Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Small ; : e2310813, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700050

RESUMO

The structure of supraparticles (SPs) is a key parameter for achieving advanced functionalities arising from the combination of different nanoparticle (NP) types in one hierarchical entity. However, whenever a droplet-assisted forced assembly approach is used, e.g., spray-drying, the achievable structure is limited by the inherent drying phenomena of the method. In particular, mixed NP dispersions of differently sized colloids are heavily affected by segregation during the assembly. Herein, the influence of the colloidal arrangement of Pt and SiO2 NPs within a single supraparticulate entity is investigated. A salt-based electrostatic manipulation approach of the utilized NPs is proposed to customize the structure of spray-dried Pt/SiO2 SPs. By this, size-dependent separation phenomena of NPs during solvent evaporation, that limit the catalytic performance in the reduction of 4-nitrophenol, are overcome by achieving even Pt NP distribution. Additionally, the textural properties (pore size and distribution) of the SiO2 pore framework are altered to improve the mass transfer within the material leading to increased catalytic activity. The suggested strategy demonstrates a powerful, material-independent, and universally applicable approach to deliberately customize the structure and functionality of multi-component SP systems. This opens up new ways of colloidal material combinations and structural designs in droplet-assisted forced assembly approaches like spray-drying.

2.
Langmuir ; 40(4): 2079-2090, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38227957

RESUMO

During the last decades, major progress was made concerning the understanding of subcritical low-pressure adsorption of fluids like nitrogen and argon at their boiling temperatures in nanoporous materials. It was possible to understand how structural properties affect the shape of the adsorption isotherms. However, within the context of gas storage applications, supercritical high-pressure gas adsorption is important. A key feature here is that the experimentally determined surface excess adsorption isotherm may exhibit a characteristic maximum at a certain pressure. For a given temperature and adsorptive/adsorbent system, the surface excess maximum (and the corresponding adsorbed amount) is related to the storage capacity of the adsorbent. However, there is still a lack of understanding of how key textural properties such as surface area and pore size affect details of the shape of supercritical high-pressure adsorption isotherms. To address these open questions, we have performed a systematic experimental study assessing the effect of pore size/structure on the supercritical adsorption isotherms of pure fluids such as C2H4, CO2, and SF6 over a wider range of temperatures and pressures on a series of model materials exhibiting well-defined pore sizes, i.e., ordered micro- and mesoporous materials (e.g., NaY zeolite, KIT-6 silica, and MCM-48 silica). A fundamental result of our experiments is a unique fluid-independent correlation between the pressure of the surface excess maximum pmax (at a given temperature) and the pore size (by taking into account the kinetic diameter of the fluid and the underlying effective attractive fluid-wall interaction). Summarizing, our results suggest important structure-property relationships, allowing one to determine, for given thermodynamic conditions, important information related to the optimal operating conditions for supercritical adsorption applications. The insights may also serve as a basis for optimizing and tailoring the properties of nanoporous adsorbent materials for gas storage applications.

3.
Langmuir ; 40(25): 12853-12867, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38861921

RESUMO

We have developed a comprehensive strategy for quantitatively assessing the hydrophilicity/hydrophobicity of nanoporous materials by combining advanced adsorption studies, novel liquid intrusion techniques, and solid-state NMR spectroscopy. For this, we have chosen a well-defined system of model materials, i.e., the highly ordered mesoporous silica molecular sieve SBA-15 in its pristine state and functionalized with different amounts of trimethylsilyl (TMS) groups, allowing one to accurately tailor the surface chemistry while maintaining the well-defined pore structure. For an absolute quantification of the trimethylsilyl group density, quantitative 1H solid-state NMR spectroscopy under magic angle spinning was employed. A full textural characterization of the materials was obtained by high-resolution argon 87 K adsorption, coupled with the application of dedicated methods based on nonlocal-density functional theory (NLDFT). Based on the known texture of the model materials, we developed a novel methodology allowing one to determine the effective contact angle of water adsorbed on the pore surfaces from complete wetting to nonwetting, constituting a powerful parameter for the characterization of the surface chemistry inside porous materials. The surface chemistry was found to vary from hydrophilic to hydrophobic as the TMS functionalization content was increased. For wetting and partially wetting surfaces, pore condensation of water is observed at pressures P smaller than the bulk saturation pressure p0 (i.e., at p/p0 < 1) and the effective contact angle of water on the pore walls could be derived from the water sorption isotherms. However, for nonwetting surfaces, pore condensation occurs at pressures above the saturation pressure (i.e., at p/p0 > 1). In this case, we investigated the pore filling of water (i.e., the vapor-liquid phase transition) by the application of a novel, liquid water intrusion/extrusion methodology, allowing one to derive the effective contact angle of water on the pore walls even in the case of nonwetting. Complementary molecular simulations provide density profiles of water on pristine and TMS-grafted silica surfaces (mimicking the tailored, functionalized experimental silica surfaces), which allow for a molecular view on the water adsorbate structure. Summarizing, we present a comprehensive and reliable methodology for quantitatively assessing the hydrophilicity/hydrophobicity of siliceous nanoporous materials, which has the potential to optimize applications in heterogeneous catalysis and separation (e.g., chromatography).

4.
Langmuir ; 40(17): 9299-9309, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38647019

RESUMO

Industrialization over the past two centuries has resulted in a continuous rise in global CO2 emissions. These emissions are changing ecosystems and livelihoods. Therefore, methods are needed to capture these emissions from point sources and possibly from our atmosphere. Though the amount of CO2 is rising, it is challenging to capture directly from air because its concentration in air is extremely low, 0.04%. In this study, amines installed inside metal-organic frameworks (MOFs) are investigated for the adsorption of CO2, including at low concentrations. The amines used are polyamidoamine dendrimers that contain many primary amines. Chemically reversible adsorption of CO2 via carbamate formation was observed, as was enhanced uptake of carbon dioxide, likely via dendrimer-amide-based physisorption. Limiting factors in this initial study are comparatively low dendrimer loadings and slow kinetics for carbon dioxide uptake and release, even at 80 °C.

5.
Small ; 19(27): e2300241, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36932894

RESUMO

A drying droplet containing colloidal particles can consolidate into a spherical assembly called a supraparticle. Such supraparticles are inherently porous due to the spaces between the constituent primary particles. Here, the emergent, hierarchical porosity in spray-dried supraparticles is tailored via three distinct strategies acting at different length scales. First, mesopores (<10 nm) are introduced via the primary particles. Second, the interstitial pores are tuned from the meso- (35 nm) to the macro scale (250 nm) by controlling the primary particle size. Third, defined macropores (>100 nm) are introduced via templating polymer particles, which can be selectively removed by calcination. Combining all three strategies creates hierarchical supraparticles with fully tailored pore size distributions. Moreover, another level of the hierarchy is added by fabricating supra-supraparticles, using the supraparticles themselves as building blocks, which provide additional pores with micrometer dimensions. The interconnectivity of the pore networks within all supraparticle types is investigated via detailed textural and tomographic analysis. This work provides a versatile toolbox for designing porous materials with precisely tunable, hierarchical porosity from the meso- (3 nm) to the macroscale (≈10 µm) that can be utilized for applications in catalysis, chromatography, or adsorption.

6.
Langmuir ; 39(13): 4611-4621, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-36943005

RESUMO

The reliable assessment of surface area is extremely important for many applications, e.g., catalysis, separation, and energy storage/conversion. Within this context, major progress has been made concerning the textural characterization of porous materials in the gas/dry state, e.g., gas physisorption and mercury porosimetry. However, these methods are not sufficient for the characterization of wet materials utilized in liquid-phase processes. For this, the application of nuclear magnetic resonance (NMR) relaxometry has been considered, but a systematic and rigorous assessment of the applicability of NMR relaxometry for reliable surface and pore size characterization of nanoporous materials is missing. Hence, we present a systematic study in which we assess the applicability of NMR relaxometry for reliable surface area assessment utilizing for the first time true surface area benchmark data based on argon 87 K adsorption on nonporous particles (silica and carbon black) coupled with the development of an advanced methodology including the investigation of the choice of the probe molecule and the effect of its accessibility to the pore network. Our results show that the method provides a fast (a few minutes per measurement) and reliable surface area of silica and carbon black model materials immersed in a liquid phase. In addition, our work clearly demonstrates the potential of NMR relaxometry for the targeted surface area assessment of defined pore classes (here ultramicropores) and suggests a new methodology for the characterization of pore entrances (pore window size). Furthermore, we investigate the effect of wettability and suggest that NMR relaxometry could be developed into a unique tool for assessing the wetting characteristics of adsorbate phases on pore surfaces. This fundamental study can be considered a first major step in enabling NMR relaxometry for reliable surface area assessment for wet materials, particularly relevant for materials used in processes occurring in a liquid phase.

7.
Langmuir ; 39(51): 18730-18745, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38095601

RESUMO

Through analysis of the statistical mechanical equations for a thin adsorbed film (gas, liquid, or solid) on a solid substrate or confined within a pore, it is possible to express the equilibrium thermodynamic properties of the film as a function of just two dimensionless parameters: a nanoscale wetting parameter, αw, and pore width, H*. The wetting parameter, αw, is defined in terms of molecular parameters for the adsorbed film and substrate and so is applicable at the nanoscale and for films of any phase. The main assumptions in the treatment are that (a) the substrate structure is not significantly affected by the adsorbed layer and (b) the diameter of the adsorbate molecules is not very small compared to the spacing of atoms in the solid substrate. We show that different surface geometries of the substrate (e.g., slit, cylindrical, and spherical pores) and various models of wall heterogeneity can be accounted for through a well-defined correction to the wetting parameter; no new dimensionless variables are introduced. Experimental measurements are reported for contact angles for various liquids on several planar substrates and are shown to be closely correlated with the nanoscale wetting parameter. We apply this approach to phase separation in nanopores of various geometries. Molecular simulation results for the phase diagram in confinement, obtained by the flat histogram Monte Carlo method, are reported and are shown to be closely similar to experimental results for capillary condensation, melting, and the triple point. The value of the wetting parameter, αw, is shown to determine the qualitative behavior (e.g., increase vs decrease in the melting temperature, capillary condensation vs evaporation), whereas the pore width determines the magnitude of the confinement effect. The triple point temperature and pressure for the confined phase are always lower than those for the bulk phase for all cases studied.

8.
Langmuir ; 36(40): 11996-12009, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-32936653

RESUMO

In disordered mesopore networks, the size distribution and connection between adjacent pores control desorption. How network characteristics can be extracted from corresponding physisorption isotherms is still a matter of research. To elucidate this, we study krypton physisorption (117.8 K) in the mesopore networks of "Nakanishi"-type monolithic silica. Combining physisorption in scanning acquisition mode with synchrotron-based in-situ SAXS provides complementary information on pore-filling states. These data reveal a mean pore size gradient in which pores grow smaller towards the material's network center. This structural motif cannot be derived through conventional isotherm analysis, but it is clearly exposed through scanning desorption curves which do not quite converge but merge individually with the main desorption isotherm before the lower hysteresis closing point. Hence, our findings provide the basis to build advanced models for analyzing scanning isotherms and extracting network characteristics through new descriptors, such as pore size and connectivity distributions as a function of the distance from the network center.

9.
Langmuir ; 35(35): 11291-11298, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31380648

RESUMO

Carbon dioxide adsorption on micro- and mesoporous carbonaceous materials in a wide range of temperatures and pressures is of great importance for the problems of gas separations, greenhouse gas capture and sequestration, enhanced hydrocarbon recovery from shales and coals, as well as for the characterization of nanoporous materials using CO2 as a molecular probe. We investigate the influence of temperature on CO2 adsorption focusing on the capillary condensation and hysteresis phenomena. We present experimental data on the adsorption of CO2 on CMK-3, ordered carbon with mesopores of ∼5-6 nm, at various temperatures (185-273 K) and pressures (up to 35 bars). Using Monte Carlo (MC) simulations in the grand canonical and mesocanonical ensembles, we attempt to predict the transition from reversible capillary condensation to hysteretic adsorption-desorption cycles that is experimentally observed with the decrease of temperature. We show that although the desorption at all temperatures occurs at the conditions of pore vapor-liquid equilibrium, the capillary condensation is a nucleation-driven process associated with an effective energy barrier of ∼43 kT, specific to the sample used in this work. This barrier can be overcome at the equilibrium conditions in the region of reversible condensation at temperatures higher than 240 K. At lower temperatures, the regime of developing hysteresis is observed with progressively widening hysteresis loops. The position of capillary condensation transition is estimated using the pressure dependence of the energy barrier calculated by the thermodynamic integration of the van der Waals-type continuous canonical isotherm simulated with the gauge cell MC method. These findings lay the foundation for developing kernels of CO2 adsorption and desorption isotherm for calculating the pore size distribution in the entire range of micropore and mesopore sizes from one high-pressure experimental isotherm.

10.
Langmuir ; 34(4): 1376-1385, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29293354

RESUMO

Carbon dioxide was shown to identify surface basic properties of nitrogen-substituted microporous and mesoporous silicas, in addition to conventional basic oxides, by a detailed study using isotherm and heat of adsorption measurements as well as by infrared spectroscopy. A hydrogen-bonded weak interaction was primarily observed between CO2 and silanol (Si-OH) and silamine (Si-NH-Si) groups. The heat of adsorption of CO2 demonstrated that the latter adspecies were formed preferentially over the former, although a much higher amount of linear CO2 adspecies were found on SBA-15 mesoporous silica because of the presence of a large quantity of silanol groups on its surface. Carbamate-type chemisorbed adspecies were not detected on silamino sites, whereas carbonate-type adspecies were formed on alkali ion-exchanged zeolites and also residual sodium ions on the surface of silicalite-1. CO2 was shown to be a successful probe molecule for identifying weakly interactive hydrogen-bonding sites, and it has potential as a surface probe for strongly interactive nucleophilic sites derived from alkaline ions or a methylated silamino group, Si-N(CH3)-Si.

11.
Langmuir ; 34(38): 11414-11423, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30188140

RESUMO

The texture of mesoporous FAU-Y (FAUmes) prepared by surfactant-templating in basic media is a subject of debate. It is proposed that mesoporous FAU-Y consists of: (1) ordered mesoporous zeolite networks formed by a surfactant-assisted zeolite rearrangement process involving local dissolution and reconstruction of the crystalline framework, and (2) ordered mesoporous amorphous phases as Al-MCM-41, which coexist with zeolite nanodomains obtained by a dissolution-reassembly process. By the present systematic study, performed with FAU-Y (Si/Al = 15) in the presence of octadecyltrimethylammonium bromide and 0 < NaOH/Si ratio < 0.25 at 115 °C for 20 h, we demonstrate that mesoporous FAU zeolites consist, in fact, of a complex family of materials with textural features strongly impacted by the experimental conditions. Two main families have been disclosed: (1) for 0.0625 < NaOH/Si < 0.10, FAUmes are ordered mesoporous materials with zeolite walls, which coexist with zeolite nanodomains (100-200 nm) and (2) for 0.125 < NaOH/Si < 0.25, FAUmes are ordered mesoporous materials with amorphous walls as Al-MCM-41, which coexist with zeolite nanodomains (5-100 nm). The zeolite nanodomains decrease in size with the increase of NaOH/Si ratio. Increasing NaOH/Si ratio leads to an increase of mesopore volume, while the total surface area remains constant, and to a decrease of strong acidity in line with the decrease of micropore volume. The ordered mesoporous materials with zeolite walls feature the highest acidity strength. The ordered mesoporous materials with amorphous walls present additional large pores (50-200 nm), which increase in size and amount with the increase of NaOH/Si ratio. This alkaline treatment of FAU-Y represents a way to obtain ordered mesoporous materials with zeolite walls with high mesopore volume for NaOH/Si = 0.10 and a new way to synthesize mesoporous Al-MCM-41 materials containing extralarge pores (50-200 nm) ideal for optimal diffusion (NaOH/Si = 0.25).

12.
Chem Soc Rev ; 46(2): 389-414, 2017 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-27757469

RESUMO

This review focuses on important aspects of applying physisorption for the pore structural characterization of hierarchical materials such as mesoporous zeolites. During the last decades major advances in understanding the adsorption and phase behavior of fluids confined in ordered nanoporous materials have been made, which led to major progress in the physisorption characterization methodology (summarized in the 2015 IUPAC report on physisorption characterization). Here we discuss progress and challenges for the physisorption characterization of nanoporous solids exhibiting various levels of porosity from micro- to macropores. While physisorption allows one to assess micro- and mesopores, a widely employed method for textural analysis of macroporous materials is mercury porosimetry and we also review important insights associated with the underlying mechanisms governing mercury intrusion/extrusion experiments. Hence, although the main focus of this review is on physical adsorption, we strongly emphasize the importance of combining advanced physical adsorption with other complementary experimental techniques for obtaining a reliable and comprehensive understanding of the texture of hierarchically structured materials.

13.
J Am Chem Soc ; 139(48): 17273-17276, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29160696

RESUMO

Zeolites are widely used in industrial processes, mostly as catalysts or adsorbents. Increasing their micropore volume could further improve their already exceptional catalytic and separation performances. We report a tunable extraction of zeolite framework cations (Si, Al) on a faujasite-type zeolite, the archetype of molecular sieves with cages and the most widely used as a catalyst and sorbent; this results in ca. 10% higher micropore volume with limited impact on its thermal stability. This increased micropore volume results from the opening of some of the small (sodalite) cages, otherwise inaccessible to most molecules. As more active sites become accessible, the catalytic performances for these modified zeolites are substantially improved. The method, based on etching with NH4F, is also applicable to other cage-containing microporous molecular sieves, where some of the most industrially relevant zeolites are found.

14.
Adsorp Sci Technol ; 34(1): 3-12, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27840542

RESUMO

The goal of the eighth industrial fluid properties simulation challenge was to test the ability of molecular simulation methods to predict the adsorption of organic adsorbates in activated carbon materials. In particular, the eighth challenge focused on the adsorption of perfluorohexane in the activated carbon BAM-109. Entrants were challenged to predict the adsorption in the carbon at 273 K and relative pressures of 0.1, 0.3, and 0.6. The predictions were judged by comparison to a benchmark set of experimentally determined values. Overall good agreement and consistency were found between the predictions of most entrants.

15.
Adsorp Sci Technol ; 34(1): 13-41, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27840543

RESUMO

The primary goal of the eighth industrial fluid properties simulation challenge was to test the ability of molecular simulation methods to predict the adsorption of organic adsorbates in activated carbon materials. The challenge focused on the adsorption of perfluorohexane in the activated carbon standard BAM-P109 (Panne and Thünemann 2010). Entrants were challenged to predict the adsorption of perfluorohexane in the activated carbon at a temperature of 273 K and at relative pressures of 0.1, 0.3, and 0.6. The relative pressure (P/Po) is defined as that relative to the bulk saturation pressure predicted by the fluid model at a given temperature (273 K in this case). The predictions were judged by comparison to a set of experimentally determined values, which are published here for the first time and were not disclosed to the entrants prior to the challenge. Benchmark experimental studies, described herein, were also carried out and provided to entrants in order to aid in the development of new force fields and simulation methods to be employed in the challenge. These studies included argon, carbon dioxide, and water adsorption in the BAM-P109 activated carbon as well as X-ray diffraction, X-ray microtomography, photoelectron spectroscopy, and atomic emission spectroscopy studies of BAM-P109. Several concurrent studies were carried out for the BAM-P108 activated carbon (Panne and Thünemann 2010). These are included in the current manuscript for comparison.

16.
Langmuir ; 31(23): 6332-42, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-25989514

RESUMO

The mechanism of dibromomethane (DBM) sorption in mesoporous silica was investigated by in situ small-angle X-ray scattering (SAXS). Six different samples of commercial porous silica particles used for liquid chromatography were studied, featuring a disordered mesoporous structure, with some of the samples being functionalized with alkyl chains. SAXS curves were recorded at room temperature at various relative pressures P/P0 during adsorption of DBM. The in situ SAXS experiment is based on contrast matching between silica and condensed DBM with regard to X-ray scattering. One alkyl-modified silica sample was evaluated in detail by extraction of the chord-length distribution (CLD) from SAXS data obtained for several P/P0. On the basis of this analytical approach and by comparison with ex situ obtained data of nitrogen and DBM adsorption, the mechanism of DBM uptake was studied. Results of average mesopore sizes obtained with the CLD method were compared with pore size analysis using nitrogen physisorption (77 K) with advanced state-of-the-art nonlocal density functional theory (NLDFT) evaluation. The dual SAXS/physisorption study indicates that microporosity is negligible in all silica samples and that surface functionalization with a hydrophobic ligand has a major influence upon the process of DBM adsorption. Also, all of the mesopores are accessible as evidenced by in situ SAXS. The data suggest that no multilayer adsorption occurs on C18-(octadecyl-)modified silica surfaces using DBM as adsorptive, and it is possibly also negligible on bare silica surfaces.

17.
Chem Commun (Camb) ; 60(45): 5840-5843, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38751319

RESUMO

Dual-gasochromic supraparticles that undergo rapid eye-readable and gas-specific colour changes upon reaction with hydrogen or ammonia are reported. This functionality is achieved by tailoring the solid-liquid-gas interface within the mesoporous framework of supraparticles via spray-drying.

18.
Langmuir ; 29(48): 14893-902, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24188008

RESUMO

Ordered mesoporous CMK carbons and periodic mesoporous organosilica (PMO) materials have been characterized by combining nitrogen (77.4 K) and argon (87.3 K) adsorption with recently developed quenched solid density functional theory (QSDFT). Systematic, high-resolution water adsorption experiments have been performed in the temperature range from 298 to 318 K in order to ascertain the effect of surface chemistry (using periodic mesoporous organosilicas (PMOs) of given pore size) and pore size/pore geometry (using CMK-3, CMK-8 carbons) on the adsorption, pore filling, condensation and hysteresis behavior. These data reveal how the interplay between confined geometry effects and the strength of the adsorption forces influence the adsorption, wetting, and phase behavior of pore fluids. Further, our results indicate that water adsorption is quite sensitive to both small changes in pore structure and surface chemistry, showing the potential of water adsorption as a powerful complementary tool for the characterization of nanoporous solids.

19.
Langmuir ; 28(34): 12647-54, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22853806

RESUMO

The use of colloidal crystals with various primary particle sizes as templates leads to the formation of three-dimensionally ordered mesoporous (3DOm) carbons containing spherical pores with tailorable pore size and extremely high pore volumes. We present a comprehensive structural characterization of these novel carbons by using nitrogen (77.4 K) and argon (87.3 K) adsorption coupled with the application of novel, dedicated quenched solid density functional theory (QSDFT) methods which assume correctly the underlying spherical pore geometry and also the underlying adsorption mechanism. The observed adsorption isotherms are of Type IV with Type H1-like hysteresis, despite the fact that pore blocking affects the position of the desorption branch. This follows also from detailed, advanced scanning hysteresis experiments which not only allow one to identify the underlying mechanisms of hysteresis, but also provide complementary information about the texture of these unique porous materials. This work addresses the problem of pore size analysis of novel, ordered porous carbons and highlights the importance of hysteresis scanning experiments for textural analysis of the pore network.


Assuntos
Argônio/química , Carbono/química , Nitrogênio/química , Adsorção , Modelos Moleculares , Conformação Molecular , Nanopartículas/química , Tamanho da Partícula , Porosidade , Pressão , Teoria Quântica , Dióxido de Silício/química
20.
Phys Chem Chem Phys ; 14(16): 5651-61, 2012 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-22428163

RESUMO

The thermoresponsive polymer poly-N-isopropylacrylamide (PNIPAAM) was grafted in mesoporous SBA-15 silica. The grafting process consists of three steps: (i) increasing the amount of surface silanol groups of SBA-15 by hydroxylation, (ii) attachment of an anchor (1-(trichlorosilyl)-2-(m/p-(chloromethylphenyl)ethane) and finally (iii) the polymerization of the monomers (NIPAAM) onto the anchor. After each step, the materials were characterized regarding the porosity, using inert gas (argon, nitrogen) physisorption measurements. Also, the structure was investigated by small-angle X-ray diffraction analysis and thermogravimetric analysis was used for determination of the amount of grafted material. A total of 17% by weight of organic material was introduced in the porous host and the structure was preserved during the grafting process. Physisorption measurements revealed that the anchor is mainly located in the intrawall pores present in SBA-15. Consequently, the polymer is preferentially located in the intrawall pores or in the vicinity thereof. The final mesopore volume is 0.47 cm(3) g(-1) as compared to 0.96 cm(3) g(-1) for the pure SBA-15. The surprisingly large loss of mesopore volume and an almost constant mesopore diameter is consistent with a partial sealing of the mesopore volume in the composite materials. The potential thermocontrol combined with the large mesoporosity and the possible "storage space" provided by the sealed mesopore volume leads to a material with possibilities for various applications.


Assuntos
Resinas Acrílicas/química , Dióxido de Silício/química , Adsorção , Gases/química , Porosidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa