RESUMO
Relapsed follicular lymphoma (FL) can arise from common progenitor cells (CPCs). Conceptually, CPC-defining mutations are somatic alterations shared by the initial and relapsed tumours, mostly B-cell leukaemia/lymphoma 2 (BCL2)/immunoglobulin heavy locus (IGH) translocations and other recurrent gene mutations. Through complementary approaches for highly sensitive mutation detection, we do not find CPC-defining mutations in highly purified BCL2/IGH-negative haematopoietic progenitor cells in clinical remission samples from three patients with relapsed FL. Instead, we find cells harbouring the same BCL2/IGH translocation but lacking CREB binding protein (CREBBP), lysine methyltransferase 2D (KMT2D) and other recurrent gene mutations. Thus, (i) the BCL2/IGH translocation can precede CPC-defining mutations in human FL, and (ii) BCL2/IGH-translocated cells can persist in clinical remission.
Assuntos
Linfoma de Células B , Linfoma Folicular , Células-Tronco Hematopoéticas/metabolismo , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Linfoma de Células B/genética , Linfoma Folicular/patologia , Mutação , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Translocação GenéticaRESUMO
The transcription factor Foxp1 is critical for early B cell development. Despite frequent deregulation of Foxp1 in B cell lymphoma, the physiological functions of Foxp1 in mature B cells remain unknown. Here, we used conditional gene targeting in the B cell lineage and report that Foxp1 disruption in developing and mature B cells results in reduced numbers and frequencies of follicular and B-1 B cells and in impaired antibody production upon T cell-independent immunization in vivo. Moreover, Foxp1-deficient B cells are impaired in survival even though they exhibit an increased capacity to proliferate. Transcriptional analysis identified defective expression of the prosurvival Bcl-2 family gene Bcl2l1 encoding Bcl-xl in Foxp1-deficient B cells, and we identified Foxp1 binding in the regulatory region of Bcl2l1 Transgenic overexpression of Bcl2 rescued the survival defect in Foxp1-deficient mature B cells in vivo and restored peripheral B cell numbers. Thus, our results identify Foxp1 as a physiological regulator of mature B cell survival mediated in part via the control of Bcl-xl expression and imply that this pathway might contribute to the pathogenic function of aberrant Foxp1 expression in lymphoma.
Assuntos
Linfócitos B/classificação , Linfócitos B/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Proteínas Repressoras/metabolismo , Animais , Anticorpos/metabolismo , Antígenos CD19/metabolismo , Fatores de Transcrição Forkhead/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Proteínas Repressoras/genética , Linfócitos T/fisiologia , Proteína bcl-X/genética , Proteína bcl-X/metabolismoRESUMO
The histone methyltransferase EZH2 is frequently mutated in germinal center-derived diffuse large B-cell lymphoma and follicular lymphoma. To further characterize these EZH2 mutations in lymphomagenesis, we generated a mouse line where EZH2(Y641F) is expressed from a lymphocyte-specific promoter. Spleen cells isolated from the transgenic mice displayed a global increase in trimethylated H3K27, but the mice did not show an increased tendency to develop lymphoma. As EZH2 mutations often coincide with other mutations in lymphoma, we combined the expression of EZH2(Y641F) by crossing these transgenic mice with Eµ-Myc transgenic mice. We observed a dramatic acceleration of lymphoma development in this combination model of Myc and EZH2(Y641F). The lymphomas show histologic features of high-grade disease with a shift toward a more mature B-cell phenotype, increased cycling and gene expression, and epigenetic changes involving important pathways in B-cell regulation and function. Furthermore, they initiate disease in secondary recipients. In summary, EZH2(Y641F) can collaborate with Myc to accelerate lymphomagenesis demonstrating a cooperative role of EZH2 mutations in oncogenesis. This murine lymphoma model provides a new tool to study global changes in the epigenome caused by this frequent mutation and a promising model system for testing novel treatments.
Assuntos
Transformação Celular Neoplásica/genética , Linfoma/genética , Mutação , Complexo Repressor Polycomb 2/genética , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Linfócitos B/metabolismo , Linfócitos B/patologia , Western Blotting , Células da Medula Óssea/metabolismo , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Histonas/metabolismo , Humanos , Estimativa de Kaplan-Meier , Linfoma/metabolismo , Linfoma/patologia , Linfoma de Células B/genética , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Lisina/metabolismo , Masculino , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Complexo Repressor Polycomb 2/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Baço/metabolismo , Baço/patologiaRESUMO
Recent data indicate that a variety of regulatory molecules active in embryonic development may also play a role in the regulation of early hematopoiesis. Here we report that the human Vent-like homeobox gene VENTX, a putative homolog of the Xenopus xvent2 gene, is a unique regulatory hematopoietic gene that is aberrantly expressed in CD34(+) leukemic stem-cell candidates in human acute myeloid leukemia (AML). Quantitative RT-PCR documented expression of the gene in lineage positive hematopoietic subpopulations, with the highest expression in CD33(+) myeloid cells. Notably, expression levels of VENTX were negligible in normal CD34(+)/CD38(-) or CD34(+) human progenitor cells. In contrast to this, leukemic CD34(+)/CD38(-) cells from AML patients with translocation t(8,21) and normal karyotype displayed aberrantly high expression of VENTX. Gene expression and pathway analysis demonstrated that in normal CD34(+) cells enforced expression of VENTX initiates genes associated with myeloid development and down-regulates genes involved in early lymphoid development. Functional analyses confirmed that aberrant expression of VENTX in normal CD34(+) human progenitor cells perturbs normal hematopoietic development, promoting generation of myeloid cells and impairing generation of lymphoid cells in vitro and in vivo. Stable knockdown of VENTX expression inhibited the proliferation of human AML cell lines. Taken together, these data extend our insights into the function of embryonic mesodermal factors in human postnatal hematopoiesis and indicate a role for VENTX in normal and malignant myelopoiesis.
Assuntos
Regulação Leucêmica da Expressão Gênica , Proteínas de Homeodomínio/biossíntese , Leucemia Mieloide Aguda/metabolismo , Células Mieloides/citologia , Mielopoese/genética , Técnicas de Cocultura , Células Eritroides/citologia , Células Eritroides/metabolismo , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/genética , Humanos , Leucemia Mieloide Aguda/genética , Células Mieloides/metabolismoRESUMO
Adoptive transfer of TCR transgenic T cells holds great promise for treating various cancers. So far, mainly semi-randomly integrating vectors have been used to genetically modify T cells. These carry the risk of insertional mutagenesis, and the sole addition of an exogenous TCR potentially results in the mispairing of TCR chains with endogenous ones. Established approaches using nonviral vectors, such as transposons, already reduce the risk of insertional mutagenesis but have not accomplished site-specific integration. Here, we used CRISPR-Cas9 RNPs and adeno-associated virus 6 for gene targeting to deliver an engineered TCR gene specifically to the TCR alpha constant locus, thus placing it under endogenous transcriptional control. Our data demonstrate that this approach replaces the endogenous TCR, functionally redirects the edited T cells' specificity in vitro, and facilitates potent tumor rejection in an in vivo xenograft model.
Assuntos
Engenharia Celular/métodos , Edição de Genes/métodos , Neoplasias/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Linfócitos T/imunologia , Animais , Proteína 9 Associada à CRISPR/genética , Linhagem Celular , Genes Codificadores da Cadeia alfa de Receptores de Linfócitos T/genética , Vetores Genéticos , Humanos , Imunoterapia Adotiva/métodos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Neoplasias/terapia , Doadores de Tecidos , Transdução Genética , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Acute erythroid leukemia (AEL) is a rare and aggressive form of acute leukemia, the biology of which remains poorly understood. Here we demonstrate that the ParaHox gene CDX4 is expressed in patients with acute erythroid leukemia, and that aberrant expression of Cdx4 induced homogenously a transplantable acute erythroid leukemia in mice. Gene expression analyses demonstrated upregulation of genes involved in stemness and leukemogenesis, with parallel downregulation of target genes of Gata1 and Gata2 responsible for erythroid differentiation. Cdx4 induced a proteomic profile that overlapped with a cluster of proteins previously defined to represent the most primitive human erythroid progenitors. Whole-exome sequencing of diseased mice identified recurrent mutations significantly enriched for transcription factors involved in erythroid lineage specification, as well as TP53 target genes partly identical to the ones reported in patients with AEL. In summary, our data indicate that Cdx4 is able to induce stemness and inhibit terminal erythroid differentiation, leading to the development of AEL in association with co-occurring mutations.
Assuntos
Predisposição Genética para Doença , Proteínas de Homeodomínio/genética , Leucemia Eritroblástica Aguda/genética , Leucemia Eritroblástica Aguda/patologia , Adulto , Idoso , Animais , Biomarcadores Tumorais , Diferenciação Celular/genética , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Estudos de Associação Genética , Hematopoese/genética , Humanos , Imunofenotipagem , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação , Sequenciamento Completo do GenomaRESUMO
In hyper-IgE syndromes (HIES), a group of primary immunodeficiencies clinically overlapping with atopic dermatitis, early diagnosis is crucial to initiate appropriate therapy and prevent irreversible complications. Identification of underlying gene defects such as in DOCK8 and STAT3 and corresponding molecular testing has improved diagnosis. Yet, in a child and her newborn sibling with HIES phenotype molecular diagnosis was misleading. Extensive analyses driven by the clinical phenotype identified an intronic homozygous DOCK8 variant c.4626 + 76 A > G creating a novel splice site as disease-causing. While the affected newborn carrying the homozygous variant had no expression of DOCK8 protein, in the index patient molecular diagnosis was compromised due to expression of altered and wildtype DOCK8 transcripts and DOCK8 protein as well as defective STAT3 signaling. Sanger sequencing of lymphocyte subsets revealed that somatic alterations and reversions revoked the predominance of the novel over the canonical splice site in the index patient explaining DOCK8 protein expression, whereas defective STAT3 responses in the index patient were explained by a T cell phenotype skewed towards central and effector memory T cells. Hence, somatic alterations and skewed immune cell phenotypes due to selective pressure may compromise molecular diagnosis and need to be considered with unexpected clinical and molecular findings.
Assuntos
Fatores de Troca do Nucleotídeo Guanina/genética , Íntrons/genética , Síndrome de Job/genética , Mutação , Sítios de Splice de RNA/genética , Sequência de Bases , Pré-Escolar , Biologia Computacional , Feminino , Regulação da Expressão Gênica/genética , Humanos , Lactente , Síndrome de Job/patologia , Técnicas de Diagnóstico Molecular , Gravidez , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/genéticaRESUMO
BACKGROUND: It has been demonstrated that androgen receptor splice variant 7 (AR-V7) expression in circulating tumor cells (CTCs) predicts poor treatment response in metastatic castration-resistant prostate cancer (mCRPC) patients treated with abiraterone or enzalutamide. OBJECTIVE: To develop a practical and robust liquid profiling approach for direct quantification of AR-V7 in peripheral whole blood without the need for CTC capture and to determine its potential for predicting treatment response in mCRPC patients. DESIGN, SETTING, AND PARTICIPANTS: Whole blood samples from a prospective biorepository of 85 mCRPC patients before treatment initiation with abiraterone (n=56) or enzalutamide (n=29) were analyzed via droplet digital polymerase chain reaction. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The association of AR-V7 status with prostate-specific antigen (PSA) response defined by PSA decline ≥50% and with PSA-progression-free survival (PSA-PFS), clinical PFS, and overall survival (OS) was assessed. RESULTS AND LIMITATIONS: High AR-V7 expression levels in whole blood were detectable in 18% (15/85) of patients. No patient with high AR-V7 expression achieved a PSA response, and AR-V7 status was an independent predictor of PSA response in multivariable logistic regression analysis (p=0.03). High AR-V7 expression was associated with shorter PSA-PFS (median 2.4 vs 3.7 mo; p<0.001), shorter clinical PFS (median 2.7 vs 5.5 mo; p<0.001), and shorter OS (median 4.0 vs. 13.9 mo; p<0.001). On multivariable Cox regression analysis, high AR-V7 expression remained an independent predictor of shorter PSA-PFS (hazard ratio [HR] 7.0, 95% confidence interval [CI] 2.3-20.7; p<0.001), shorter clinical PFS (HR 2.3, 95% CI 1.1-4.9; p=0.02), and shorter OS (HR 3.0, 95% CI 1.4-6.3; p=0.005). CONCLUSIONS: Testing of AR-V7 mRNA levels in whole blood is a simple and promising approach to predict poor treatment outcome in mCRPC patients receiving abiraterone or enzalutamide. PATIENT SUMMARY: We established a method for determining AR-V7 status in whole blood. This test predicted treatment resistance in patients with metastatic castration-resistant prostate cancer undergoing treatment with abiraterone or enzalutamide. Prospective validation is needed before application to clinical practice.
Assuntos
Androstenos/uso terapêutico , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/sangue , Células Neoplásicas Circulantes/química , Células Neoplásicas Circulantes/efeitos dos fármacos , Feniltioidantoína/análogos & derivados , Neoplasias de Próstata Resistentes à Castração/sangue , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Receptores Androgênicos/sangue , Idoso , Benzamidas , Biomarcadores Tumorais/genética , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos , Humanos , Calicreínas/sangue , Biópsia Líquida , Modelos Logísticos , Masculino , Análise Multivariada , Células Neoplásicas Circulantes/patologia , Nitrilas , Razão de Chances , Feniltioidantoína/uso terapêutico , Reação em Cadeia da Polimerase , Valor Preditivo dos Testes , Modelos de Riscos Proporcionais , Antígeno Prostático Específico/sangue , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/mortalidade , Isoformas de Proteínas , RNA Mensageiro/sangue , RNA Mensageiro/genética , Receptores Androgênicos/genética , Reprodutibilidade dos Testes , Estudos Retrospectivos , Fatores de Risco , Fatores de Tempo , Resultado do TratamentoRESUMO
The mechanisms underlying deregulation of HOX gene expression in AML are poorly understood. The ParaHox gene CDX2 was shown to act as positive upstream regulator of several HOX genes. In this study, constitutive expression of Cdx2 caused perturbation of leukemogenic Hox genes such as Hoxa10 and Hoxb8 in murine hematopoietic progenitors. Deletion of the N-terminal domain of Cdx2 abrogated its ability to perturb Hox gene expression and to cause acute myeloid leukemia (AML) in mice. In contrast inactivation of the putative Pbx interacting site of Cdx2 did not change the leukemogenic potential of the gene. In an analysis of 115 patients with AML, expression levels of CDX2 were closely correlated with deregulated HOX gene expression. Patients with normal karyotype showed a 14-fold higher expression of CDX2 and deregulated HOX gene expression compared with patients with chromosomal translocations such as t(8:21) or t(15;17). All patients with AML with normal karyotype tested were negative for CDX1 and CDX4 expression. These data link the leukemogenic potential of Cdx2 to its ability to dysregulate Hox genes. They furthermore correlate the level of CDX2 expression with HOX gene expression in human AML and support a potential role of CDX2 in the development of human AML with aberrant Hox gene expression.