Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Trop ; 253: 107183, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479468

RESUMO

Chlamydiosis, an infection caused by several Chlamydia species, has been reported in Nile, saltwater, and Siamese crocodiles. Despite its widespread reports in various countries, including Thailand, genetic information on Chlamydia species remains limited. This study presents a whole-genome-based characterization of Siamese crocodile-isolated Chlamydia. The results showed that Siamese crocodile Chlamydia contained a single circular chromosome with a size of 1.22-1.23 Mbp and a plasmid with a size of 7.7-8.0 kbp. A plasmid containing eight coding sequences (CDSs) was grouped in a ß lineage. A chromosome sequence had approximately 1,018-1,031 CDSs. Chlamydial factors involving virulence were documented in terms of the presence of cytotoxins and several virulence factors in the chromosomes of Siamese crocodile Chlamydia. The analysis of antimicrobial resistance genes in the Chlamydia genome revealed that the most common resistance genes were associated with aminoglycosides, fluoroquinolones, macrolides, tetracyclines, and cephalosporins, with loose matching (identities between 21.12 % and 74.65 %). Phylogenetic analyses, encompassing the assessments of both whole proteome and nine taxonomic markers, revealed that Siamese crocodile Chlamydia was separated into three lineages (lineages I-III) with high bootstrapping statistic support. Interestingly, isolate 12-01 differed genetically from the others, suggesting that it is a new member of Chlamydia. The study findings indicate that Siamese crocodiles are susceptible hosts to Chlamydia, involving more than one species. This study is the first employing the highest number of whole-genome data on Siamese crocodile Chlamydia and provides better insights into pathogen genetics.


Assuntos
Jacarés e Crocodilos , Chlamydia , Animais , Filogenia , Chlamydia/genética , Antibacterianos/farmacologia , Tailândia
2.
Sci Rep ; 14(1): 9251, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649443

RESUMO

The increasing prevalence of methicillin-resistant Staphylococcus aureus (MRSA) emphasises the urgent need for novel antimicrobial agents as alternatives to antibiotics. Bacteriophage therapy is one of the most promising antimicrobial strategies. Here, we isolated and comprehensively characterized a novel Staphylococcus phage, vB_SauM_VL10 (VL10), from urban sewage. The VL10 genome displays 141,746 bp of linear double-stranded DNA, containing 193 open reading frames and lacking tRNA, virulence, or antibiotic resistance genes. Phylogenetic analysis categorizes VL10 as a novel species within the Silviavirus genus, Twortvirinae subfamily. VL10 exhibits lytic behaviour characterized by efficient adsorption, a short latent period, and substantial burst size, with environmental stability. It demonstrates lytic activity against 79.06% of tested S. aureus strains, highlighting its species specificity. Additionally, VL10 effectively targets MRSA biofilms, reducing biomass and viable cells. In MRSA-infected G. mellonella larvae, VL10 enhances survival rates, supporting its potential for phage therapy applications. Moreover, the emergence of VL10-resistant S. aureus strains associated with fitness trade-offs, including reduced growth, biofilm formation, and virulence. Altogether, these findings emphasize VL10 as a promising candidate for developing therapeutic agents against MRSA infections, providing insights into phage biology and resistance dynamics.


Assuntos
Biofilmes , Genoma Viral , Staphylococcus aureus Resistente à Meticilina , Filogenia , Fagos de Staphylococcus , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/virologia , Fagos de Staphylococcus/genética , Biofilmes/efeitos dos fármacos , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/terapia , Infecções Estafilocócicas/tratamento farmacológico , Terapia por Fagos , Esgotos/microbiologia , Esgotos/virologia , Animais , Humanos , Antibacterianos/farmacologia
3.
Front Vet Sci ; 11: 1329656, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38770189

RESUMO

Epidemiological data on SARS-CoV-2 infection in companion animals have been thoroughly investigated in many countries. However, information on the neutralizing cross-reactivity against SARS-CoV-2 variants in companion animals is still limited. Here, we explored the neutralizing antibodies against SARS-CoV-2 in cats and dogs between May 2020 and December 2021 during the first wave (a Wuhan-Hu-1-dominant period) and the fourth wave (a Delta-dominant period) of the Thailand COVID-19 outbreak. Archival plasma samples of 1,304 cats and 1,795 dogs (total = 3,099) submitted for diagnosis and health checks were collected at the Prasu-Arthorn Veterinary Teaching Hospital, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom. A microneutralization test was used to detect neutralizing antibodies against the ancestral Wuhan-Hu-1 and the Delta variants. A plasma sample with neutralizing titers ≥10 was considered positive. Our results showed relatively low seroprevalence with seropositive samples detected in 8 out of 3,099 individuals (0.26, 95% CI 0.11-0.51%). Among these cases, SARS-CoV-2 neutralizing antibodies from both the ancestral Wuhan-Hu-1 and the Delta variants were found in three out of eight cases in two cats (n = 2) and one dog (n = 1). Furthermore, neutralizing antibodies specific to only the ancestral Wuhan-Hu-1 variant were exclusively found in one cat (n = 1), while antibodies against only the Delta variant were detected in four dogs (n = 4). Additionally, the neutralizing cross-activities against SARS-CoV-2 variants (Alpha, Beta, and Omicron BA.2) were observed in the seropositive cats with limited capacity to neutralize the Omicron BA.2 variant. In summary, the seropositivity among cats and dogs in households with an unknown COVID-19 status was relatively low in Thailand. Moreover, the neutralizing antibodies against SARS-CoV-2 found in the seropositive cats and dogs had limited or no ability to neutralize the Omicron BA.2 variant. Thus, monitoring SARS-CoV-2 infection and sero-surveillance, particularly in cats, is imperative for tracking virus susceptibility to the emergence of new SARS-CoV-2 variants.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa