Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant J ; 75(3): 390-402, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23581257

RESUMO

Root chicory (Cichorium intybus var. sativum) is a biennial crop, but is harvested to obtain root inulin at the end of the first growing season before flowering. However, cold temperatures may vernalize seeds or plantlets, leading to incidental early flowering, and hence understanding the molecular basis of vernalization is important. A MADS box sequence was isolated by RT-PCR and named FLC-LIKE1 (CiFL1) because of its phylogenetic positioning within the same clade as the floral repressor Arabidopsis FLOWERING LOCUS C (AtFLC). Moreover, over-expression of CiFL1 in Arabidopsis caused late flowering and prevented up-regulation of the AtFLC target FLOWERING LOCUS T by photoperiod, suggesting functional conservation between root chicory and Arabidopsis. Like AtFLC in Arabidopsis, CiFL1 was repressed during vernalization of seeds or plantlets of chicory, but repression of CiFL1 was unstable when the post-vernalization temperature was favorable to flowering and when it de-vernalized the plants. This instability of CiFL1 repression may be linked to the bienniality of root chicory compared with the annual lifecycle of Arabidopsis. However, re-activation of AtFLC was also observed in Arabidopsis when a high temperature treatment was used straight after seed vernalization, eliminating the promotive effect of cold on flowering. Cold-induced down-regulation of a MADS box floral repressor and its re-activation by high temperature thus appear to be conserved features of the vernalization and de-vernalization responses in distant species.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Cichorium intybus/fisiologia , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , Proteínas de Arabidopsis/genética , Cichorium intybus/genética , Clonagem Molecular , Temperatura Baixa , Flores/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/metabolismo , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Temperatura , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa