Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Pineal Res ; 76(5): e12984, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38874070

RESUMO

The antidepressant venlafaxine, a selective serotonin and norepinephrine reuptake inhibitor, is commonly prescribed to treat major depressive disorder and is found at high concentrations in the aquatic environment. Concerns have been raised related to the health of aquatic organisms in response to this nontargeted pharmaceutical exposure. For instance, we previously demonstrated that exposure to venlafaxine perturbs neurodevelopment, leading to behavioural alterations in zebrafish (Danio rerio). We also observed disruption in serotonin expression in the pineal and raphe, regions critical in regulating circadian rhythms, leading us to hypothesize that zygotic exposure to venlafaxine disrupts the circadian locomotor rhythm in larval zebrafish. To test this, we microinjected zebrafish embryos with venlafaxine (1 or 10 ng) and recorded the locomotor activity in 5-day-old larvae over a 24-h period. Venlafaxine deposition reduced larval locomotor activity during the light phase, but not during the dark phase of the diurnal cycle. The melatonin levels were higher in the dark compared to during the light photoperiod and this was not affected by embryonic venlafaxine deposition. Venlafaxine exposure also did not affect the transcript abundance of clock genes, including clock1a, bmal2, cry1a and per2, which showed a clear day/night rhythmicity. A notable finding was that exposure to luzindole, a melatonin receptor antagonist, decreased the locomotor activity in the control group in light, whereas the activity was higher in larvae raised from the venlafaxine-deposited embryos. Overall, zygotic exposure to venlafaxine disrupts the locomotor activity of larval zebrafish fish during the day, demonstrating the capacity of antidepressants to disrupt the circadian rhythms in behaviour. Our results suggest that disruption in melatonin signalling may be playing a role in the venlafaxine impact on circadian behaviour, but further investigation is required to elucidate the possible mechanisms in larval zebrafish.


Assuntos
Ritmo Circadiano , Larva , Locomoção , Cloridrato de Venlafaxina , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Cloridrato de Venlafaxina/farmacologia , Cloridrato de Venlafaxina/toxicidade , Larva/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Zigoto/efeitos dos fármacos , Zigoto/metabolismo , Atividade Motora/efeitos dos fármacos , Melatonina/farmacologia
2.
Bull Environ Contam Toxicol ; 113(2): 14, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012477

RESUMO

Total suspended solids (TSS) are a major contributor of anthropogenic impacts to aquatic systems. TSS exposure have been shown to affect the function of gills, but the mode of action is unclear. Zebrafish (Danio rerio) is emerging as an excellent model for mechanistic toxicology, and as there are no baseline studies on TSS effects in zebrafish gills, we tested the hypothesis that environmental concentrations of TSS damages gill structure and function in this species. Adult zebrafish were exposed to either 0, 10, 100, 500, 1000, or 2000 mg/L TSS for 4 days to assess the gill morphology. The minimal concentration that affected the gill structure was further tested for the distribution of key ion transporters, including Na+/K+- ATPase (NKA) and vacuolar-type H+-ATPase (VHA), using confocal microscopy. Our results reveal that TSS concentration as low as 100 mg/L alters the morphology of gills, including greater filament thickness, lamellae thickness, and epithelial lifting. This was also associated with a reduction in NKA immunoreactive (IR) cell count and intensity in the 100 mg/L TSS group, while there was neither a change in the VHA-IR cell count or expression nor the transcript abundance of atp6v1a and atp1a1a4 in the gills. Markers of stress response in these animals, including levels of cortisol, glucose, lactate, and glycogen were not altered after 4 days of TSS exposure. Overall, environmentally relevant concentrations of TSS can damage the gill structure and function in zebrafish and has the potential to enhance the toxicity of contaminants acting via the gills.


Assuntos
Brânquias , Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Brânquias/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , ATPase Trocadora de Sódio-Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa