Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Ecol ; 24(8): 1792-809, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25735875

RESUMO

Little information has been gathered regarding the ontogenetic changes that contribute to differentiation between resident and migrant individuals, particularly before the onset of gross morphological and physiological changes in migratory individuals. The aim of this study was to evaluate gene expression during early development in Oncorhynchus mykiss populations with different life histories, in a tissue known to integrate environmental cues to regulate complex developmental processes and behaviours. We sampled offspring produced from migrant and resident parents, collecting whole embryos prior to the beginning of first feeding, and brain tissue at three additional time points over the first year of development. RNA sequencing for 32 individuals generated a reference transcriptome of 30 177 genes that passed count thresholds. Differential gene expression between migrant and resident offspring was observed for 1982 genes. The greatest number of differentially expressed genes occurred at 8 months of age, in the spring a full year before the obvious physiological transformation from stream-dwelling parr to sea water-adaptable smolts begins for migrant individuals. Sex and age exhibited considerable effects on differential gene expression between migrants and resident offspring. Differential gene expression was observed in genes previously associated with migration, but also in genes previously unassociated with early life history divergence. Pathway analysis revealed coordinated differential expression in genes related to phototransduction, which could modulate photoperiod responsiveness and variation in circadian rhythms. The role for early differentiation in light sensitivity and biological rhythms is particularly intriguing in understanding early brain processes involved in differentiation of migratory and resident life history types.


Assuntos
Encéfalo/metabolismo , Genética Populacional , Oncorhynchus mykiss/genética , Transcriptoma , Alaska , Migração Animal , Animais , Feminino , Masculino , Oncorhynchus mykiss/embriologia , Análise de Sequência de RNA
2.
J Hered ; 105(4): 506-520, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24744432

RESUMO

Development rate has important implications for individual fitness and physiology. In salmonid fishes, development rate correlates with many traits later in life, including life-history diversity, growth, and age and size at sexual maturation. In rainbow trout (Oncorhynchus mykiss), a quantitative trait locus for embryonic development rate has been detected on chromosome 5 across populations. However, few candidate genes have been identified within this region. In this study, we use gene mapping, gene expression, and quantitative genetic methods to further identify the genetic basis of embryonic developmental rate in O. mykiss Among the genes located in the region of the major development rate quantitative trait locus (GHR1, Clock1a, Myd118-1, and their paralogs), all were expressed early in embryonic development (fertilization through hatch), but none were differentially expressed between individuals with the fast- or slow-developing alleles for a major embryonic development rate quantitative trait locus. In a follow-up study of migratory and resident rainbow trout from natural populations in Alaska, we found significant additive variation in development rate and, moreover, found associations between development rate and allelic variation in all 3 candidate genes within the quantitative trait locus for embryonic development. The mapping of these genes to this region and associations in multiple populations provide positional candidates for further study of their roles in growth, development, and life-history diversity in this model salmonid.


Assuntos
Mapeamento Cromossômico , Oncorhynchus mykiss/crescimento & desenvolvimento , Oncorhynchus mykiss/genética , Locos de Características Quantitativas , Alaska , Alelos , Animais , Aptidão Genética , Ligação Genética , Variação Genética , Genética Populacional , Genótipo , Polimorfismo de Nucleotídeo Único
3.
Ecol Evol ; 13(6): e10241, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37384247

RESUMO

Rainbow trout (Oncorhynchus mykiss) are a partially migratory species wherein some individuals undergo long-distance anadromous migrations, and others stay as residents in their native freshwater streams. The decision to migrate is known to be highly heritable, and yet, the underlying genes and alleles associated with migration are not fully characterized. Here we used a pooled approach of whole-genome sequence data from migratory and resident trout of two native populations-Sashin Creek, Alaska and Little Sheep Creek, Oregon-to obtain a genome-wide perspective of the genetic architecture of resident and migratory life history. We calculated estimates of genetic differentiation, genetic diversity, and selection between the two phenotypes to locate regions of interest and then compared these associations between populations. We identified numerous genes and alleles associated with life history development in the Sashin Creek population with a notable area on chromosome 8 that may play a critical role in the development of the migratory phenotype. However, very few alleles appeared to be associated with life history development in the Little Sheep Creek system, suggesting population-specific genetic effects are likely important in the development of anadromy. Our results indicate that a migratory life history is not controlled by a singular gene or region but supports the idea that there are many independent ways for a migratory phenotype to emerge in a population. Therefore, conserving and promoting genetic diversity in migratory individuals is paramount to conserving these populations. Ultimately, our data add to a growing body of literature that suggests that population-specific genetic effects, likely mediated through environmental variation, contribute to life history development in rainbow trout.

4.
Genetica ; 139(2): 233-42, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21190065

RESUMO

Populations experiencing sudden environmental change must be capable of rapidly evolving to survive. Here we explore changes in gene transcription as a mechanism for rapid adaptation at four osmoregulatory genes (CFTR I, NaK ATPase1αa, NaK ATPase1αb and GHRII) in anadromous steelhead trout versus a derived land-locked population after 14 generations. Transcription was measured before and after a 24-h saltwater challenge in pure and reciprocal hybrid offspring of fish from both populations reared in a common environment for two generations. Significant differences between the landlocked and migratory populations were observed, particularly in fresh water at the NaK ATPase1αa and GHRII genes, indicating rapid evolutionary change, possibly associated with reduced energy expenditure in the landlocked lake system. Phenotypic divergence analysis (Q (ST)) shows that the observed transcriptional differences deviate from neutral expectations. Some reciprocal crosses exhibited anomalous transcription consistent with sex-linked epistatic or genetic imprinting effects. Our results highlight unpredictable phenotypic outcomes of hybridization among locally adapted populations and the need to exercise caution when interbreeding populations for conservation purposes.


Assuntos
Adaptação Fisiológica/genética , Evolução Molecular , Oncorhynchus mykiss/genética , Equilíbrio Hidroeletrolítico/genética , Alaska , Animais , Cruzamentos Genéticos , Epistasia Genética , Feminino , Ligação Genética , Genética Populacional , Impressão Genômica , Hibridização Genética , Masculino , Oncorhynchus mykiss/classificação , Receptores da Somatotropina/classificação , Receptores da Somatotropina/genética , ATPase Trocadora de Sódio-Potássio/genética , Transcrição Gênica
5.
PLoS One ; 14(9): e0223018, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31539414

RESUMO

In studying the causative mechanisms behind migration and life history, the salmonids-salmon, trout, and charr-are an exemplary taxonomic group, as life history development is known to have a strong genetic component. A double inversion located on chromosome 5 in rainbow trout (Oncorhynchus mykiss) is associated with life history development in multiple populations, but the importance of this inversion has not been thoroughly tested in conjunction with other polymorphisms in the genome. To that end, we used a high-density SNP chip to genotype 192 F1 migratory and resident rainbow trout and focused our analyses to determine whether this inversion is important in life history development in a well-studied population of rainbow trout from Southeast Alaska. We identified 4,994 and 436 SNPs-predominantly outside of the inversion region-associated with life history development in the migrant and resident familial lines, respectively. Although F1 samples showed genomic patterns consistent with the double inversion on chromosome 5 (reduced observed and expected heterozygosity and an increase in linkage disequilibrium), we found no statistical association between the inversion and life history development. Progeny produced by crossing resident trout and progeny produced by crossing migrant trout both consisted of a mix of migrant and resident individuals, irrespective of the individuals' inversion haplotype on chromosome 5. This suggests that although the inversion is present at a low frequency, it is not strongly associated with migration as it is in populations of Oncorhynchus mykiss from lower latitudes.


Assuntos
Inversão Cromossômica , Genoma/genética , Genômica/métodos , Oncorhynchus mykiss/genética , Alaska , Migração Animal , Animais , Genética Populacional , Genótipo , Geografia , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único
6.
PLoS One ; 13(2): e0193009, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29447294

RESUMO

Sex-bias in gene expression is a mechanism that can generate phenotypic variance between the sexes, however, relatively little is known about how patterns of sex-bias vary during development, and how variable sex-bias is between different populations. To that end, we measured sex-bias in gene expression in the brain transcriptome of rainbow trout (Oncorhynchus mykiss) during the first two years of development. Our sampling included from the fry stage through to when O. mykiss either migrate to the ocean or remain resident and undergo sexual maturation. Samples came from two F1 lines: One from migratory steelhead trout and one from resident rainbow trout. All samples were reared in a common garden environment and RNA sequencing (RNA-seq) was used to estimate patterns of gene expression. A total of 1,716 (4.6% of total) genes showed evidence of sex-bias in gene expression in at least one time point. The majority (96.7%) of sex-biased genes were differentially expressed during the second year of development, indicating that patterns of sex-bias in expression are tied to key developmental events, such as migration and sexual maturation. Mapping of differentially expressed genes to the O. mykiss genome revealed that the X chromosome is enriched for female upregulated genes, and this may indicate a lack of dosage compensation in rainbow trout. There were many more sex-biased genes in the migratory line than the resident line suggesting differences in patterns of gene expression in the brain between populations subjected to different forces of selection. Overall, our results suggest that there is considerable variation in the extent and identity of genes exhibiting sex-bias during the first two years of life. These differentially expressed genes may be connected to developmental differences between the sexes, and/or between adopting a resident or migratory life history.


Assuntos
Encéfalo/metabolismo , Características de História de Vida , Oncorhynchus mykiss/genética , Caracteres Sexuais , Transcriptoma/fisiologia , Migração Animal/fisiologia , Animais , Feminino , Regulação da Expressão Gênica , Masculino , Oncorhynchus mykiss/crescimento & desenvolvimento , Oncorhynchus mykiss/metabolismo , Análise de Sequência de RNA , Maturidade Sexual/fisiologia , Especificidade da Espécie
7.
Artigo em Inglês | MEDLINE | ID: mdl-27693967

RESUMO

Many migratory traits are heritable, but there is a paucity of evidence identifying the molecular mechanisms underlying differentiation in alternative migratory tactics, or in linking variation in gene expression to migratory behaviors. To that end, we examined differential gene expression in the brain transcriptome between young steelhead trout that had undergone the smoltification process, and resident rainbow trout (Oncorhynchus mykiss) from Sashin Creek, Alaska. Samples were sequenced from two time points: immediately before (at 20months of age) and during (2years of age) the presumed peak of smoltification. Smolt and resident individuals came from two genetic crosses, one where both parents were migratory, and another where both parents were residents. A total of 533 (1.9%) genes were differentially expressed between crosses, or between smolt and resident samples. These genes include some candidate migratory genes (such as POMC), as well as genes with no previous known involvement in the migratory process. Progeny from resident parents showed more upregulated genes than progeny from migrant parents at both time points. Pathway analysis showed enrichment in 227 biological pathways between cross type, and 171 biological pathways were enriched between residents and smolts. Enriched pathways had connections to many biofunctions, and most were only enriched in one contrast. However, pathways connected to phototransduction were enriched between both cross type and migratory tactics in 11 out of 12 contrasts, suggesting there are fundamental differences in how smolts and residents process light in the brain. The genes and pathways described herein constitute an a priori candidate list for future studies of migration in other populations of O. mykiss, and other migratory species.


Assuntos
Migração Animal , Encéfalo/metabolismo , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Oncorhynchus mykiss/genética , Transcriptoma/genética , Animais , Encéfalo/crescimento & desenvolvimento , Biologia Computacional , Genoma/genética , Anotação de Sequência Molecular , Oncorhynchus mykiss/crescimento & desenvolvimento , Fenótipo
8.
G3 (Bethesda) ; 5(5): 873-89, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25784164

RESUMO

Rainbow trout (Oncorhynchus mykiss) exhibit remarkable life history diversity throughout their native range, and among the most evident is variation in migratory propensity. Although some populations and ecotypes will remain resident in freshwater habitats throughout their life history, others have the ability to undertake tremendous marine migrations. Those that migrate undergo a suite of behavioral, morphological, and physiological adaptations in a process called smoltification. We describe a quantitative genetic analysis of 22 growth, size, and morphological traits in addition to overall life history classification (resident or migrant) over the temporal process of smoltification in a large multi-generation experimental pedigree (n = 16,139) of migratory and resident rainbow trout derived from a wild population, which naturally segregates for migratory propensity. We identify significant additive genetic variance and covariance among the suite of traits that make up a component of the migratory syndrome in this species. Additionally, we identify high heritability estimates for the life history classifications and observe a strong negative genetic correlation between the migratory and resident life history trajectories. Given the large heritability estimates of all of the traits that segregate between migratory and resident rainbow trout, we conclude that these traits can respond to selection. However, given the high degree of genetic correlation between these traits, they do not evolve in isolation, but rather as a suite of coordinated characters in a predictable manner.


Assuntos
Migração Animal , Oncorhynchus mykiss/genética , Locos de Características Quantitativas , Característica Quantitativa Herdável , Animais , Análise por Conglomerados , Perfilação da Expressão Gênica , Estudos de Associação Genética , Oncorhynchus mykiss/anatomia & histologia , Oncorhynchus mykiss/crescimento & desenvolvimento , Linhagem , Fenótipo
9.
Mar Biotechnol (NY) ; 16(6): 638-56, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24952010

RESUMO

Rainbow and steelhead trout (Oncorhynchus mykiss), among other salmonid fishes, exhibit tremendous life history diversity, foremost of which is variation in migratory propensity. While some individuals possess the ability to undertake an anadromous marine migration, others remain resident in freshwater throughout their life cycle. Those that will migrate undergo tremendous physiological, morphological, and behavioral transformations in a process called smoltification which transitions freshwater-adapted parr to marine-adapted smolts. While the behavior, ecology, and physiology of smoltification are well described, our understanding of the proximate genetic mechanisms that trigger the process are not well known. Quantitative genetic analyses have identified several genomic regions associated with smoltification and migration-related traits within this species. Here we investigate the divergence in gene expression of 18 functional and positional candidate genes for the smoltification process in the brain, gill, and liver tissues of migratory smolts, resident parr, and precocious mature male trout at the developmental stage of out-migration. Our analysis reveals several genes differentially expressed between life history classes and validates the candidate nature of several genes in the parr-smolt transformation including Clock1α, FSHß, GR, GH2, GHR1, GHR2, NDK7, p53, SC6a7, Taldo1, THRα, THRß, and Vdac2.


Assuntos
Adaptação Fisiológica/fisiologia , Migração Animal/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Estágios do Ciclo de Vida/fisiologia , Oncorhynchus mykiss/genética , Salinidade , Adaptação Fisiológica/genética , Análise de Variância , Animais , Encéfalo/metabolismo , Cruzamentos Genéticos , Primers do DNA/genética , DNA Complementar/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Estudos de Associação Genética , Brânquias/metabolismo , Estágios do Ciclo de Vida/genética , Fígado/metabolismo , Masculino , Oncorhynchus mykiss/fisiologia , Fatores Sexuais
10.
G3 (Bethesda) ; 3(8): 1273-85, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23797103

RESUMO

Next-generation sequencing and the application of population genomic and association approaches have made it possible to detect selection and unravel the genetic basis to variable phenotypic traits. The use of these two approaches in parallel is especially attractive in nonmodel organisms that lack a sequenced and annotated genome, but only works well when population structure is not confounded with the phenotype of interest. Herein, we use population genomics in a nonmodel fish species, rainbow trout (Oncorhynchus mykiss), to better understand adaptive divergence between migratory and nonmigratory ecotypes and to further our understanding about the genetic basis of migration. Restriction site-associated DNA (RAD) tag sequencing was used to identify single-nucleotide polymorphisms (SNPs) in migrant and resident O. mykiss from two systems, one in Alaska and the other in Oregon. A total of 7920 and 6755 SNPs met filtering criteria in the Alaska and Oregon data sets, respectively. Population genetic tests determined that 1423 SNPs were candidates for selection when loci were compared between resident and migrant samples. Previous linkage mapping studies that used RAD DNA tag SNPs were available to determine the position of 1990 markers. Several significant SNPs are located in genome regions that contain quantitative trait loci for migratory-related traits, reinforcing the importance of these regions in the genetic basis of migration/residency. Annotation of genome regions linked to significant SNPs revealed genes involved in processes known to be important in migration (such as osmoregulatory function). This study adds to our growing knowledge on adaptive divergence between migratory and nonmigratory ecotypes of this species; across studies, this complex trait appears to be controlled by many loci of small effect, with some in common, but many loci not shared between populations studied.


Assuntos
Ecótipo , Oncorhynchus mykiss/genética , Polimorfismo de Nucleotídeo Único , Animais , Mapeamento Cromossômico , Genoma , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Desequilíbrio de Ligação , Metagenômica , Fenótipo , Locos de Características Quantitativas
11.
G3 (Bethesda) ; 2(9): 1113-27, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22973549

RESUMO

Although migration plays a critical role in the evolution and diversification of species, relatively little is known of the genetic architecture underlying this life history in any species. Rainbow and steelhead trout (Oncorhynchus mykiss) naturally segregate for both resident and migratory life-history types, respectively, as do other members of the salmonid family of fishes. Using an experimental cross derived from wild resident rainbow and wild migratory steelhead trout from Southeast Alaska and high throughput restriction-site associated DNA (RAD) tag sequencing, we perform a quantitative trait locus (QTL) analysis to identify the number, position, and relative contribution of genetic effects on a suite of 27 physiological and morphological traits associated with the migratory life history in this species. In total, 37 QTL are localized to 19 unique QTL positions, explaining 4-13.63% of the variation for 19 of the 27 migration-related traits measured. Two chromosomal positions, one on chromosome Omy12 and the other on Omy14 each harbor 7 QTL for migration-related traits, suggesting that these regions could harbor master genetic controls for the migratory life-history tactic in this species. Another QTL region on Omy5 has been implicated in several studies of adaptive life histories within this species and could represent another important locus underlying the migratory life history. We also evaluate whether loci identified in this out-crossed QTL study colocalize to genomic positions previously identified for associations with migration-related traits in a doubled haploid mapping family.


Assuntos
Oncorhynchus mykiss/genética , Locos de Características Quantitativas , Migração Animal , Animais , Tamanho Corporal/genética , Feminino , Ligação Genética , Marcadores Genéticos , Masculino , Oncorhynchus mykiss/anatomia & histologia , Oncorhynchus mykiss/fisiologia , Fenótipo , Mapeamento Físico do Cromossomo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa