Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 22(16)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34445216

RESUMO

Locomotion results in an alternance of flexor and extensor muscles between left and right limbs generated by motoneurons that are controlled by the spinal interneuronal circuit. This spinal locomotor circuit is modulated by sensory afferents, which relay proprioceptive and cutaneous inputs that inform the spatial position of limbs in space and potential contacts with our environment respectively, but also by supraspinal descending commands of the brain that allow us to navigate in complex environments, avoid obstacles, chase prey, or flee predators. Although signaling pathways are important in the establishment and maintenance of motor circuits, the role of DSCAM, a cell adherence molecule associated with Down syndrome, has only recently been investigated in the context of motor control and locomotion in the rodent. DSCAM is known to be involved in lamination and delamination, synaptic targeting, axonal guidance, dendritic and cell tiling, axonal fasciculation and branching, programmed cell death, and synaptogenesis, all of which can impact the establishment of motor circuits during development, but also their maintenance through adulthood. We discuss herein how DSCAM is important for proper motor coordination, especially for breathing and locomotion.


Assuntos
Axônios/metabolismo , Moléculas de Adesão Celular/metabolismo , Locomoção , Músculo Esquelético/metabolismo , Mecânica Respiratória , Sinapses/metabolismo , Animais , Apoptose , Moléculas de Adesão Celular/genética , Síndrome de Down/genética , Síndrome de Down/metabolismo , Humanos , Sinapses/genética
2.
Cereb Cortex ; 29(6): 2313-2330, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29718256

RESUMO

While it is well known that netrin-1 and its receptors UNC5 and UNC40 family members are involved in the normal establishment of the motor cortex and its corticospinal tract, less is known about its other receptor Down syndrome cell adherence molecule (DSCAM). DSCAM is expressed in the developing motor cortex, regulates axonal outgrowth of cortical neurons, and its mutation impairs the dendritic arborization of cortical neurons, thus suggesting that it might be involved in the normal development and functioning of the motor cortex. In comparison to WT littermates, DSCAM2J mutant mice slipped and misplaced their paw while walking on the rungs of a horizontal ladder, and exhibited more difficulties in stepping over an obstacle while walking at slow speed. Anterograde tracing showed a normal pyramidal decussation and corticospinal projection, but a more dorsal distribution of their axonal terminals in the spinal gray matter. Intracortical microstimulations showed a reduced corticospinal and intracortical efficacy, whereas stimulations of the pyramidal tract revealed a normal spinal efficacy and excitability of corticospinal tract axons, thus arguing for a dysfunctional cortical development. Our study reveals impairment of the network dynamics within the motor cortex, reducing corticospinal drive and impairing voluntary locomotor functions upon DSCAM2J mutation.


Assuntos
Moléculas de Adesão Celular/genética , Locomoção/fisiologia , Córtex Motor/fisiopatologia , Tratos Piramidais/fisiopatologia , Animais , Feminino , Masculino , Camundongos , Camundongos Mutantes , Mutação
3.
J Neurophysiol ; 119(2): 723-737, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29093169

RESUMO

Gaits depend on the interplay between distributed spinal neural networks, termed central pattern generators, generating rhythmic and coordinated movements, primary afferents, and descending supraspinal inputs. Recent studies demonstrated that the mouse displays a rich repertoire of gaits. Changes in gaits occur in mutant mice lacking particular neurons or molecular signaling pathways implicated in the normal establishment of these neural networks. Given the role of the Down syndrome cell adherence molecule (DSCAM) to the formation and maintenance of spinal interneuronal circuits and sensorimotor integration, we have investigated its functional contribution to gaits over a wide range of locomotor speeds using freely walking mice. We show in this study that the DSCAM2J mutation, while not precluding any gait, impairs the age- and speed-dependent modulation of gaits. It impairs the ability of mice to maintain their locomotion at high treadmill speeds. DSCAM2J mutation induces the dominance of lateral walk over trot and the emergence of aberrant gaits for mice, such as pace and diagonal walk. Gaits were also more labile in DSCAM2J mutant mice, i.e., less stable, less attractive, and less predictable than in their wild-type littermates. Our results suggest that the DSCAM mutation affects the behavioral repertoire of gaits in an age- and speed-dependent manner. NEW & NOTEWORTHY Gaits evolve throughout development, up to adulthood, and according to the genetic background. Using mutant mice lacking DSCAM (a cell adherence molecule associated with Down syndrome), we show that the DSCAM2J mutation alters the repertoire of gaits according to the mouse's age and speed, and prevents fast gaits. Such an incapacity suggests a reorganization of spinal, propriospinal, and supraspinal neuronal circuits underlying locomotor control in DSCAM2J mutant mice.


Assuntos
Moléculas de Adesão Celular/genética , Marcha , Envelhecimento/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Equilíbrio Postural
4.
Glia ; 65(4): 657-669, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28139851

RESUMO

When a nerve fiber is cut or crushed, the axon segment that is separated from the soma degenerates distal from the injury in a process termed Wallerian degeneration (WD). C57BL/6OlaHsd-WldS (WldS ) mutant mice exhibit significant delays in WD. This results in considerably delayed Schwann cell and macrophage responses and thus in impaired nerve regenerations. In our previous work, thousands of genes were screened by DNA microarrays and over 700 transcripts were found to be differentially expressed in the injured sciatic nerve of WldS compared with wild-type (WT) mice. One of these transcripts, betacellulin (Btc), was selected for further analysis since it has yet to be characterized in the nervous system, despite being known as a ligand of the ErbB receptor family. We show that Btc mRNA is strongly upregulated in immature and dedifferentiated Sox2+ Schwann cells located in the sciatic nerve distal stump of WT mice, but not WldS mutants. Transgenic mice ubiquitously overexpressing Btc (Tg-Btc) have increased numbers of Schmidt-Lantermann incisures compared with WT mice, as revealed by Coherent anti-Stokes Raman scattering (CARS). Tg-Btc mice also have faster nerve conduction velocity. Finally, we found that deficiency in Btc reduces the proliferation of myelinating Schwann cells after sciatic nerve injury, while Btc overexpression induces Schwann cell proliferation and improves recovery of locomotor function. Taken together, these results suggest a novel regulatory role of Btc in axon-Schwann cell interactions involved in myelin formation and nerve repair. GLIA 2017 GLIA 2017;65:657-669.


Assuntos
Proliferação de Células/genética , Regulação da Expressão Gênica/genética , Bainha de Mielina/fisiologia , Células de Schwann/fisiologia , Neuropatia Ciática/metabolismo , Neuropatia Ciática/patologia , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Betacelulina/genética , Betacelulina/metabolismo , Antígenos CD11/genética , Antígenos CD11/metabolismo , Modelos Animais de Doenças , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Estimulação Elétrica , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Análise em Microsséries , Regeneração Nervosa/genética , Condução Nervosa/genética , Condução Nervosa/fisiologia , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Tempo
5.
J Neurophysiol ; 115(3): 1338-54, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26655819

RESUMO

Locomotion is controlled by spinal circuits that generate rhythm and coordinate left-right and flexor-extensor motoneuronal activities. The outputs of motoneurons and spinal interneuronal circuits are shaped by sensory feedback, relaying peripheral signals that are critical to the locomotor and postural control. Several studies in invertebrates and vertebrates have argued that the Down syndrome cell adhesion molecule (DSCAM) would play an important role in the normal development of neural circuits through cell spacing and targeting, axonal and dendritic branching, and synapse establishment and maintenance. Although there is evidence that DSCAM is important for the normal development of neural circuits, little is known about its functional contribution to spinal motor circuits. We show here that adult DSCAM(2J) mutant mice, lacking DSCAM, exhibit a higher variability in their locomotor pattern and rhythm during treadmill locomotion. Retrograde tracing studies in neonatal isolated spinal cords show an increased number of spinal commissural interneurons, which likely contributes to reducing the left-right alternation and to increasing the flexor/swing duration during neonatal and adult locomotion. Moreover, our results argue that, by reducing the peripheral excitatory drive onto spinal motoneurons, the DSCAM mutation reduces or abolishes spinal reflexes in both neonatal isolated spinal cords and adult mice, thus likely impairing sensorimotor control. Collectively, our functional, electrophysiological, and anatomical studies suggest that the mammalian DSCAM protein is involved in the normal development of spinal locomotor and sensorimotor circuits.


Assuntos
Moléculas de Adesão Celular/genética , Locomoção , Neurônios Motores/fisiologia , Medula Espinal/fisiologia , Animais , Moléculas de Adesão Celular/metabolismo , Feminino , Interneurônios/metabolismo , Interneurônios/fisiologia , Masculino , Camundongos , Neurônios Motores/metabolismo , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Reflexo , Medula Espinal/citologia , Medula Espinal/crescimento & desenvolvimento
6.
J Neurophysiol ; 115(3): 1355-71, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26683069

RESUMO

Down syndrome cell adherence molecule (DSCAM) contributes to the normal establishment and maintenance of neural circuits. Whereas there is abundant literature regarding the role of DSCAM in the neural patterning of the mammalian retina, less is known about motor circuits. Recently, DSCAM mutation has been shown to impair bilateral motor coordination during respiration, thus causing death at birth. DSCAM mutants that survive through adulthood display a lack of locomotor endurance and coordination in the rotarod test, thus suggesting that the DSCAM mutation impairs motor control. We investigated the motor and locomotor functions of DSCAM(2J) mutant mice through a combination of anatomical, kinematic, force, and electromyographic recordings. With respect to wild-type mice, DSCAM(2J) mice displayed a longer swing phase with a limb hyperflexion at the expense of a shorter stance phase during locomotion. Furthermore, electromyographic activity in the flexor and extensor muscles was increased and coactivated over 20% of the step cycle over a wide range of walking speeds. In contrast to wild-type mice, which used lateral walk and trot at walking speed, DSCAM(2J) mice used preferentially less coordinated gaits, such as out-of-phase walk and pace. The neuromuscular junction and the contractile properties of muscles, as well as their muscle spindles, were normal, and no signs of motor rigidity or spasticity were observed during passive limb movements. Our study demonstrates that the DSCAM mutation induces dystonic hypertonia and a disruption of locomotor gaits.


Assuntos
Moléculas de Adesão Celular/genética , Hipotonia Muscular/metabolismo , Músculo Esquelético/fisiologia , Caminhada , Animais , Moléculas de Adesão Celular/deficiência , Feminino , Marcha , Masculino , Camundongos , Contração Muscular , Hipotonia Muscular/fisiopatologia , Músculo Esquelético/metabolismo , Mutação , Junção Neuromuscular/metabolismo , Junção Neuromuscular/fisiologia
7.
Commun Biol ; 7(1): 238, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418587

RESUMO

The fatal motor neuron (MN) disease Amyotrophic Lateral Sclerosis (ALS) is characterized by progressive MN degeneration. Phrenic MNs (phMNs) controlling the activity of the diaphragm are prone to degeneration in ALS, leading to death by respiratory failure. Understanding of the mechanisms of phMN degeneration in ALS is limited, mainly because human experimental models to study phMNs are lacking. Here we describe a method enabling the derivation of phrenic-like MNs from human iPSCs (hiPSC-phMNs) within 30 days. This protocol uses an optimized combination of small molecules followed by cell-sorting based on a cell-surface protein enriched in hiPSC-phMNs, and is highly reproducible using several hiPSC lines. We show further that hiPSC-phMNs harbouring ALS-associated amplification of the C9orf72 gene progressively lose their electrophysiological activity and undergo increased death compared to isogenic controls. These studies establish a previously unavailable protocol to generate human phMNs offering a disease-relevant system to study mechanisms of respiratory MN dysfunction.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Transtornos Respiratórios , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/fisiologia , Diafragma , Transtornos Respiratórios/metabolismo , Degeneração Neural
8.
ASN Neuro ; 14: 17590914211073381, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35023784

RESUMO

Human induced pluripotent stem cells (hiPSCs) derived from healthy and diseased individuals can give rise to many cell types, facilitating the study of mechanisms of development, human disease modeling, and early drug target validation. In this context, experimental model systems based on hiPSC-derived motor neurons (MNs) have been used to study MN diseases such as spinal muscular atrophy and amyotrophic lateral sclerosis. Modeling MN disease using hiPSC-based approaches requires culture conditions that can recapitulate in a dish the events underlying differentiation, maturation, aging, and death of MNs. Current hiPSC-derived MN-based applications are often hampered by limitations in our ability to monitor MN morphology, survival, and other functional properties over a prolonged timeframe, underscoring the need for improved long-term culture conditions. Here we describe a cytocompatible dendritic polyglycerol amine (dPGA) substrate-based method for prolonged culture of hiPSC-derived MNs. We provide evidence that MNs cultured on dPGA-coated dishes are more amenable to long-term study of cell viability, molecular identity, and spontaneous network electrophysiological activity. The present study has the potential to improve hiPSC-based studies of human MN biology and disease.We describe the use of a new coating substrate providing improved conditions for long-term cultures of human iPSC-derived motor neurons, thus allowing evaluation of cell viability, molecular identity, spontaneous network electrophysiological activity, and single-cell RNA sequencing of mature motor neurons.


Assuntos
Células-Tronco Pluripotentes Induzidas , Aminas , Diferenciação Celular , Glicerol , Humanos , Neurônios Motores , Polímeros
9.
eNeuro ; 9(2)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35115383

RESUMO

Axon guidance receptors such as deleted in colorectal cancer (DCC) contribute to the normal formation of neural circuits, and their mutations can be associated with neural defects. In humans, heterozygous mutations in DCC have been linked to congenital mirror movements, which are involuntary movements on one side of the body that mirror voluntary movements of the opposite side. In mice, obvious hopping phenotypes have been reported for bi-allelic Dcc mutations, while heterozygous mutants have not been closely examined. We hypothesized that a detailed characterization of Dcc heterozygous mice may reveal impaired corticospinal and spinal functions. Anterograde tracing of the Dcc+/- motor cortex revealed a normally projecting corticospinal tract, intracortical microstimulation (ICMS) evoked normal contralateral motor responses, and behavioral tests showed normal skilled forelimb coordination. Gait analyses also showed a normal locomotor pattern and rhythm in adult Dcc+/- mice during treadmill locomotion, except for a decreased occurrence of out-of-phase walk and an increased duty cycle of the stance phase at slow walking speed. Neonatal isolated Dcc+/- spinal cords had normal left-right and flexor-extensor coupling, along with normal locomotor pattern and rhythm, except for an increase in the flexor-related motoneuronal output. Although Dcc+/- mice do not exhibit any obvious bilateral impairments like those in humans, they exhibit subtle motor deficits during neonatal and adult locomotion.


Assuntos
Locomoção , Tratos Piramidais , Animais , Receptor DCC/genética , Heterozigoto , Locomoção/genética , Camundongos , Neurônios Motores/fisiologia , Fenótipo
10.
Neuroscience ; 450: 57-70, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32380268

RESUMO

Human induced pluripotent stem cells (iPSCs) offer the opportunity to generate specific cell types from healthy and diseased individuals, allowing the study of mechanisms of early human development, modelling a variety of human diseases, and facilitating the development of new therapeutics. Human iPSC-based applications are often limited by the variability among iPSC lines originating from a single donor, as well as the heterogeneity among specific cell types that can be derived from iPSCs. The ability to deeply phenotype different iPSC-derived cell types is therefore of primary importance to the successful and informative application of this technology. Here we describe a combination of motor neuron (MN) derivation and single-cell RNA sequencing approaches to generate and characterize specific MN subtypes obtained from human iPSCs. Our studies provide evidence for rapid and robust generation of MN progenitor cells that can give rise to a heterogenous population of MNs. Approximately 58% of human iPSC-derived MNs display molecular characteristics of lateral motor column MNs, with a number of molecularly distinct subpopulations present within this MN group. Roughly 19% of induced MNs resemble hypaxial motor column MNs, while ∼6% of induced MNs have features of median motor column MNs. The present study has the potential to improve our understanding of iPSC-derived MN subtype function and dysfunction, possibly leading to improved iPSC-based applications for the study of human MN biology and disease.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Humanos , Neurônios Motores , Fenótipo , Análise de Sequência de RNA , Medula Espinal
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa