Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 20(7): e1012180, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008528

RESUMO

Converting cryo-electron microscopy (cryo-EM) data into high-quality structural models is a challenging problem of outstanding importance. Current refinement methods often generate unbalanced models in which physico-chemical quality is sacrificed for excellent fit to the data. Furthermore, these techniques struggle to represent the conformational heterogeneity averaged out in low-resolution regions of density maps. Here we introduce EMMIVox, a Bayesian inference approach to determine single-structure models as well as structural ensembles from cryo-EM maps. EMMIVox automatically balances experimental information with accurate physico-chemical models of the system and the surrounding environment, including waters, lipids, and ions. Explicit treatment of data correlation and noise as well as inference of accurate B-factors enable determination of structural models and ensembles with both excellent fit to the data and high stereochemical quality, thus outperforming state-of-the-art refinement techniques. EMMIVox represents a flexible approach to determine high-quality structural models that will contribute to advancing our understanding of the molecular mechanisms underlying biological functions.

2.
Nucleic Acids Res ; 49(5): 2931-2945, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33577679

RESUMO

Liquid-liquid phase separation underlies the membrane-less compartmentalization of cells. Intrinsically disordered low-complexity domains (LCDs) often mediate phase separation, but how their phase behavior is modulated by folded domains is incompletely understood. Here, we interrogate the interplay between folded and disordered domains of the RNA-binding protein hnRNPA1. The LCD of hnRNPA1 is sufficient for mediating phase separation in vitro. However, we show that the folded RRM domains and a folded solubility-tag modify the phase behavior, even in the absence of RNA. Notably, the presence of the folded domains reverses the salt dependence of the driving force for phase separation relative to the LCD alone. Small-angle X-ray scattering experiments and coarse-grained MD simulations show that the LCD interacts transiently with the RRMs and/or the solubility-tag in a salt-sensitive manner, providing a mechanistic explanation for the observed salt-dependent phase separation. These data point to two effects from the folded domains: (i) electrostatically-mediated interactions that compact hnRNPA1 and contribute to phase separation and (ii) increased solubility at higher ionic strengths mediated by the folded domains. The interplay between disordered and folded domains can modify the dependence of phase behavior on solution conditions and can obscure signatures of physicochemical interactions underlying phase separation.


Assuntos
Ribonucleoproteína Nuclear Heterogênea A1/química , Proteínas Intrinsicamente Desordenadas/química , Modelos Moleculares , Domínios Proteicos , Espalhamento a Baixo Ângulo , Cloreto de Sódio/química , Solubilidade , Difração de Raios X
3.
Biochem Soc Trans ; 50(1): 541-554, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35129612

RESUMO

Intrinsically disordered proteins (IDPs) and multidomain proteins with flexible linkers show a high level of structural heterogeneity and are best described by ensembles consisting of multiple conformations with associated thermodynamic weights. Determining conformational ensembles usually involves the integration of biophysical experiments and computational models. In this review, we discuss current approaches to determine conformational ensembles of IDPs and multidomain proteins, including the choice of biophysical experiments, computational models used to sample protein conformations, models to calculate experimental observables from protein structure, and methods to refine ensembles against experimental data. We also provide examples of recent applications of integrative conformational ensemble determination to study IDPs and multidomain proteins and suggest future directions for research in the field.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/química , Simulação de Dinâmica Molecular , Conformação Proteica
4.
Elife ; 122023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36856266

RESUMO

Speckle-type POZ protein (SPOP) is a substrate adaptor in the ubiquitin proteasome system, and plays important roles in cell-cycle control, development, and cancer pathogenesis. SPOP forms linear higher-order oligomers following an isodesmic self-association model. Oligomerization is essential for SPOP's multivalent interactions with substrates, which facilitate phase separation and localization to biomolecular condensates. Structural characterization of SPOP in its oligomeric state and in solution is, however, challenging due to the inherent conformational and compositional heterogeneity of the oligomeric species. Here, we develop an approach to simultaneously and self-consistently characterize the conformational ensemble and the distribution of oligomeric states of SPOP by combining small-angle X-ray scattering (SAXS) and molecular dynamics (MD) simulations. We build initial conformational ensembles of SPOP oligomers using coarse-grained molecular dynamics simulations, and use a Bayesian/maximum entropy approach to refine the ensembles, along with the distribution of oligomeric states, against a concentration series of SAXS experiments. Our results suggest that SPOP oligomers behave as rigid, helical structures in solution, and that a flexible linker region allows SPOP's substrate-binding domains to extend away from the core of the oligomers. Additionally, our results are in good agreement with previous characterization of the isodesmic self-association of SPOP. In the future, the approach presented here can be extended to other systems to simultaneously characterize structural heterogeneity and self-assembly.


Assuntos
Simulação de Dinâmica Molecular , Difração de Raios X , Espalhamento a Baixo Ângulo , Teorema de Bayes , Raios X , Conformação Proteica
5.
J Chem Theory Comput ; 18(4): 2033-2041, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35377637

RESUMO

Coarse-grained molecular dynamics simulations are a useful tool to determine conformational ensembles of proteins. Here, we show that the coarse-grained force field Martini 3 underestimates the global dimensions of intrinsically disordered proteins (IDPs) and multidomain proteins when compared with small-angle X-ray scattering (SAXS) data and that increasing the strength of protein-water interactions favors more expanded conformations. We find that increasing the strength of interactions between protein and water by ca. 10% results in improved agreement with the SAXS data for IDPs and multidomain proteins. We also show that this correction results in a more accurate description of self-association of IDPs and folded proteins and better agreement with paramagnetic relaxation enhancement data for most IDPs. While simulations with this revised force field still show deviations to experiments for some systems, our results suggest that it is overall a substantial improvement for coarse-grained simulations of soluble proteins.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/metabolismo , Simulação de Dinâmica Molecular , Conformação Proteica , Espalhamento a Baixo Ângulo , Água , Difração de Raios X
6.
Sci Immunol ; 7(78): eade5686, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36459543

RESUMO

Cytokines interact with their receptors in the extracellular space to control immune responses. How the physicochemical properties of the extracellular space influence cytokine signaling is incompletely elucidated. Here, we show that the activity of interleukin-2 (IL-2), a cytokine critical to T cell immunity, is profoundly affected by pH, limiting IL-2 signaling within the acidic environment of tumors. Generation of lactic acid by tumors limits STAT5 activation, effector differentiation, and antitumor immunity by CD8+ T cells and renders high-dose IL-2 therapy poorly effective. Directed evolution enabled selection of a pH-selective IL-2 mutein (Switch-2). Switch-2 binds the IL-2 receptor subunit IL-2Rα with higher affinity, triggers STAT5 activation, and drives CD8+ T cell effector function more potently at acidic pH than at neutral pH. Consequently, high-dose Switch-2 therapy induces potent immune activation and tumor rejection with reduced on-target toxicity in normal tissues. Last, we show that sensitivity to pH is a generalizable property of a diverse range of cytokines with broad relevance to immunity and immunotherapy in healthy and diseased tissues.


Assuntos
Interleucina-2 , Neoplasias , Humanos , Fator de Transcrição STAT5 , Linfócitos T CD8-Positivos , Citocinas , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa