Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 39(4)2022 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-35388432

RESUMO

The repeated evolution of the same traits in distantly related groups (convergent evolution) raises a key question in evolutionary biology: do the same genes underpin convergent phenotypes? Here, we explore one such trait, viviparity (live birth), which, qualitative studies suggest, may indeed have evolved via genetic convergence. There are >150 independent origins of live birth in vertebrates, providing a uniquely powerful system to test the mechanisms underpinning convergence in morphology, physiology, and/or gene recruitment during pregnancy. We compared transcriptomic data from eight vertebrates (lizards, mammals, sharks) that gestate embryos within the uterus. Since many previous studies detected qualitative similarities in gene use during independent origins of pregnancy, we expected to find significant overlap in gene use in viviparous taxa. However, we found no more overlap in uterine gene expression associated with viviparity than we would expect by chance alone. Each viviparous lineage exhibits the same core set of uterine physiological functions. Yet, contrary to prevailing assumptions about this trait, we find that none of the same genes are differentially expressed in all viviparous lineages, or even in all viviparous amniote lineages. Therefore, across distantly related vertebrates, different genes have been recruited to support the morphological and physiological changes required for successful pregnancy. We conclude that redundancies in gene function have enabled the repeated evolution of viviparity through recruitment of different genes from genomic "toolboxes", which are uniquely constrained by the ancestries of each lineage.


Assuntos
Lagartos , Viviparidade não Mamífera , Animais , Evolução Biológica , Feminino , Genômica , Lagartos/genética , Mamíferos/fisiologia , Placenta , Gravidez , Viviparidade não Mamífera/genética
2.
Biol Reprod ; 105(6): 1381-1400, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34514493

RESUMO

There are many different forms of nutrient provision in viviparous (live-bearing) species. The formation of a placenta is one method where the placenta functions to transfer nutrients from mother to fetus (placentotrophy), to transfer waste from the fetus to the mother, and to perform respiratory gas exchange. Despite having the same overarching function, there are different types of placentation within placentotrophic vertebrates, and many morphological changes occur in the uterus during pregnancy to facilitate formation of the placenta. These changes are regulated in complex ways but are controlled by similar hormonal mechanisms across species. This review describes current knowledge of the morphological and molecular changes to the uterine epithelium preceding implantation among mammals. Our aim is to identify the commonalities and constraints of these cellular changes to understand the evolution of placentation in mammals and to propose directions for future research. We compare and discuss the complex modifications to the ultrastructure of uterine epithelial cells (UEC) and show that there are similarities in the changes to the cytoskeleton and gross morphology of the UEC, especially of the apical and lateral plasma membrane of the cells during the formation of a placenta in all eutherians and marsupials studied to date. We conclude that further research is needed to understand the evolution of placentation among viviparous mammals, particularly concerning the level of placental invasiveness, hormonal control, and genetic underpinnings of pregnancy in marsupial taxa.


Assuntos
Evolução Biológica , Mamíferos/fisiologia , Placentação , Animais , Feminino , Gravidez
3.
Mol Ecol ; 29(7): 1315-1327, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32153075

RESUMO

Our understanding of the evolution of complex biological traits is greatly advanced by examining taxa with intermediate phenotypes. The transition from oviparity (egg-laying) to viviparity (live-bearing) has occurred independently in many animal lineages, but there are few phenotypic intermediates. The lizard Saiphos equalis exhibits bimodal reproduction, with some viviparous populations, and other oviparous populations with long egg-retention, a rare trait where most of embryonic development occurs inside the mother prior to late ovipositioning. We posit that oviparous S. equalis represent an intermediate form between "true" oviparity and viviparity. We used transcriptomics to compare uterine gene expression in these two phenotypes, and provide a molecular model for the genetic control and evolution of reproductive mode. Many genes are differentially expressed throughout the reproductive cycle of both phenotypes, which have clearly different gene expression profiles overall. The differentially expressed genes within oviparous and viviparous individuals have broadly similar biological functions putatively important for sustaining embryos, including uterine remodelling, respiratory gas and water exchange, and immune regulation. These functional similarities indicate either that long egg-retention is an exaptation for viviparity, or might reflect parallel evolution of similar gravidity-related changes in gene expression in long egg-retention oviparity. In contrast, gene expression changes across the reproductive cycle of long egg-retaining oviparous S. equalis are dramatically different from those of "true" oviparous skinks (such as Lampropholis guichenoti), supporting our assertion that oviparous S. equalis exhibit an intermediate phenotype between "true" oviparity and viviparity.


Assuntos
Lagartos/genética , Lagartos/fisiologia , Oviparidade/genética , Viviparidade não Mamífera/genética , Animais , Evolução Biológica , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Modelos Genéticos , New South Wales , Transcriptoma
4.
J Anat ; 236(6): 1126-1136, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32052440

RESUMO

Mammalian pregnancy involves remodelling of the uterine epithelium to enable placentation. In marsupials, such remodelling has probably played a key role in the transition from ancestral invasive placentation to non-invasive placentation. Identifying uterine alterations that are unique to marsupials with non-invasive placentation can thus elucidate mechanisms of marsupial placental evolution. We identified apical alterations to uterine epithelial cells prior to implantation in Monodelphis domestica, a member of the least derived living marsupial clade (Didelphidae) with invasive (endotheliochorial) placentation. We then compared these traits with those of Macropus eugenii (Macropodidae) and Trichosurus vulpecula (Phalangeridae), both with non-invasive placentation, to identify which alterations to the uterine epithelium are ancestral and which facilitate secondarily evolved non-invasive placentation. In M. domestica, remodelling of the uterine epithelium involves reduced cellular heterogeneity and development of uterodome-like cells, suggesting that similar alterations may also have occurred in the marsupial common ancestor. These alterations also overlap with those of both T. vulpecula and Ma. eugenii, suggesting that the placental shift from invasive to non-invasive placentation in marsupials involves essential, conserved characteristics, irrespective of placental mode. However, unique apical alterations of both T. vulpecula and Ma. eugenii, relative to M. domestica, imply that lineage-specific alterations underpin the evolutionary shift to non-invasive placentation in marsupials.


Assuntos
Epitélio/fisiologia , Placentação/fisiologia , Prenhez/fisiologia , Útero/fisiologia , Animais , Evolução Biológica , Implantação do Embrião/fisiologia , Feminino , Monodelphis , Gravidez
5.
Mol Reprod Dev ; 86(6): 639-649, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30950142

RESUMO

The fluid that surrounds the embryo in the uterus contains important nourishing factors and secretions. To maintain the distinct microenvironment in the uterine lumen, the tight junctions between uterine epithelial cells are remodeled to decrease paracellular movement of molecules and solutes. Modifications to tight junctions between uterine epithelial cells is a common feature of pregnancy in eutherian mammals, regardless of placental type. Here we used immunofluorescence microscopy and western blot analysis to describe distributional changes to tight junctional proteins, claudin-1, -3, -4, and -5, in the uterine epithelial cells of a marsupial species, Sminthopsis crassicaudata. Immunofluorescence microscopy revealed claudin-1, -3, and -5 in the tight junctions of the uterine epithelium of S. crassicaudata during pregnancy. These specific claudins are associated with restricting passive movement of fluid between epithelial cells in eutherians. Hence, their function during pregnancy in S. crassicaudata may be to maintain the uterine luminal content surrounding developing embryos. Claudin-4 disappears from all uterine regions of S. crassicaudata at the time of implantation, in contrast with the distribution of this claudin in some eutherian mammals. We conclude that like eutherian mammals, distributional changes to claudins in the uterine epithelial cells of S. crassicaudata are necessary to support pregnancy. However, the combination of individual claudin isoforms in the tight junctions of the uterine epithelium of S. crassicaudata differs from that of eutherian mammals. Our findings suggest that the precise permeability of the paracellular pathway of the uterine epithelium is species-specific.


Assuntos
Claudinas/metabolismo , Células Epiteliais/metabolismo , Marsupiais/metabolismo , Gravidez/metabolismo , Junções Íntimas/metabolismo , Útero/metabolismo , Animais , Feminino
6.
Biol Lett ; 15(4): 20180827, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30940025

RESUMO

Facultative changes in parity mode (oviparity to viviparity and vice versa) are rare in vertebrates, yet offer fascinating opportunities to investigate the role of reproductive lability in parity mode evolution. Here, we report apparent facultative oviparity by a viviparous female of the bimodally reproductive skink Saiphos equalis-the first report of different parity modes within a vertebrate clutch. Eggs oviposited facultatively possess shell characteristics of both viviparous and oviparous S. equalis, demonstrating that egg coverings for viviparous embryos are produced by the same machinery as those for oviparous individuals. Since selection may act in either direction when viviparity has evolved recently, squamate reproductive lability may confer a selective advantage. We suggest that facultative oviparity is a viable reproductive strategy for S. equalis and that squamate reproductive lability is more evolutionarily significant than previously acknowledged.


Assuntos
Lagartos , Oviparidade , Animais , Feminino , Reprodução , Triazinas , Viviparidade não Mamífera
7.
Reprod Fertil Dev ; 31(4): 633-644, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30449299

RESUMO

The uterine epithelium undergoes remodelling to become receptive to blastocyst implantation during pregnancy in a process known as the plasma membrane transformation. There are commonalities in ultrastructural changes to the epithelium, which, in eutherian, pregnancies are controlled by maternal hormones, progesterone and oestrogens. The aim of this study was to determine the effects that sex steroids have on the uterine epithelium in the fat-tailed dunnart Sminthopsis crassicaudata, the first such study in a marsupial. Females were exposed to exogenous hormones while they were reproductively quiescent, thus not producing physiological concentrations of ovarian hormones. We found that changes to the protein E-cadherin, which forms part of the adherens junction, are controlled by progesterone and that changes to the desmoglein-2 protein, which forms part of desmosomes, are controlled by 17ß-oestradiol. Exposure to a combination of progesterone and 17ß-oestradiol causes changes to the microvilli on the apical surface and to the ultrastructure of the uterine epithelium. There is a decrease in lateral adhesion when the uterus is exposed to progesterone and 17ß-oestradiol that mimics the hormone environment of uterine receptivity. We conclude that uterine receptivity and the plasma membrane transformation in marsupial and eutherian pregnancies are under the same endocrine control and may be an ancestral feature of therian mammals.


Assuntos
Membrana Celular/efeitos dos fármacos , Estradiol/farmacologia , Progesterona/farmacologia , Útero/efeitos dos fármacos , Junções Aderentes/metabolismo , Animais , Caderinas/metabolismo , Membrana Celular/metabolismo , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Feminino , Marsupiais , Microvilosidades/efeitos dos fármacos , Microvilosidades/metabolismo , Útero/metabolismo
8.
J Exp Zool B Mol Dev Evol ; 330(3): 165-180, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29656535

RESUMO

The evolution of viviparity requires eggshell thinning to bring together the maternal uterus and extraembryonic membranes to form placentae for physiological exchanges. Eggshell thinning likely involves reduced activity of the uterine glands that secrete it. We tested these hypotheses by comparing the uterine and eggshell structure and histochemistry among oviparous and viviparous water snakes (Helicops) using phylogenetic methods. Eggshell thinning occurred convergently in all three origins of viviparity in Helicops and was accomplished by the loss of the mineral layer and thinning of the shell membrane. Uterine glands secrete the shell membrane in both oviparous and viviparous Helicops. These glands increase during vitellogenesis regardless of the reproductive mode, but they always reach smaller sizes in viviparous forms. As there is no phylogenetic signal in eggshell thickness and gland dimensions, we conclude that interspecific differences are related to reproductive mode and not phylogeny. Therefore, our results support the hypothesis that eggshell thinning is associated with the evolution of viviparity and that such thinning result from a reduction in gland size in viviparous taxa. Interestingly, the shell membrane thickness of viviparous females of the reproductively bimodal Helicops angulatus is intermediate between their oviparous and viviparous congeners. Thus, although eggshell thinning is required by the evolution of viviparity, a nearly complete loss of this structure is not. However, uterine gland dimensions are similar across viviparous Helicops. Fewer glands or their functional repurposing may explain the thinner shell membrane in viviparous species of Helicops in comparison to viviparous females of the bimodal H. angulatus.


Assuntos
Evolução Biológica , Casca de Ovo/fisiologia , Serpentes/fisiologia , Útero/fisiologia , Viviparidade não Mamífera/genética , Viviparidade não Mamífera/fisiologia , Animais , Embrião não Mamífero/fisiologia , Feminino , Serpentes/classificação
9.
Mol Reprod Dev ; 85(1): 72-82, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29243855

RESUMO

In mammalian pregnancy, the uterus is remodeled to become receptive to embryonic implantation. Since non-invasive placentation in marsupials is likely derived from invasive placentation, and is underpinned by intra-uterine conflict between mother and embryo, species with non-invasive placentation may employ a variety of molecular mechanisms to maintain an intact uterine epithelium and to prevent embryonic invasion. Identifying such modifications to the uterine epithelium of marsupial species with non-invasive placentation is key to understanding how conflict is mediated during pregnancy in different mammalian groups. Desmoglein-2, involved in maintaining lateral cell-cell adhesion of the uterine epithelium, is redistributed before implantation to facilitate embryo invasion in mammals with invasive placentation. We identified localization patterns of this cell adhesion molecule throughout pregnancy in two marsupial species with non-invasive placentation, the tammar wallaby (Macropus eugenii; Macropodidae), and the brushtail possum (Trichosurus vulpecula; Phalangeridae). Interestingly, Desmoglein-2 redistribution also occurs in both M. eugenii and T. vulpecula, suggesting that cell adhesion, and thus integrity of the uterine epithelium, is reduced during implantation regardless of placental type, and may be an important component of uterine remodeling. Desmoglein-2 also localizes to the mesenchymal stromal cells of M. eugenii and to epithelial cell nuclei in T. vulpecula, suggesting its involvement in cellular processes that are independent of adhesion and may compensate for reduced lateral adhesion in the uterine epithelium. We conclude that non-invasive placentation in marsupials involves diverse and complementary strategies to maintain an intact epithelial barrier.


Assuntos
Desmogleína 2/metabolismo , Implantação do Embrião/fisiologia , Macropodidae/embriologia , Placentação/fisiologia , Trichosurus/embriologia , Útero/metabolismo , Animais , Epitélio/fisiologia , Feminino , Gravidez
10.
J Exp Zool B Mol Dev Evol ; 328(4): 334-346, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28296138

RESUMO

The evolutionary transition from egg-laying to live-bearing in amniote vertebrates (reptiles and mammals) requires the development of a closer association between the maternal and embryonic tissue to facilitate gas and nutrient exchange with the embryo. Because the embryo is an allograft to the father and mother, it could be considered foreign by the maternal immune system and thus be immunologically rejected during pregnancy. In eutherian ("placental") mammals, the proinflammatory genes interleukin 1B (IL1B), tumor necrosis factor (TNF) and tumor necrosis factor receptor superfamily 1A (TNFRSF1A) are tightly regulated in the pregnant uterus to prevent embryonic rejection. We tested whether inflammation is similarly regulated in pregnant viviparous reptiles by comparing the expression of IL1B, TNF, and TNFRSF1A in the pregnant and nonpregnant uterus of the viviparous lizard, Pseudemoia entrecasteauxii. We found statistically significant support for the downregulation of pregnant uterine TNF mRNA expression in P. entrecasteauxii, but no statistically significant changes in mRNA expression of TNFRSF1A or IL1B between pregnant and nonpregnant uteri. Although these genes are apparently not regulated at the transcriptional level, our immunofluorescence microscopy analyses nonetheless demonstrate that the IL1B proteins are stored intracellularly during pregnancy, possibly resulting in inhibition of inflammatory response. We therefore conclude that processes of both transcriptional (TNF) and posttranslational (IL1B) gene regulation may reduce inflammation in the pregnant uterus of this viviparous reptile. Our study is important because it demonstrates that regulating the maternal immune system to prevent embryonic rejection may be important in reptilian pregnancy as it is in mammalian pregnancy.


Assuntos
Regulação da Expressão Gênica/fisiologia , Lagartos/fisiologia , Ovoviviparidade/fisiologia , Útero/metabolismo , Animais , Feminino , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
11.
J Anat ; 231(1): 84-94, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28397980

RESUMO

The formation of a placenta is critical for successful mammalian pregnancy and requires remodelling of the uterine epithelium. In eutherian mammals, remodelling involves specific morphological changes that often correlate with the mode of embryonic attachment. Given the differences between marsupial and eutherian placentae, formation of a marsupial placenta may involve patterns of uterine remodelling that are different from those in eutherians. Here we present a detailed morphological study of the uterus of the brushtail possum (Trichosurus vulpecula; Phalangeridae) throughout pregnancy, using both scanning and transmission electron microscopy, to identify whether uterine changes in marsupials correlate with mode of embryonic attachment as they do in eutherian mammals. The uterine remodelling of T. vulpecula is similar to that of eutherian mammals with the same mode of embryonic attachment (non-invasive, epitheliochorial placentation). The morphological similarities include development of large apical projections, and a decrease in the diffusion distance for haemotrophes around the period of embryonic attachment. Importantly, remodelling of the uterus in T. vulpecula during pregnancy differs from that of a marsupial species with non-invasive attachment (Macropus eugenii; Macropodidae) but is similar to that of a marsupial with invasive attachment (Monodelphis domestica; Didelphidae). We conclude that modes of embryonic attachment may not be typified by a particular suite of uterine changes in marsupials, as is the case for eutherian mammals, and that uterine remodelling may instead reflect phylogenetic relationships between marsupial lineages.


Assuntos
Prenhez/fisiologia , Trichosurus/fisiologia , Útero/fisiologia , Útero/ultraestrutura , Animais , Feminino , Ovário/anatomia & histologia , Placentação , Gravidez , Pseudogravidez
12.
J Anat ; 231(3): 359-365, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28670836

RESUMO

The uterine luminal epithelium is the first site of contact between fetal and maternal tissues during therian pregnancy and must undergo specialised changes for implantation of the blastocyst to be successful. These changes, collectively termed the plasma membrane transformation (PMT), allow the blastocyst to attach to the uterine epithelium preceding the formation of a placenta. There are similarities in the morphological and molecular changes occurring in live-bearing eutherian species during the PMT studied so far. Similar cellular remodelling occurs in a marsupial species, the fat-tailed dunnart (Sminthopsis crassicaudata), despite the divergence of marsupials from eutherian mammals over 130 mya, which resulted in the evolution of distinct reproductive strategies. Adhesion molecules along the lateral plasma membrane of uterine epithelium provide a barrier to invasion by the embryo. We thus characterised the presence and change in distribution of epithelial cadherin (E-cadherin) in uterine epithelium from non-pregnant fat-tailed dunnarts and compared it to dunnarts in early-, mid- and late-stage pregnancy. E-cadherin staining is localised to the lateral plasma membrane in uterine epithelium from non-pregnant and early-stage pregnant dunnarts. The E-cadherin staining is cytoplasmic in epithelium from uteri of mid- and late-stage pregnant dunnarts. This loss of localised staining suggests that the adherens junction dissociates from the lateral plasma membrane, allowing for invasion between the epithelial cells by the blastocyst. As the changes during pregnancy to cadherin were similar in the laboratory rat with highly invasive (haemochorial) placentation, a live-bearing lizard species with non-invasive (epitheliochorial) placentation and a marsupial, the fat-tailed dunnart, which has invasive (endotheliochorial) placentation, we suggest that the molecular mechanisms allowing for successful pregnancy are conserved among mammals during the early stages of pregnancy regardless of placental invasiveness.


Assuntos
Caderinas/metabolismo , Implantação do Embrião , Marsupiais/metabolismo , Prenhez/metabolismo , Útero/metabolismo , Animais , Epitélio/metabolismo , Feminino , Gravidez
13.
Mol Reprod Dev ; 84(10): 1076-1085, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28688214

RESUMO

Pregnancy in mammals requires remodeling of the uterus to become receptive to the implanting embryo. Remarkably similar morphological changes to the uterine epithelium occur in both eutherian and marsupial mammals, irrespective of placental type. Nevertheless, molecular differences in uterine remodeling indicate that the marsupial uterus employs maternal defences, including molecular reinforcement of the uterine epithelium, to regulate embryonic invasion. Non-invasive (epitheliochorial) embryonic attachment in marsupials likely evolved secondarily from invasive attachment, so uterine defences in these species may prevent embryonic invasion. We tested this hypothesis by identifying localization patterns of Talin, a key basal anchoring molecule, in the uterine epithelium during pregnancy in the tammar wallaby (Macropus eugenii; Macropodidae) and the brush tail possum (Trichosurus vulpecula; Phalangeridae). Embryonic attachment is non-invasive in both species, yet Talin undergoes a clear distributional change during pregnancy in M. eugenii, including recruitment to the base of the uterine epithelium just before attachment, that closely resembles that of invasive implantation in the marsupial species Sminthopsis crassicaudata. Basal localization occurs throughout pregnancy in T. vulpecula, although, as for M. eugenii, this pattern is most specific prior to attachment. Such molecular reinforcement of the uterine epithelium for non-invasive embryonic attachment in marsupials supports the hypothesis that less-invasive and non-invasive embryonic attachment in marsupials may have evolved via accrual of maternal defences. Recruitment of basal molecules, including Talin, to the uterine epithelium may have played a key role in this transition.


Assuntos
Implantação do Embrião/fisiologia , Macropodidae/fisiologia , Prenhez , Trichosurus/fisiologia , Útero/metabolismo , Animais , Células Epiteliais/metabolismo , Feminino , Macropodidae/metabolismo , Phalangeridae/metabolismo , Phalangeridae/fisiologia , Gravidez , Ratos , Talina/metabolismo , Trichosurus/metabolismo , Trofoblastos/metabolismo , Útero/citologia , Útero/fisiologia
14.
Conserv Biol ; 31(6): 1340-1349, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28319283

RESUMO

Ex situ conservation tools, such as captive breeding for reintroduction, are considered a last resort to recover threatened or endangered species, but they may also help reduce anthropogenic threats where it is difficult or impossible to address them directly. Headstarting, or captive rearing of eggs or neonate animals for subsequent release into the wild, is controversial because it treats only a symptom of a larger conservation problem; however, it may provide a mechanism to address multiple threats, particularly near population centers. We conducted a population viability analysis of Australia's most widespread freshwater turtle, Chelodina longicollis, to determine the effect of adult roadkill (death by collision with motor vehicles), which is increasing, and reduced recruitment through nest predation from introduced European red foxes (Vulpes vulpes). We also modeled management scenarios to test the effectiveness of headstarting, fox management, and measures to reduce mortality on roads. Only scenarios with headstarting from source populations eliminated all risks of extinction and allowed population growth. Small increases in adult mortality (2%) had the greatest effect on population growth and extinction risk. Where threats simultaneously affected other life-history stages (e.g., recruitment), eliminating harvest pressures on adult females alone did not eliminate the risk of population extinction. In our models, one source population could supply enough hatchlings annually to supplement 25 other similar-sized populations such that extinction was avoided. Based on our results, we believe headstarting should be a primary tool for managing freshwater turtles for which threats affect multiple life-history stages. We advocate the creation of source populations for managing freshwater turtles that are greatly threatened at multiple life-history stages, such as depredation of eggs by invasive species and adult mortality via roadkill.


Assuntos
Conservação dos Recursos Naturais/métodos , Extinção Biológica , Cadeia Alimentar , Raposas/fisiologia , Tartarugas/fisiologia , Animais , Austrália , Água Doce , Espécies Introduzidas , Longevidade , New South Wales , Densidade Demográfica , Dinâmica Populacional , Comportamento Predatório , Risco , Vitória
15.
Gen Comp Endocrinol ; 244: 19-29, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27102939

RESUMO

In oviparous amniotes (reptiles, birds, and mammals) the chorioallantoic membrane (CAM) lines the inside of the egg and acts as the living point of contact between the embryo and the outside world. In livebearing (viviparous) amniotes, communication during embryonic development occurs across placental tissues, which form between the uterine tissue of the mother and the CAM of the embryo. In both oviparous and viviparous taxa, the CAM is at the interface of the embryo and the external environment and can transfer signals from there to the embryo proper. To understand the evolution of placental hormone production in amniotes, we examined the expression of genes involved in hormone synthesis, metabolism, and hormone receptivity in the CAM of species across the amniote phylogeny. We collected transcriptome data for the chorioallantoic membranes of the chicken (oviparous), the lizards Lerista bougainvillii (both oviparous and viviparous populations) and Pseudemoia entrecasteauxii (viviparous), and the horse Equus caballus (viviparous). The viviparous taxa differ in their mechanisms of nutrient provisioning: L. bougainvillii is lecithotrophic (embryonic nourishment is provided via the yolk only), but P. entrecasteauxii and the horse are placentotrophic (embryos are nourished via placental transport). Of the 423 hormone-related genes that we examined, 91 genes are expressed in all studied species, suggesting that the chorioallantoic membrane ancestrally had an endocrine function. Therefore, the chorioallantoic membrane appears to be a highly hormonally active organ in all amniotes. No genes are expressed only in viviparous species, suggesting that the evolution of viviparity has not required the recruitment of any specific hormone-related genes. Our data suggest that the endocrine function of the CAM as a placental tissue evolved in part through co-option of ancestral gene expression patterns.


Assuntos
Membrana Corioalantoide/metabolismo , Oviparidade/fisiologia , Animais , Galinhas , Feminino , Genômica , Cavalos , Lagartos , Mamíferos , Gravidez , Transdução de Sinais
16.
Mol Biol Evol ; 32(12): 3114-31, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26330546

RESUMO

Viviparity (live birth) has evolved more than 150 times in vertebrates, and represents an excellent model system for studying the evolution of complex traits. There are at least 23 independent origins of viviparity in fishes, with syngnathid fishes (seahorses and pipefish) unique in exhibiting male pregnancy. Male seahorses and pipefish have evolved specialized brooding pouches that provide protection, gas exchange, osmoregulation, and limited nutrient provisioning to developing embryos. Pouch structures differ widely across the Syngnathidae, offering an ideal opportunity to study the evolution of reproductive complexity. However, the physiological and genetic changes facilitating male pregnancy are largely unknown. We used transcriptome profiling to examine pouch gene expression at successive gestational stages in a syngnathid with the most complex brood pouch morphology, the seahorse Hippocampus abdominalis. Using a unique time-calibrated RNA-seq data set including brood pouch at key stages of embryonic development, we identified transcriptional changes associated with brood pouch remodeling, nutrient and waste transport, gas exchange, osmoregulation, and immunological protection of developing embryos at conception, development and parturition. Key seahorse transcripts share homology with genes of reproductive function in pregnant mammals, reptiles, and other live-bearing fish, suggesting a common toolkit of genes regulating pregnancy in divergent evolutionary lineages.


Assuntos
Reprodução/genética , Smegmamorpha/genética , Viviparidade não Mamífera/genética , Animais , Evolução Biológica , Feminino , Fertilização , Perfilação da Expressão Gênica , Masculino , Análise de Sequência de RNA , Comportamento Sexual Animal
17.
Dev Genes Evol ; 226(2): 79-85, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26943808

RESUMO

Genomic imprinting is a process that results in the differential expression of genes depending on their parent of origin. It occurs in both plants and live-bearing mammals, with imprinted genes typically regulating the ability of an embryo to manipulate the maternal provision of nutrients. Genomic imprinting increases the potential for selection to act separately on paternally and maternally expressed genes, which increases the number of opportunities that selection can facilitate embryonic control over maternal nutrient provision. By looking for imprinting in an independent matrotrophic lineage, the viviparous lizard Pseudemoia entrecasteauxii (Scincidae), we test the hypothesis that genomic imprinting facilitates the evolution of substantial placental nutrient transport to embryos (matrotrophy). We sequenced transcriptomes from the embryonic component of lizard placentae to determine whether there are parent-of-origin differences in expression of genes that are imprinted in mammals. Of these genes, 19 had sufficiently high expression in the lizard to identify polymorphisms in transcribed sequences. We identified bi-allelic expression in 17 genes (including insulin-like growth factor 2), indicating that neither allele was imprinted. These data suggest that either genomic imprinting has not evolved in this matrotrophic skink or, if it has, it has evolved in different genes to mammals. We outline how these hypotheses can be tested. This study highlights important differences between mammalian and reptile pregnancy and the absence of any shared imprinting genes reflects fundamental differences in the way that pregnancy has evolved in these two lineages.


Assuntos
Lagartos/genética , Lagartos/fisiologia , Animais , Austrália , Embrião não Mamífero/anatomia & histologia , Feminino , Perfilação da Expressão Gênica , Impressão Genômica , Lagartos/anatomia & histologia , Útero/anatomia & histologia , Viviparidade não Mamífera
18.
Ecol Appl ; 26(7): 1969-1983, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27755718

RESUMO

Ecological traps are threats to organisms, and exist in a range of biological systems. A subset of ecological trap theory is the "ethological trap," whereby behaviors canalized by past natural selection become traps when environments change rapidly. Invasive predators are major threats to imperiled species and their ability to exploit canalized behaviors of naive prey is particularly important for the establishment of the predator and the decline of the native prey. Our study uses ecological theory to demonstrate that invasive predator controls require shifts in management priorities. Total predation rate (i.e., total response) is the product of both the functional response and numerical response of predators to prey. Functional responses are the changes in the rate of prey consumption by individual predators, relative to prey abundance. Numerical responses are the aggregative rates of prey consumption by all predators relative to prey density, which change with predator density via reproduction or migration, in response to changes in prey density. Traditional invasive predator management methods focus on reducing predator populations, and thus manage for numerical responses. These management efforts fail to manage for functional responses, and may not eliminate impacts of highly efficient individual predators. We explore this problem by modeling the impacts of functional and numerical responses of invasive foxes depredating imperiled Australian turtle nests. Foxes exhibit exceptionally efficient functional responses. A single fox can destroy >95% of turtle nests in a nesting area, which eliminates juvenile recruitment. In this case, the ethological trap is the "Arribada" nesting strategy, an emergent behavior whereby most turtles in a population nest simultaneously in the same nesting grounds. Our models show that Arribada nesting events do not oversaturate foxes, and small numbers of foxes depredate all of the nests in a given Arribada. Widely scattering nests may reduce fox predation rates, but the long generation times of turtles combined with their rapid recent decline suggests that evolutionary responses in nesting strategy may be unlikely. Our study demonstrates that reducing populations of highly efficient invasive predators is insufficient for preserving native prey species. Instead, management must reduce individual predator efficiency, independent of reducing predator population size.


Assuntos
Extinção Biológica , Raposas/fisiologia , Espécies Introduzidas , Modelos Biológicos , Comportamento Predatório , Tartarugas/fisiologia , Animais , Austrália , Conservação dos Recursos Naturais , Monitoramento Ambiental , Comportamento de Nidação , Óvulo , Dinâmica Populacional , Fatores de Tempo
19.
BMC Evol Biol ; 15: 62, 2015 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-25880916

RESUMO

BACKGROUND: High-throughput sequencing using targeted enrichment and transcriptomic methods enables rapid construction of phylogenomic data sets incorporating hundreds to thousands of loci. These advances have enabled access to an unprecedented amount of nucleotide sequence data, but they also pose new questions. Given that the loci targeted for enrichment are often highly conserved, how informative are they at different taxonomic scales, especially at the intraspecific/phylogeographic scale? We investigate this question using Australian scincid lizards in the Eugongylus group (Squamata: Scincidae). We sequenced 415 anchored hybrid enriched (AHE) loci for 43 individuals and mined 1650 exons (1648 loci) from transcriptomes (transcriptome mining) from 11 individuals, including multiple phylogeographic lineages within several species of Carlia, Lampropholis, and Saproscincus skinks. We assessed the phylogenetic information content of these loci at the intergeneric, interspecific, and phylogeographic scales. As a further test of the utility at the phylogeographic scale, we used the anchor hybrid enriched loci to infer lineage divergence parameters using coalescent models of isolation with migration. RESULTS: Phylogenetic analyses of both data sets inferred very strongly supported trees at all taxonomic levels. Further, AHE loci yielded estimates of divergence times between closely related lineages that were broadly consistent with previous population-level analyses. CONCLUSIONS: Anchored-enriched loci are useful at the deep phylogeny and phylogeographic scales. Although overall phylogenetic support was high throughout the Australian Eugongylus group phylogeny, there were nonetheless some conflicting or unresolved relationships, especially regarding the placement of Pseudemoia, Cryptoblepharus, and the relationships amongst closely-related species of Tasmanian Niveoscincus skinks.


Assuntos
Lagartos/classificação , Lagartos/genética , Animais , Austrália , Evolução Molecular , Lagartos/fisiologia , Filogenia , Filogeografia , Análise de Sequência de DNA
20.
J Exp Zool B Mol Dev Evol ; 324(7): 636-46, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26055428

RESUMO

The evolution of viviparity requires the development of mechanisms that facilitate transport of respiratory gases between mother and developing embryo. Of particular importance is maternal excretion of embryonic carbon dioxide (CO2 ), which increases as the embryo grows in size during development. The carbonic anhydrases are a family of enzymes that convert CO2 to bicarbonate for transport throughout the cardiovascular system and which may also be important for CO2 transport from embryo to mother. We used immunohistochemistry to localize carbonic anhydrase II in the placental tissues of a viviparous and highly placentotrophic lizard, Pseudemoia entrecasteauxii. Carbonic anhydrase II is localized in the uterine component of the paraplacentome, presumably to facilitate transport of embryonic CO2 to the mother. Carbonic anhydrase II is also localized in both the uterine and embryonic components of the placentome, a region heavily involved in placental nutrient transport rather than respiratory gas exchange. In contrast, carbonic anhydrase II is not present in the uterine or embryonic components of the omphaloplacenta, another region responsible for nutrient transport. While carbonic anhydrase II in the paraplacentomal uterus is likely to be responsible for embryo-maternal CO2 transport, the distribution of carbonic anhydrase II throughout the placentome indicates a different function. Instead of transporting embryonic CO2 , placentomal carbonic anhydrase II appears to be responsible for transporting CO2 produced by energetically expensive nutrient transport mechanisms in both the uterus and the embryo, which implies that the mechanisms of nutrient transport in the omphaloplacenta may not be as energetically expensive.


Assuntos
Dióxido de Carbono/metabolismo , Anidrase Carbônica II/metabolismo , Lagartos/metabolismo , Animais , Embrião não Mamífero , Feminino , Lagartos/embriologia , Viviparidade não Mamífera
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa