JA-Ile.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Ciclopentanos/farmacologia , Isoleucina/análogos & derivados , Proteínas Repressoras/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sistema Livre de Células , Genes de Plantas/genética , Glucuronidase/genética , Glucuronidase/metabolismo , Isoleucina/farmacologia , Dados de Sequência Molecular , Família Multigênica/genética , Oxilipinas , Fenótipo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Repressoras/química , Proteínas Repressoras/genética , Especificidade por Substrato
4.
Proc Natl Acad Sci U S A ; 107(7): 3257-62, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20133619

RESUMO

Circadian clocks synchronize internal processes with environmental cycles to ensure optimal timing of biological events on daily and seasonal time scales. External light and temperature cues set the core molecular oscillator to local conditions. In Arabidopsis, EARLY FLOWERING 3 (ELF3) is thought to act as an evening-specific repressor of light signals to the clock, thus serving a zeitnehmer function. Circadian rhythms were examined in completely dark-grown, or etiolated, null elf3-1 seedlings, with the clock entrained by thermocycles, to evaluate whether the elf3 mutant phenotype was light-dependent. Circadian rhythms were absent from etiolated elf3-1 seedlings after exposure to temperature cycles, and this mutant failed to exhibit classic indicators of entrainment by temperature cues, consistent with global clock dysfunction or strong perturbation of temperature signaling in this background. Warm temperature pulses failed to elicit acute induction of temperature-responsive genes in elf3-1. In fact, warm temperature-responsive genes remained in a constitutively "ON" state because of clock dysfunction and, therefore, were insensitive to temperature signals in the normal time of day-specific manner. These results show ELF3 is broadly required for circadian clock function regardless of light conditions, where ELF3 activity is needed by the core oscillator to allow progression from day to night during either light or temperature entrainment. Furthermore, robust circadian rhythms appear to be a prerequisite for etiolated seedlings to respond correctly to temperature signals.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Relógios Biológicos/genética , Ritmo Circadiano/genética , Temperatura , Fatores de Transcrição/fisiologia , Arabidopsis/crescimento & desenvolvimento , Primers do DNA/genética , Luciferases , Fotoperíodo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Plants (Basel) ; 10(10)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34686037

RESUMO

SCF-type E3 ubiquitin ligases provide specificity to numerous selective protein degradation events in plants, including those that enable survival under environmental stress. SCF complexes use F-box (FBX) proteins as interchangeable substrate adaptors to recruit protein targets for ubiquitylation. FBX proteins almost universally have structure with two domains: A conserved N-terminal F-box domain interacts with a SKP protein and connects the FBX protein to the core SCF complex, while a C-terminal domain interacts with the protein target and facilitates recruitment. The F-BOX STRESS INDUCED (FBS) subfamily of plant FBX proteins has an atypical structure, however, with a centrally located F-box domain and additional conserved regions at both the N- and C-termini. FBS proteins have been linked to environmental stress networks, but no ubiquitylation target(s) or biological function has been established for this subfamily. We have identified two WD40 repeat-like proteins in Arabidopsis that are highly conserved in plants and interact with FBS proteins, which we have named FBS INTERACTING PROTEINs (FBIPs). FBIPs interact exclusively with the N-terminus of FBS proteins, and this interaction occurs in the nucleus. FBS1 destabilizes FBIP1, consistent with FBIPs being ubiquitylation targets SCFFBS1 complexes. This work indicates that FBS proteins may function in stress-responsive nuclear events, and it identifies two WD40 repeat-like proteins as new tools with which to probe how an atypical SCF complex, SCFFBS, functions via FBX protein N-terminal interaction events.

6.
Dev Cell ; 56(17): 2501-2515.e5, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34407427

RESUMO

Plants have served as a preeminent study system for photoperiodism due to their propensity to flower in concordance with the seasons. A nearly singular focus on understanding photoperiodic flowering has prevented the discovery of other photoperiod measuring systems necessary for vegetative health. Here, we use bioinformatics to identify photoperiod-induced genes in Arabidopsis. We show that one, PP2-A13, is expressed exclusively in, and required for, plant fitness in short, winter-like photoperiods. We create a real-time photoperiod reporter, using the PP2-A13 promoter driving luciferase, and show that photoperiodic regulation is independent of the canonical CO/FT mechanism for photoperiodic flowering. We then reveal that photosynthesis combines with circadian-clock-controlled starch production to regulate cellular sucrose levels to control photoperiodic expression of PP2-A13. This work demonstrates the existence of a photoperiod measuring system housed in the metabolic network of plants that functions to control seasonal cellular health.


Assuntos
Proteínas de Arabidopsis/metabolismo , Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Fotoperíodo , Arabidopsis/metabolismo , Relógios Circadianos/fisiologia , Flores/metabolismo , Estações do Ano
7.
Plant J ; 55(6): 979-88, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18547396

RESUMO

SUMMARY: Coronatine is an important virulence factor produced by several pathovars of the bacterial pathogen Pseudomonas syringae. The structure of coronatine is similar to that of a class of plant hormones called jasmonates (JAs). An important step in JA signaling is the SCF(COI1) E3 ubiquitin ligase-dependent degradation of JAZ repressor proteins. We have recently shown that jasmonoyl isoleucine (JA-Ile) promotes physical interaction between Arabidopsis JAZ1 and COI1 (the F-box component of SCF(COI1)) proteins, and that the JA-Ile-dependent COI1-JAZ1 interaction could be reconstituted in yeast cells (i.e. in the absence of other plant proteins). Here we show that coronatine, but not its two biosynthetic precursors, also promotes interaction between Arabidopsis COI1 and multiple JAZ proteins. The C-terminal Jas motif, but not the N-terminal (NT) domain or central ZIM domain of JAZ proteins, is critical for JA-Ile/coronatine-dependent interaction with COI1. Two positively charged amino acid residues in the Jas domain were identified as essential for coronatine-dependent COI1-JAZ interactions. Mutations of these two residues did not affect the ability of JAZ1 and JAZ9 to interact with the transcription factor AtMYC2. Importantly, transgenic Arabidopsis plants expressing JAZ1 carrying these two mutations exhibited JA-insensitive phenotypes, including male sterility and enhanced resistance to P. syringae infection. These results not only suggest that coronatine and JA-Ile target the physical interaction between COI1 and the Jas domain of JAZ repressors, but also illustrate the critical role of positively charged amino acids in the Jas domain in mediating the JA-Ile/coronatine-dependent JAZ interaction with COI1.


Assuntos
Aminoácidos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Indenos/metabolismo , Proteínas Nucleares/metabolismo , Oxilipinas/metabolismo , Proteínas Repressoras/metabolismo , Motivos de Aminoácidos , Arabidopsis/genética , Arabidopsis/microbiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , DNA Complementar/genética , Proteínas F-Box/metabolismo , Genes de Plantas , Isoleucina/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Fenótipo , Doenças das Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Domínios e Motivos de Interação entre Proteínas , Infecções por Pseudomonas/genética , Pseudomonas syringae/patogenicidade , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido
8.
Plants (Basel) ; 8(8)2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31357700

RESUMO

Plants experience specific stresses at particular, but predictable, times of the day. The circadian clock is a molecular oscillator that increases plant survival by timing internal processes to optimally match these environmental challenges. Clock regulation of jasmonic acid (JA) action is important for effective defenses against fungal pathogens and generalist herbivores in multiple plant species. Endogenous JA levels are rhythmic and under clock control with peak JA abundance during the day, a time when plants are more likely to experience certain types of biotic stresses. The expression of many JA biosynthesis, signaling, and response genes is transcriptionally controlled by the clock and timed through direct connections with core clock proteins. For example, the promoter of Arabidopsis transcription factor MYC2, a master regulator for JA signaling, is directly bound by the clock evening complex (EC) to negatively affect JA processes, including leaf senescence, at the end of the day. Also, tobacco ZEITLUPE, a circadian photoreceptor, binds directly to JAZ proteins and stimulates their degradation with resulting effects on JA root-based defenses. Collectively, a model where JA processes are embedded within the circadian network at multiple levels is emerging, and these connections to the circadian network suggest multiple avenues for future research.

9.
Plant Signal Behav ; 10(3): e992707, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25738547

RESUMO

The regulatory connections between the circadian clock and hormone signaling are essential to understand, as these two regulatory processes work together to time growth processes relative to predictable environmental events. Gibberellins (GAs) are phytohormones that control many growth processes throughout all stages of the plant life cycle, including germination and flowering. An increasing number of examples demonstrate that the circadian clock directly influences GA biosynthesis and signaling. EARLY FLOWERING 3 (ELF3) participates in a tripartite transcriptional complex known as the Evening Complex (EC). In this capacity, ELF3 is fundamental to core circadian clock activity, as well as time-of-day specific regulation of genes directly responsible for growth control, namely the PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and PIF5 genes. Here we show that the GA biosynthesis inhibitor paclobutrazol substantially reduces the long hypocotyl and petiole phenotypes of Arabidopsis elf3 mutants. In addition, loss of ELF3 activity causes upregulation of the key GA biosynthesis genes GA20ox1 and GA20ox2. Moreover, GA20ox1 and GA20ox2 expression depends strongly on the redundant activities of PIF4 and PIF5. These findings indicate that the defining growth phenotypes of elf3 mutants arise from altered GA biosynthesis due to misregulation of PIF4 and PIF5. These observations agree with recent work linking increased GA production with the elongated growth phenotypes of the barley elf3 mutant. Thus, the role of the EC in regulation of GA biosynthesis and signaling in eudicots is shared with monocots and, therefore, is a highly conserved mechanism for growth control.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Relógios Circadianos/genética , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Fotoperíodo , Fatores de Transcrição/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ritmo Circadiano , Genes de Plantas , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Luz , Mutação , Fenótipo , Desenvolvimento Vegetal/genética , Reguladores de Crescimento de Plantas/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Fatores de Transcrição/metabolismo , Regulação para Cima
10.
Methods Mol Biol ; 1011: 13-23, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23615984

RESUMO

Coordination of events leading to fertilization of Arabidopsis flowers is tightly regulated, with an essential developmental cue from jasmonates (JAs). JAs coordinate stamen filament elongation, anther dehiscence, and pollen viability at stage 12 of flower development, the stage immediately prior to flower opening. Characterization of JA-biosynthesis and JA-response mutants of Arabidopsis, which usually have a complete male sterility phenotype, has contributed to the understanding of how JAs work in these reproductive processes. These mutants have also been fundamental to the identification of JA-dependent genes acting in male reproductive tissues that accomplish fertilization. The list of JA-dependent genes continues to grow, as does the necessity to characterize novel JA mutant and related transgenic plants. It is therefore instructive to place these genes and mutants in the framework of established JA responses. Here, we describe the phenotypic characterization of flowers that fail to respond to the JA signal. We also measure gene expression in male reproductive tissues of flowers with the aim of identifying their role in JA-dependent male fertility.


Assuntos
Acetatos/metabolismo , Arabidopsis/fisiologia , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Acetatos/farmacologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/farmacologia , DNA Complementar/genética , Fertilidade , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Marcadores Genéticos , Oxilipinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Pólen/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/isolamento & purificação , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/isolamento & purificação , RNA de Plantas/metabolismo , Ativação Transcricional
11.
Curr Opin Plant Biol ; 14(1): 31-7, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20943429

RESUMO

The circadian clock confers rhythms of approximately 24 hours to biological events. It elevates plant fitness by allowing plants to anticipate predictable environmental changes and organize life process to coincide with the most favorable environmental conditions. Many developmental events are circadian regulated to ensure that growth occurs at the ideal time or season relative to available resources. Circadian clock control over growth and development is often achieved through regulation of key phytohormone action. Circadian influence over the genome is widespread and the clock modulates genes involved in phytohormone synthesis and signaling, in addition to other pathways shaping growth and development. This review presents four nonmutually exclusive mechanisms by which temporal information is gleaned from the core oscillator and passed to pathways regulating plant growth and development.


Assuntos
Relógios Circadianos , Desenvolvimento Vegetal , Cromatina/metabolismo , Genes de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética
12.
Plant Physiol ; 146(3): 952-64, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18223147

RESUMO

Jasmonate (JA) and its amino acid conjugate, jasmonoyl-isoleucine (JA-Ile), play important roles in regulating plant defense responses to insect herbivores. Recent studies indicate that JA-Ile promotes the degradation of JASMONATE ZIM-domain (JAZ) transcriptional repressors through the activity of the E(3) ubiquitin-ligase SCF(COI1). Here, we investigated the regulation and function of JAZ genes during the interaction of Arabidopsis (Arabidopsis thaliana) with the generalist herbivore Spodoptera exigua. Most members of the JAZ gene family were highly expressed in response to S. exigua feeding and mechanical wounding. JAZ transcript levels increased within 5 min of mechanical tissue damage, coincident with a large (approximately 25-fold) rise in JA and JA-Ile levels. Wound-induced expression of JAZ and other CORONATINE-INSENSITIVE1 (COI1)-dependent genes was not impaired in the jar1-1 mutant that is partially deficient in the conversion of JA to JA-Ile. Experiments performed with the protein synthesis inhibitor cycloheximide provided evidence that JAZs, MYC2, and genes encoding several JA biosynthetic enzymes are primary response genes whose expression is derepressed upon COI1-dependent turnover of a labile repressor protein(s). We also show that overexpression of a modified form of JAZ1 (JAZ1Delta3A) that is stable in the presence of JA compromises host resistance to feeding by S. exigua larvae. These findings establish a role for JAZ proteins in the regulation of plant anti-insect defense, and support the hypothesis that JA-Ile and perhaps other JA derivatives activate COI1-dependent wound responses in Arabidopsis. Our results also indicate that the timing of JA-induced transcription in response to wounding is more rapid than previously realized.


Assuntos
Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Parasita/fisiologia , Proteínas Repressoras/metabolismo , Spodoptera/fisiologia , Adaptação Fisiológica , Animais , Arabidopsis/genética , Arabidopsis/parasitologia , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Cicloeximida , Ciclopentanos/metabolismo , Comportamento Alimentar/fisiologia , Larva/fisiologia , Família Multigênica , Nucleotidiltransferases/metabolismo , Oxilipinas/metabolismo , Inibidores da Síntese de Proteínas , Proteínas Repressoras/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Transdução de Sinais/fisiologia
13.
Plant J ; 46(6): 984-1008, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16805732

RESUMO

In Arabidopsis, jasmonate is required for stamen and pollen maturation. Mutants deficient in jasmonate synthesis, such as opr3, are male-sterile but become fertile when jasmonate is applied to developing flower buds. We have used ATH1 oligonucleotide arrays to follow gene expression in opr3 stamens for 22 h following jasmonate treatment. In these experiments, a total of 821 genes were specifically induced by jasmonate and 480 genes were repressed. Comparisons with data from previous studies indicate that these genes constitute a stamen-specific jasmonate transcriptome, with a large proportion (70%) of the genes expressed in the sporophytic tissue but not in the pollen. Bioinformatics tools allowed us to associate many of the induced genes with metabolic pathways that are probably upregulated during jasmonate-induced maturation. Our pathway analysis led to the identification of specific genes within larger families of homologues that apparently encode stamen-specific isozymes. Extensive additional analysis of our dataset identified 13 transcription factors that may be key regulators of the stamen maturation processes triggered by jasmonate. Two of these transcription factors, MYB21 and MYB24, are the only members of subgroup 19 of the R2R3 family of MYB proteins. A myb21 mutant obtained by reverse genetics exhibited shorter anther filaments, delayed anther dehiscence and greatly reduced male fertility. A myb24 mutant was phenotypically wild-type, but production of a myb21myb24 double mutant indicated that introduction of the myb24 mutation exacerbated all three aspects of the myb21 phenotype. Exogenous jasmonate could not restore fertility to myb21 or myb21myb24 mutant plants. Together with the data from transcriptional profiling, these results indicate that MYB21 and MYB24 are induced by jasmonate and mediate important aspects of the jasmonate response during stamen development.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mutação , Oxilipinas , Fenótipo , Transdução de Sinais , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa