RESUMO
This study aims to compare the efficacy of 5-alpha-reductase inhibitors (5ARIs) on anxiety and depression between long-term and short-term treatment followed by withdrawal in d-galactose (Dgal)-induced senescent male rats. Thirty-two, 8-week-old, male Wistar rats were divided into two groups: control rats and Dgal-treated rats (150 mg/kg/day; subcutaneously) for 18 weeks. At week 13, Dgal-treated rats were subdivided into three subgroups: (1) vehicle (DgV), (2) long-term treatment with 5ARIs, Finasteride 5 mg/kg/day, per oral for 6 weeks (DgF), (3) short-term treatment with 5ARIs, Finasteride 5 mg/kg/day, per oral for 2 weeks followed by a 4-week withdrawal period (DgW). Anxiety and depression were assessed using the elevated-plus maze (EPM) and splash test (ST). Blood was collected for biochemical analysis. After euthanasia, the brains were removed to examine brain inflammation, oxidative stress, neuroactive steroids, brain metabolites, and brain senescent markers. We found that DgV rats exhibited metabolic disturbance with a reduced preference index of the EPM, and grooming duration in ST. Increased brain neurotoxic metabolites, along with increased brain inflammation/oxidative stress, and reduced microglia complexity were observed in the DgV rats. Both therapeutic approaches improved metabolic parameters and preference index in the open arm of EPM in Dgal-treated rats, while grooming duration and microglia complexity were increased only in DgF rats. Our results indicate that Fin reduces depression-like and anxiety-like behaviors by reducing brain inflammation, oxidative stress, and brain senescent. In conclusion, long-term treatment with 5ARIs is more effective in alleviating depression than short-term treatment followed by withdrawal in Dgal-induced early senescent male rats.
Assuntos
Inibidores de 5-alfa Redutase , Envelhecimento , Ansiedade , Depressão , Finasterida , Ratos Wistar , Animais , Masculino , Finasterida/farmacologia , Ansiedade/tratamento farmacológico , Depressão/tratamento farmacológico , Ratos , Inibidores de 5-alfa Redutase/farmacologia , Envelhecimento/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Galactose/toxicidade , Comportamento Animal/efeitos dos fármacosRESUMO
BACKGROUND: We aimed to compare the changes in blood metabolomes and cardiac parameters following doxorubicin treatment in HER2-positive and HER2-negative breast cancer patients. Additionally, the potential roles of changes in blood metabolomes as severity and prognostic markers of doxorubicin-induced cardiotoxicity were determined. METHODS: HER2-positive (n = 37) and HER2-negative (n = 37) breast cancer patients were enrolled. Cardiac function assessment and blood collection were performed at baseline and 2 weeks after completion of doxorubicin treatment in all patients, as well as at three months after completion of doxorubicin treatment in HER2-negative breast cancer patients. Blood obtained at all three-time points was processed for measuring cardiac injury biomarkers. Blood obtained at baseline and 2 weeks after completion of doxorubicin treatment were also processed for measuring systemic oxidative stress and 85 metabolome levels. RESULTS: Cardiac injury and systolic dysfunction 2 weeks after completion of doxorubicin treatment were comparable between these two groups of patients. However, only HER2-negative breast cancer patients exhibited increased systemic oxidative stress and cardiac autonomic dysfunction at this time point. Moreover, 33 and 29 blood metabolomes were altered at 2 weeks after completion of doxorubicin treatment in HER2-positive and HER2-negative breast cancer patients, respectively. The changes in most of these metabolomes were correlated with the changes in cardiac parameters, both at 2 weeks and 3 months after completion of doxorubicin treatment. CONCLUSIONS: The changes in blood metabolomes following doxorubicin treatment were dependent on HER2 status, and these changes might serve as severity and prognostic markers of doxorubicin-induced cardiotoxicity. TRIAL REGISTRATION: The study was conducted under ethical approval from the Institutional Review Board of the Faculty of Medicine, Chiang Mai University (Registration number: MED-2563-07001; Date: April 28, 2020). The study also complied with the Declaration of Helsinki.
Assuntos
Neoplasias da Mama , Cardiotoxicidade , Doxorrubicina , Metaboloma , Receptor ErbB-2 , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/sangue , Feminino , Doxorrubicina/efeitos adversos , Receptor ErbB-2/metabolismo , Receptor ErbB-2/sangue , Pessoa de Meia-Idade , Prognóstico , Cardiotoxicidade/sangue , Estresse Oxidativo/efeitos dos fármacos , Biomarcadores/sangue , Biomarcadores/metabolismo , AdultoRESUMO
Obesity accelerates the aging processes, resulting in an aggravation of aging-induced osteoporosis. We investigated the anti-osteoporotic effect of hyperbaric oxygen therapy (HBOT) in obese- and lean-aged rats through measurement of cellular senescence, hypoxia, inflammation, antioxidants, and bone microarchitecture. Obese and lean male Wistar rats were injected with 150 mg/kg/day of D-galactose for 8 weeks to induce aging. Then, all rats were randomly given either sham or HBOT for 14 days. Metabolic parameters were determined. Expression by bone mRNA for cellular senescence, hypoxia, inflammation, antioxidative capacity, and bone remodeling were examined. Micro-computed tomography and atomic absorption spectroscopy were performed to evaluate bone microarchitecture and bone mineral profiles, respectively. We found that HBOT restored the alterations in the mRNA expression level of p16, p21, HIF-1α, TNF-α, IL-6, RANKL, RANK, NFATc1, DC-STAMP, Osx, ALP, and Col1a1 in the bone in obese-and lean- aging rats. In obese-aging rats, HBOT increased the level of expression of Sirt1 and CuZnSOD mRNA and diminished the expression level of HIF-2α and ctsk mRNA to the same levels as the control group. However, HBOT failed to alter catalase and OCN mRNA expression in obese-aged rats. HBOT partially improved the bone microarchitecture in obese-aged rats, but completely restored it in lean-aged rats. Interestingly, HBOT protected against obesity-induced demineralization in obese-aged rats. In summary, HBOT exerts an anti-osteoporotic effect in lean-aged rats and prevents some, but not all the negative effects of obese-aged conditions on bone health. Therefore, HBOT is considered as a potential therapy for aging-induced osteoporosis, regardless of obese status.
Assuntos
Oxigenoterapia Hiperbárica , Osteoporose , Ratos , Masculino , Animais , Ratos Wistar , Galactose , Microtomografia por Raio-X , Obesidade/complicações , Obesidade/terapia , Osteoporose/etiologia , Osteoporose/terapia , Inflamação , Hipóxia , RNA MensageiroRESUMO
Iron overload cardiomyopathy (IOC) is the leading cause of death in cases of iron overload in patients. Previous studies demonstrated that iron overload led to cardiomyocyte dysfunction and death through multiple pathways including apoptosis, necroptosis and ferroptosis. However, the dominant cell death pathway in the iron-overloaded heart needs clarification. We tested the hypothesis that ferroptosis, an iron-dependent cell death, plays a dominant role in IOC, and ferroptosis inhibitor exerts greater efficacy than inhibitors of apoptosis and necroptosis on improving cardiac function in iron-overloaded rats. Iron dextran was injected intraperitoneally into male Wistar rats for four weeks to induce iron overload. Then, the rats were divided into 5 groups: treated with vehicle, apoptosis inhibitor (z-VAD-FMK), necroptosis inhibitor (Necrostatin-1), ferroptosis inhibitor (Ferrostatin-1) or iron chelator (deferoxamine) for 2 weeks. Cardiac function, mitochondrial function, apoptosis, necroptosis and ferroptosis were determined. The increased expression of apoptosis-, necroptosis- and ferroptosis-related proteins, were associated with impaired cardiac and mitochondrial function in iron-overloaded rats. All cell death inhibitors attenuated cardiac apoptosis, necroptosis and ferroptosis in iron-overloaded rats. Ferrostatin-1 was more effective than the other drugs in diminishing mitochondrial dysfunction and Bax/Bcl-2 ratio. Moreover, both Ferrostatin-1 and deferoxamine reversed iron overload-induced cardiac dysfunction as indicated by restored left ventricular ejection fraction and E/A ratio, whereas z-VAD-FMK and Necrostatin-1 only partially improved this parameter. These results indicated that ferroptosis could be the predominant form of cardiomyocyte death in IOC, and that inhibiting ferroptosis might be a potential novel treatment for IOC.
Assuntos
Cardiomiopatias , Ferroptose , Sobrecarga de Ferro , Ratos , Humanos , Masculino , Animais , Desferroxamina/metabolismo , Desferroxamina/farmacologia , Desferroxamina/uso terapêutico , Necroptose , Volume Sistólico , Ratos Wistar , Função Ventricular Esquerda , Apoptose , Sobrecarga de Ferro/tratamento farmacológico , Sobrecarga de Ferro/metabolismo , Ferro/metabolismo , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/prevenção & controle , Cardiomiopatias/induzido quimicamente , Mitocôndrias , Miócitos Cardíacos/metabolismoRESUMO
Using mass spectrometry-based targeted metabolomics, we aimed to determine the pattern of cardiac metabolic reprogramming and energetics in doxorubicin-induced heart failure. More importantly, we aimed to identify the potential effects of melatonin on cardiac metabolic reprogramming and energetics in doxorubicin-induced heart failure. Male Wistar rats (n = 18) were randomly divided into three groups (n = 6/group) to receive either (1) normal saline solution as a control, (2) 3 mg/kg/day of doxorubicin on Days 0, 4, 8, 15, 22, and 29, or (3) 3 mg/kg/day of doxorubicin on Days 0, 4, 8, 15, 22, and 29 plus 10 mg/kg/day of melatonin on Days 0-29. On Day 30, echocardiography was carried out and heart rate variability was analyzed for the evaluation of cardiac function. The rats were euthanized on the following day to enable the collection of ventricular cardiac tissue. Compared to the control group, the hearts of rats treated with doxorubicin alone exhibited impaired cardiac function, increased glucose and ketone body utilization, decreased fat utilization, decreased succinate oxidation, and decreased production of adenosine triphosphate. The cotreatment with melatonin could restore cardiac function, glucose and ketone body utilization, and adenosine triphosphate production in the heart. Interestingly, the cotreatment with melatonin led to an increase in cardiac fatty acid oxidation, branched-chain amino acid catabolism, and anaplerosis. All of these findings highlighted the potential efficacy of melatonin with regard to cardiac metabolic reprogramming and energetics. Our findings also suggested that melatonin could be considered as an adjunctive treatment for doxorubicin-induced heart failure in clinical practice.
Assuntos
Insuficiência Cardíaca , Melatonina , Ratos , Masculino , Animais , Melatonina/farmacologia , Ratos Wistar , Coração , Doxorrubicina/efeitos adversos , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/tratamento farmacológico , Metabolômica , Cetonas/farmacologia , Antibióticos Antineoplásicos/toxicidadeRESUMO
This study aimed to identify the alterations of blood metabolome levels and their association with cardiac dysfunction and cardiac injury following treatment with doxorubicin and trastuzumab. Eight-week-old male Wistar rats were divided into four groups (n = 6 per group) to receive intraperitoneal injection with either: (1) 1 mL of normal saline solution (NSS) at days 0, 4, 8, 15, 22, and 29 (control group for doxorubicin); (2) 3 mg/kg/day of doxorubicin at days 0, 4, 8, 15, 22, and 29 (doxorubicin group); (3) 1 mL of NSS at days 0-6 (control group for trastuzumab); or (4) 4 mg/kg/day of trastuzumab at days 0-6 (trastuzumab group). Four days after the last injected dose, cardiac function was determined. The rats were then euthanized to collect venous blood and the heart for the quantification of 107 serum and 100 cardiac metabolomes using mass spectrometry-based targeted metabolomics. We observed strong relationships between 72 cardiac versus 61 serum metabolomes in doxorubicin and trastuzumab groups. Moreover, significant correlations between cardiac function and the cardiac injury biomarker versus 28 and 58 serum metabolomes were revealed in doxorubicin and trastuzumab-treated rats, respectively. Interestingly, the patterns of both serum and cardiac metabolome alterations differed between doxorubicin and trastuzumab groups. Our findings emphasize the potential role of the constituents of the blood metabolome as non-invasive biomarkers to assess severity and prognosis of heart failure induced by doxorubicin and trastuzumab. These findings may contribute to the development of metabolic-targeted therapy specific for cardioprotection during different phases of cancer treatment.
Assuntos
Cardiotoxicidade , Doxorrubicina , Masculino , Ratos , Animais , Trastuzumab/toxicidade , Ratos Wistar , Doxorrubicina/toxicidade , Biomarcadores , MetabolomaRESUMO
BACKGROUND: Caloric restriction and exercise are lifestyle interventions that effectively attenuate cardiometabolic impairment. However, cardioprotective effects of long-term lifestyle interventions and short-term lifestyle interventions followed by weight maintenance in prediabetes have never been compared. High cardiorespiratory fitness (CRF) has been shown to provide protection against prediabetes and cardiovascular diseases, however, the interactions between CRF, prediabetes, caloric restriction, and exercise on cardiometabolic health has never been investigated. METHODS: Seven-week-old male Wistar rats were fed with either a normal diet (ND; n = 6) or a high-fat diet (HFD; n = 30) to induce prediabetes for 12 weeks. Baseline CRF and cardiometabolic parameters were determined at this timepoint. The ND-fed rats were fed continuously with a ND for 16 more weeks. The HFD-fed rats were divided into 5 groups (n = 6/group) to receive one of the following: (1) a HFD without any intervention for 16 weeks, (2) 40% caloric restriction for 6 weeks followed by an ad libitum ND for 10 weeks, (3) 40% caloric restriction for 16 weeks, (4) a HFD plus an exercise training program for 6 weeks followed by a ND without exercise for 10 weeks, or (5) a HFD plus an exercise training program for 16 weeks. At the end of the interventions, CRF and cardiometabolic parameters were re-assessed. Then, all rats were euthanized and heart tissues were collected. RESULTS: Either short-term caloric restriction or exercise followed by weight maintenance ameliorated cardiometabolic impairment in prediabetes, as indicated by increased insulin sensitivity, improved blood lipid profile, improved mitochondrial function and oxidative phosphorylation, reduced oxidative stress and inflammation, and improved cardiac function. However, these benefits were not as effective as those of either long-term caloric restriction or exercise. Interestingly, high-level baseline CRF was correlated with favorable cardiac and metabolic profiles at follow-up in prediabetic rats, both with and without lifestyle interventions. CONCLUSIONS: Short-term lifestyle modification followed by weight maintenance improves cardiometabolic health in prediabetes. High CRF exerted protection against cardiometabolic impairment in prediabetes, both with and without lifestyle modification. These findings suggest that targeting the enhancement of CRF may contribute to the more effective treatment of prediabetes-induced cardiometabolic impairment.
Assuntos
Aptidão Cardiorrespiratória , Doenças Cardiovasculares , Estado Pré-Diabético , Animais , Restrição Calórica , Masculino , Estado Pré-Diabético/metabolismo , Estado Pré-Diabético/terapia , Ratos , Ratos WistarRESUMO
Bisphosphonates are widely used as anti-resorptive agents for the treatment of various bone and joint diseases, including advanced osteoporosis, multiple myeloma, bone metastatic cancers, Paget's disease of bone, and rheumatoid arthritis. Bisphosphonates act as an anti-osteoclast via the induction of osteoclast apoptosis, resulting in a decreased rate of bone resorption. Unfortunately, there is much evidence to demonstrate that the long-term use of bisphosphonates is associated with osteonecrosis. The pathogenesis of osteonecrosis includes the death of osteoblasts, osteoclasts, and osteocytes. In addition, the functions of endothelial cells, epithelial cells, and fibroblasts are impaired in osteonecrosis, leading to disruptive angiogenesis, and delayed wound healing. Osteonecrosis is most commonly found in the jawbone and the term medication-related osteonecrosis of the jaw (MRONJ) has become the condition of greatest clinical concern among patients receiving bisphosphonates. Although surgical treatment is an effective strategy for the treatment of MRONJ, several non-surgical interventions for the attenuation of MRONJ have also been investigated. With the aim of increasing understanding around MRONJ, we set out to summarize and discuss the holistic effects of bisphosphonates on the bone and its surrounding tissues. In addition, non-surgical interventions for the attenuation of bisphosphonate-induced osteonecrosis were reviewed and discussed.
Assuntos
Osteonecrose da Arcada Osseodentária Associada a Difosfonatos , Conservadores da Densidade Óssea , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/tratamento farmacológico , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/etiologia , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/patologia , Conservadores da Densidade Óssea/efeitos adversos , Difosfonatos/efeitos adversos , Células Endoteliais/patologia , Humanos , Osteoclastos/patologiaRESUMO
Cataract is the leading cause of blindness worldwide. A diverse range of medication has been invented to prevent or treat cataract. Pirenoxine (PRX), a drug with strong antioxidant properties, has been used topically to treat cataract, and there is much evidence to demonstrate the beneficial effects of PRX on lens opacity from in vitro and in vivo models. In clinical use, PRX has been prescribed worldwide by ophthalmologists for over six decades; however, there is still controversy with regard to its efficacy, and thus PRX remains an off-label use for cataract treatment. This comprehensive review summarizes and discusses evidence pertinent to the mechanisms of PRX and its efficacy mainly on cataract models. The issues that have been deemed uncertain over the six-decade use of PRX are examined. The information summarized in this review should provide insights into contriving novel approaches for the treatment of cataract.
Assuntos
Catarata , Cristalino , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Catarata/tratamento farmacológico , Catarata/etiologia , Catarata/prevenção & controle , Humanos , Oxazinas/farmacologiaRESUMO
BACKGROUND: Gestational diabetes mellitus (GDM) is a condition that seriously threatens mother and child health. The incidence of GDM has increased worldwide in the past decades. In addition, the complications of GDM such as type 2 diabetes (T2DM) and neonatal malformations could negatively affect the living quality of mothers and their children. AIM: It has been widely known that the imbalance of gut microbiota or called 'gut dysbiosis' plays a key role in the development of insulin resistance and chronic low-grade inflammation in T2DM patients. However, the impacts of gut microbiota on GDM remain controversial. Here, we aim to comprehensively review the alterations of gut microbiota in GDM mothers and their offspring. RESULTS: The alterations of Firmicutes/Bacteroidetes (F/B) ratio, short-chain fatty acid (SCFA)-producing bacteria, bacteria with probiotics properties and gram-negative lipopolysaccharide (LPS)-producing bacteria play a vital role in the development of GDM. The beneficial roles of gut microbiota modification (probiotics, synbiotics and lifestyle modification) as a treatment of GDM were found in some, but not all studies. CONCLUSION: In the near future, gut microbiota modification may be considered as one of the standard treatments for GDM. Moreover, further studies regarding the specific gut microbiota that are associated with the early development of GDM are required. This may contribute to the novel diagnostic markers for early stages of GDM.
Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Microbioma Gastrointestinal , Probióticos , Bactérias , Criança , Disbiose , Feminino , Humanos , Recém-Nascido , GravidezRESUMO
Early diagnosis and treatment for autism spectrum disorder (ASD) pose challenges. The current diagnostic approach for ASD is mainly clinical assessment of patient behaviors. Biomarkers-based identification of ASD would be useful for pediatricians. Currently, there is no specific treatment for ASD, and evidence for the efficacy of alternative treatments remains inconclusive. The prevalence of ASD is increasing, and it is becoming more urgent to find the pathogenesis of such disorder. Metabolomic studies have been used to deeply investigate the alteration of metabolic pathways, including those associated with ASD. Metabolomics is a promising tool for identifying potential biomarkers and possible pathogenesis of ASD. This review comprehensively summarizes and discusses the abnormal metabolic pathways in ASD children, as indicated by evidence from metabolomic studies in urine and blood. In addition, the targeted interventions that could correct the metabolomic profiles relating to the improvement of autistic behaviors in affected animals and humans have been included. The results revealed that the possible underlying pathophysiology of ASD were alterations of amino acids, reactive oxidative stress, neurotransmitters, and microbiota-gut-brain axis. The potential common pathways shared by animal and human studies related to the improvement of ASD symptoms after pharmacological interventions were mammalian-microbial co-metabolite, purine metabolism, and fatty acid oxidation. The content of this review may contribute to novel biomarkers for the early diagnosis of ASD and possible therapeutic paradigms.
Assuntos
Transtorno do Espectro Autista/metabolismo , Metabolômica , Animais , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/tratamento farmacológico , Biomarcadores/sangue , Biomarcadores/urina , Humanos , Isotiocianatos/uso terapêutico , Redes e Vias Metabólicas , Sulfóxidos/uso terapêutico , Suramina/uso terapêuticoRESUMO
Post-menopausal women have a higher risk of developing cardiometabolic dysfunction. Atorvastatin attenuates dyslipidaemia and cardiac dysfunction but it can have undesirable effects including increased risk of diabetes and myalgia. Currently, the proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor efficiently reduces low-density lipoprotein cholesterol (LDL-C) levels more effectively than atorvastatin. We have been suggested that PCSK9 inhibitor attenuated cardiometabolic impairment more effectively than atorvastatin in ovariectomized prediabetic rats. Female Wistar rats (n = 48) were fed a normal diet (ND) or high-fat diet (HFD) for 12 weeks. Then, HFD rats were assigned to a sham-operated (Sham) or ovariectomized (OVX) group. Six weeks after surgery, the OVX group was subdivided into 4 treatment groups: vehicle (HFOV), atorvastatin (HFOA) (40 mg/kg/day; s.c.), PCSK9 inhibitor (HFOP) (4 mg/kg/day; s.c.) and oestrogen (HFOE2 ) (50 µg/kg/day; s.c.) for an additional 3 weeks. Metabolic parameters, cardiac and mitochondrial function, and [Ca2+ ]i transients were evaluated. All HFD rats became obese-insulin resistant. HFS rats had significantly impaired left ventricular (LV) function, cardiac mitochondrial function and [Ca2+ ]i transient dysregulation. Oestrogen deprivation (HFOV) aggravated all of these impairments. Our findings indicated that the atorvastatin, PCSK9 inhibitor and oestrogen shared similar efficacy in the attenuation in cardiometabolic impairment in ovariectomized prediabetic rats.
Assuntos
Atorvastatina/farmacologia , Cálcio/metabolismo , Doenças Cardiovasculares/prevenção & controle , Mitocôndrias Cardíacas/efeitos dos fármacos , Obesidade/complicações , Inibidores de PCSK9 , Estado Pré-Diabético/complicações , Animais , Anticolesterolemiantes/farmacologia , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Dieta Hiperlipídica , Feminino , Resistência à Insulina , Mitocôndrias Cardíacas/metabolismo , Ovariectomia , Ratos , Ratos WistarRESUMO
The accumulation of lipid as a result of long-term consumption of a high-fat diet (HFD) may lead to metabolic and brain dysfunction. Atorvastatin, a recommended first-line lipid-lowering agent, has shown beneficial effects on metabolic and brain functions in several models. Recently, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor was approved as an effective therapeutic drug for dyslipidemia patients. However, few studies have reported on the effect of this PCSK9 inhibitor on brain function. In addition, the comparative efficacy on the improvement of metabolic and brain functions between PCSK9 inhibitor and atorvastatin in obese models have not been elucidated. We hypothesized that PCSK9 inhibitor improves metabolic and brain functions in an obese model to a greater extent than atorvastatin. Thirty-two female rats were fed with either a normal diet (ND) or HFD for 15 weeks. At week 13, ND rats were given normal saline and HFD rats were given either normal saline, atorvastatin (40 mg/kg/day) or PCSK9 inhibitor (4 mg/kg/day) for 3 weeks. Oxidative stress, blood brain barrier breakdown, microglial hyperactivity, synaptic dysplasticity, apoptosis, amyloid proteins production in the hippocampus and cognitive decline were found in HFD-fed rats. Atorvastatin and PCSK9 inhibitor therapies equally attenuated hippocampal apoptosis and amyloid protein production in HFD-fed rats. Interestingly, PCSK9 inhibitor had the greater efficacy than atorvastatin on the amelioration of hippocampal oxidative stress, blood brain barrier breakdown, microglial hyperactivity, synaptic dysplasticity in the hippocampus and cognitive decline. These findings suggest that PCSK9 inhibitor may be another drug of choice for improving brain function in the obese condition with discontinued statin therapy.
Assuntos
Anticolesterolemiantes/uso terapêutico , Atorvastatina/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Obesidade/tratamento farmacológico , Inibidores de PCSK9 , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Cognição/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Feminino , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Pró-Proteína Convertase 9/metabolismo , RatosRESUMO
Obesity is associated with an increased risk of various diseases and mortality. Although nearly 50 % of adults have been reported trying to lose weight, the prevalence of obesity has increased. One factor that hinders weight loss-induced decrease in obesity prevalence is weight regain. Although behavioural, psychological and physiological factors associated with weight regain have been reviewed, the information regarding the relationship between weight regain and genetics has not been previously summarised. In this paper, we comprehensively review the association between genetic polymorphisms and weight regain in adults and children with obesity after weight loss. Based on this information, identification of genetic polymorphism in patients who undergo weight loss intervention might be used to estimate their risks of weight regain. Additionally, the genetic-based risk estimation may be used as a guide for physicians and dietitians to provide each of their patients with the most appropriate strategies for weight loss and weight maintenance.
Assuntos
Manutenção do Peso Corporal/genética , Fenômenos Fisiológicos da Nutrição/genética , Obesidade/genética , Polimorfismo Genético/fisiologia , Aumento de Peso/genética , Adulto , Criança , Feminino , Humanos , Masculino , Redução de Peso/genéticaRESUMO
The present study aimed to compare the effects of high dose atorvastatin and a proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor on the mitochondrial function in oxidative muscle fibers in obese female rats. Female Wistar rats were fed with either a normal diet (ND: nâ¯=â¯12) or a high-fat diet (HFD: nâ¯=â¯36) for a total of 15â¯weeks. At week 13, ND-fed rats received a vehicle, and HFD-fed rats were divided to three groups to receive either a vehicle, 40â¯mg/kg/day of atorvastatin, or 4â¯mg/kg/day of PCSK9 inhibitor (SBC-115076) for 3â¯weeks. Soleus muscles were investigated to assess mitochondrial ROS, membrane potential, swelling, mitochondrial-related protein expression, and level of malondialdehyde (MDA). The results showed that HFD-fed rats with vehicle developed obese-insulin resistance and dyslipidemia. Both atorvastatin and PCSK9 inhibitor reduced obesity and dyslipidemia, as well as improved insulin sensitivity in HFD-fed rats. However, the efficacy of PCSK9 inhibitor to increase weight loss and reduce dyslipidemia in HFD-fed rats was greater than those of atorvastatin. An increase in MDA level, ratio of p-Drp1ser616/total Drp1 protein, CPT1 protein, mitochondrial ROS, and membrane depolarization in the soleus muscle were observed in HFD-fed rats with vehicle. PCSK9 inhibitor enabled the restoration of all these parameters to normal levels. However, atorvastatin facilitated restoration of some parameters, including MDA level, p-Drp1ser616/total Drp1 ratio, and CPT1 protein expression. These findings suggest that PCSK9 inhibitor is superior to atorvastatin in instigating weight loss, cholesterol reduction, and attenuation of mitochondrial oxidative stress in oxidative muscle fibers of obese female rats.
Assuntos
Atorvastatina/administração & dosagem , Inibidores Enzimáticos/administração & dosagem , Resistência à Insulina/fisiologia , Mitocôndrias/efeitos dos fármacos , Obesidade/tratamento farmacológico , Inibidores de PCSK9 , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Mitocôndrias/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Pró-Proteína Convertase 9/metabolismo , Ratos , Ratos WistarRESUMO
Exposure to air pollutants, especially in the case of particulate matter (PM), poses significant health risks throughout the body. The ocular surface is directly exposed to atmospheric PM making it challenging to avoid. This constant exposure makes the ocular surface a valuable model for investigating the impact of air pollutants on the eyes. This comprehensive review assembles evidence from across the spectrum, from in vitro and in vivo investigations to clinical studies and epidemiological studies, offering a thorough understanding of how PM10 and PM2.5 affect the health of the ocular surface. PM has been primarily found to induce inflammatory responses, allergic reactions, oxidative stress, DNA damage, mitochondrial impairment, and inhibit the proliferation and migration of ocular surface cells. In toto these effects ultimately lead to impaired wound healing and ocular surface damage. In addition, PM can alter tear composition. These events contribute to ocular diseases such as dry eye disease, blepharitis, conjunctivitis, keratitis, limbal stem cell deficiency and pterygium. Importantly, preexisting ocular conditions such as dry eye, allergic conjunctivitis, and infectious keratitis can be worsened by PM exposure. Adaptive responses may partially alleviate the mentioned insults, resulting in morphological and physiological changes that could be different between periods of short-term and long-term exposure. Particle size is not the only determinant of the ocular effect of PM, the composition and solubility of PM also play critical roles. Increasing awareness of how PM affects the ocular surface is crucial in the field of public health, and mechanistic insights of these adverse effects may provide guidelines for preventive and therapeutic strategies in dealing with a polluted environment.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Síndromes do Olho Seco , Ceratite , Humanos , Material Particulado/toxicidade , Material Particulado/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Tamanho da Partícula , Síndromes do Olho Seco/induzido quimicamente , Ceratite/induzido quimicamente , Poluição do Ar/análiseRESUMO
The incidence of early puberty in children has been increasing. It has been suspected that both genetic and various environmental factors such as nutrition and hormonal exposure could influence the mechanisms underlying the earlier onset of puberty. Interestingly, several previous studies have reported a strong connection between sleep and puberty. Specifically, it was discovered that luteinizing hormone (LH), a potential marker for the onset of puberty, was increased during the deep sleep period. Furthermore, a high prevalence of early puberty was observed in patients with sleep disorders, especially in those experiencing narcolepsy. In this review article, findings related to the association between sleep disturbance and early puberty have been comprehensively summarized. Any contrary findings are also included and discussed. Advances in the knowledge surrounding sleep disturbance have led to a greater understanding of a correlation between early puberty and sleep disorder and provide alternative therapeutic options for the treatment of central precocious puberty in the future.
RESUMO
AIM: Prolonged high-fat diet (HFD) consumption has been shown to impair cognition and depression. The combined effects of HFD and lipopolysaccharide (LPS) administration on those outcomes have never been thoroughly investigated. This study investigated the effects of LPS, HFD consumption, and a combination of both conditions on microglial dysfunction, microglial morphological alterations, synaptic loss, cognitive dysfunction, and depressive-like behaviors. METHODS: Sixty-four male Wistar rats were fed either a normal diet (ND) or HFD for 12 weeks, followed by single dose-subcutaneous injection of either vehicle or LPS. Then, cognitive function and depressive-like behaviors were assessed. Then, rats were euthanized, and the whole brain, hippocampus, and spleen were collected for further investigation, including western blot analysis, qRT-PCR, immunofluorescence staining, and brain metabolome determination. RESULTS: HFD-fed rats developed obese characteristics. Both HFD-fed rats with vehicle and ND-fed rats with LPS increased cholesterol and serum LPS levels, which were exacerbated in HFD-fed rats with LPS. HFD consumption, but not LPS injection, caused oxidative stress, blood-brain barrier disruption, and decreased neurogenesis. Both HFD and LPS administration triggered an increase in inflammatory genes on microglia and astrocytes, increased c1q colocalization with microglia, and increased dendritic spine loss, which were exacerbated in the combined conditions. Both HFD and LPS altered neurotransmitters and disrupted brain metabolism. Interestingly, HFD consumption, but not LPS, induced cognitive decline, whereas both conditions individually induced depressive-like behaviors, which were exacerbated in the combined conditions. CONCLUSIONS: Our findings suggest that LPS aggravates metabolic disturbances, neuroinflammation, microglial synaptic engulfment, and depressive-like behaviors in obese rats.
RESUMO
Iron overload causes cognitive impairment in thalassemia patients. The gut-brain axis plays an important role in cognitive function. However, the association between gut/blood microbiome, cognition, and iron burden in thalassemia patients has not been thoroughly investigated. We aimed to determine those associations in thalassemia patients with different blood-transfusion regimens. Sixty participants: healthy controls, transfusion-dependent thalassemia (TDT) patients, and non-transfusion-dependent (NTDT) patients, were recruited to evaluate iron overload, cognition, and gut/blood microbiome. TDT patients exhibited greater iron overload than NTDT patients. Most thalassemia patients developed gut dysbiosis, and approximately 25% of the patients developed minor cognitive impairment. Increased Fusobacteriota and Verrucomicrobiota with decreased Fibrobacterota were observed in both TDT and NTDT groups. TDT patients showed more abundant beneficial bacteria: Verrucomicrobia. Iron overload was correlated with cognitive impairment. Increased Butyricimonas and decreased Paraclostridium were associated with higher cognitive function. No trace of blood microbiota was observed. Differences in blood bacterial profiles of thalassemia patients and controls were insignificant. These findings suggest iron overload plays a role in the imbalance of gut microbiota and impaired cognitive function in thalassemia patients. Harnessing probiotic potential from those microbes could prevent the gut-brain disturbance in thalassemia patients.
Assuntos
Disfunção Cognitiva , Disbiose , Microbioma Gastrointestinal , Sobrecarga de Ferro , Talassemia , Humanos , Masculino , Feminino , Talassemia/complicações , Talassemia/sangue , Adulto , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/microbiologia , Adulto Jovem , Pessoa de Meia-Idade , Eixo Encéfalo-Intestino , Estudos de Casos e ControlesRESUMO
BACKGROUND: We have previously demonstrated that oxidative stress and brain mitochondrial dysfunction are key mediators of brain pathology during myocardial infarction (MI). OBJECTIVE: To investigate the beneficial effects of mitochondrial dynamic modulators, including mitochondrial fission inhibitor (Mdivi-1) and mitochondrial fusion promotor (M1), on cognitive function and molecular signaling in the brain of MI rats in comparison with the effect of enalapril. METHODS: Male rats were assigned to either sham or MI operation. In the MI group, rats with an ejection Fraction less than 50% were included, and then they received one of the following treatments for 5 weeks: vehicle, enalapril, Mdivi-1, or M1. Cognitive function was tested, and the brains were used for molecular study. RESULTS: MI rats exhibited cardiac dysfunction with systemic oxidative stress. Cognitive impairment was found in MI rats, along with dendritic spine loss, blood-brain barrier (BBB) breakdown, brain mitochondrial dysfunction, and decreased mitochondrial and increased glycolysis metabolism, without the alteration of APP, BACE-1, Tau and p-Tau proteins. Treatment with Mdivi-1, M1, and enalapril equally improved cognitive function in MI rats. All treatments decreased dendritic spine loss, brain mitochondrial oxidative stress, and restored mitochondrial metabolism. Brain mitochondrial fusion was recovered only in the Mdivi-1-treated group. CONCLUSION: Mitochondrial dynamics modulators improved cognitive function in MI rats through a reduction of systemic oxidative stress and brain mitochondrial dysfunction and the enhancement of mitochondrial metabolism. In addition, this mitochondrial fission inhibitor increased mitochondrial fusion in MI rats.