Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Alemão | MEDLINE | ID: mdl-38750239

RESUMO

Health data are extremely important in today's data-driven world. Through automation, healthcare processes can be optimized, and clinical decisions can be supported. For any reuse of data, the quality, validity, and trustworthiness of data are essential, and it is the only way to guarantee that data can be reused sensibly. Specific requirements for the description and coding of reusable data are defined in the FAIR guiding principles for data stewardship. Various national research associations and infrastructure projects in the German healthcare sector have already clearly positioned themselves on the FAIR principles: both the infrastructures of the Medical Informatics Initiative and the University Medicine Network operate explicitly on the basis of the FAIR principles, as do the National Research Data Infrastructure for Personal Health Data and the German Center for Diabetes Research.To ensure that a resource complies with the FAIR principles, the degree of FAIRness should first be determined (so-called FAIR assessment), followed by the prioritization for improvement steps (so-called FAIRification). Since 2016, a set of tools and guidelines have been developed for both steps, based on the different, domain-specific interpretations of the FAIR principles.Neighboring European countries have also invested in the development of a national framework for semantic interoperability in the context of the FAIR (Findable, Accessible, Interoperable, Reusable) principles. Concepts for comprehensive data enrichment were developed to simplify data analysis, for example, in the European Health Data Space or via the Observational Health Data Sciences and Informatics network. With the support of the European Open Science Cloud, among others, structured FAIRification measures have already been taken for German health datasets.


Assuntos
Registros Eletrônicos de Saúde , Humanos , Alemanha , Internacionalidade , Programas Nacionais de Saúde
2.
Artigo em Alemão | MEDLINE | ID: mdl-38753022

RESUMO

The interoperability Working Group of the Medical Informatics Initiative (MII) is the platform for the coordination of overarching procedures, data structures, and interfaces between the data integration centers (DIC) of the university hospitals and national and international interoperability committees. The goal is the joint content-related and technical design of a distributed infrastructure for the secondary use of healthcare data that can be used via the Research Data Portal for Health. Important general conditions are data privacy and IT security for the use of health data in biomedical research. To this end, suitable methods are used in dedicated task forces to enable procedural, syntactic, and semantic interoperability for data use projects. The MII core dataset was developed as several modules with corresponding information models and implemented using the HL7® FHIR® standard to enable content-related and technical specifications for the interoperable provision of healthcare data through the DIC. International terminologies and consented metadata are used to describe these data in more detail. The overall architecture, including overarching interfaces, implements the methodological and legal requirements for a distributed data use infrastructure, for example, by providing pseudonymized data or by federated analyses. With these results of the Interoperability Working Group, the MII is presenting a future-oriented solution for the exchange and use of healthcare data, the applicability of which goes beyond the purpose of research and can play an essential role in the digital transformation of the healthcare system.


Assuntos
Interoperabilidade da Informação em Saúde , Humanos , Conjuntos de Dados como Assunto , Registros Eletrônicos de Saúde , Alemanha , Interoperabilidade da Informação em Saúde/normas , Informática Médica , Registro Médico Coordenado/métodos , Integração de Sistemas
3.
J Med Internet Res ; 25: e41089, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37347528

RESUMO

BACKGROUND: Resources are increasingly spent on artificial intelligence (AI) solutions for medical applications aiming to improve diagnosis, treatment, and prevention of diseases. While the need for transparency and reduction of bias in data and algorithm development has been addressed in past studies, little is known about the knowledge and perception of bias among AI developers. OBJECTIVE: This study's objective was to survey AI specialists in health care to investigate developers' perceptions of bias in AI algorithms for health care applications and their awareness and use of preventative measures. METHODS: A web-based survey was provided in both German and English language, comprising a maximum of 41 questions using branching logic within the REDCap web application. Only the results of participants with experience in the field of medical AI applications and complete questionnaires were included for analysis. Demographic data, technical expertise, and perceptions of fairness, as well as knowledge of biases in AI, were analyzed, and variations among gender, age, and work environment were assessed. RESULTS: A total of 151 AI specialists completed the web-based survey. The median age was 30 (IQR 26-39) years, and 67% (101/151) of respondents were male. One-third rated their AI development projects as fair (47/151, 31%) or moderately fair (51/151, 34%), 12% (18/151) reported their AI to be barely fair, and 1% (2/151) not fair at all. One participant identifying as diverse rated AI developments as barely fair, and among the 2 undefined gender participants, AI developments were rated as barely fair or moderately fair, respectively. Reasons for biases selected by respondents were lack of fair data (90/132, 68%), guidelines or recommendations (65/132, 49%), or knowledge (60/132, 45%). Half of the respondents worked with image data (83/151, 55%) from 1 center only (76/151, 50%), and 35% (53/151) worked with national data exclusively. CONCLUSIONS: This study shows that the perception of biases in AI overall is moderately fair. Gender minorities did not once rate their AI development as fair or very fair. Therefore, further studies need to focus on minorities and women and their perceptions of AI. The results highlight the need to strengthen knowledge about bias in AI and provide guidelines on preventing biases in AI health care applications.


Assuntos
Algoritmos , Inteligência Artificial , Humanos , Feminino , Masculino , Adulto , Viés , Atenção à Saúde , Internet
4.
J Med Syst ; 47(1): 115, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37962711

RESUMO

The COVID-19 pandemic has led to tremendous investment in clinical studies to generate much-needed knowledge on the prevention, diagnosis, treatment and long-term effects of the disease. Case report forms, comprised of questions and answers (variables), are commonly used to collect data in clinical trials. Maximizing the value of study data depends on data quality and on the ability to easily pool and share data from several sources. ISARIC, in collaboration with the WHO, has created a case report form that is available for use by the scientific community to collect COVID-19 trial data. One of such research initiatives collecting and analyzing multi-country and multi-cohort COVID-19 study data is the Horizon 2020 project ORCHESTRA. Following the ISO/TS 21564:2019 standard, a mapping between five ORCHESTRA studies' variables and the ISARIC Freestanding Follow-Up Survey elements was created. Measures of correspondence of shared semantic domain of 0 (perfect match), 1 (fully inclusive match), 2 (partial match), 4 (transformation required) or 4* (not present in ORCHESTRA) as compared to the target code system, ORCHESTRA study variables, were assigned to each of the elements in the ISARIC FUP case report form (CRF) which was considered the source code system. Of the ISARIC FUP CRF's variables, around 34% were found to show an exact match with corresponding variables in ORCHESTRA studies and about 33% showed a non-inclusive overlap. Matching variables provided information on patient demographics, COVID-19 testing, hospital admission and symptoms. More in-depth details are covered in ORCHESTRA variables with regards to treatment and comorbidities. ORCHESTRA's Long-Term Sequelae and Fragile population studies' CRFs include 32 and 27 variables respectively which were evaluated as a perfect match to variables in the ISARIC FUP CRF. Our study serves as an example of the kind of maps between case report form variables from different research projects needed to link ongoing COVID-19 research efforts and facilitate collaboration and data sharing. To enable data aggregation across two data systems, the information they contain needs to be connected through a map to determine compatibility and transformation needs. Combining data from various clinical studies can increase the power of analytical insights.


Assuntos
Teste para COVID-19 , COVID-19 , Humanos , Seguimentos , Pandemias , Semântica , COVID-19/epidemiologia , Fadiga
5.
J Med Internet Res ; 23(2): e25283, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33497350

RESUMO

BACKGROUND: The COVID-19 outbreak has affected the lives of millions of people by causing a dramatic impact on many health care systems and the global economy. This devastating pandemic has brought together communities across the globe to work on this issue in an unprecedented manner. OBJECTIVE: This case study describes the steps and methods employed in the conduction of a remote online health hackathon centered on challenges posed by the COVID-19 pandemic. It aims to deliver a clear implementation road map for other organizations to follow. METHODS: This 4-day hackathon was conducted in April 2020, based on six COVID-19-related challenges defined by frontline clinicians and researchers from various disciplines. An online survey was structured to assess: (1) individual experience satisfaction, (2) level of interprofessional skills exchange, (3) maturity of the projects realized, and (4) overall quality of the event. At the end of the event, participants were invited to take part in an online survey with 17 (+5 optional) items, including multiple-choice and open-ended questions that assessed their experience regarding the remote nature of the event and their individual project, interprofessional skills exchange, and their confidence in working on a digital health project before and after the hackathon. Mentors, who guided the participants through the event, also provided feedback to the organizers through an online survey. RESULTS: A total of 48 participants and 52 mentors based in 8 different countries participated and developed 14 projects. A total of 75 mentorship video sessions were held. Participants reported increased confidence in starting a digital health venture or a research project after successfully participating in the hackathon, and stated that they were likely to continue working on their projects. Of the participants who provided feedback, 60% (n=18) would not have started their project without this particular hackathon and indicated that the hackathon encouraged and enabled them to progress faster, for example, by building interdisciplinary teams, gaining new insights and feedback provided by their mentors, and creating a functional prototype. CONCLUSIONS: This study provides insights into how online hackathons can contribute to solving the challenges and effects of a pandemic in several regions of the world. The online format fosters team diversity, increases cross-regional collaboration, and can be executed much faster and at lower costs compared to in-person events. Results on preparation, organization, and evaluation of this online hackathon are useful for other institutions and initiatives that are willing to introduce similar event formats in the fight against COVID-19.


Assuntos
COVID-19/terapia , Atenção à Saúde/organização & administração , Internet , Adulto , COVID-19/epidemiologia , Humanos , SARS-CoV-2/isolamento & purificação
6.
Artigo em Alemão | MEDLINE | ID: mdl-34297162

RESUMO

Public health research and epidemiological and clinical studies are necessary to understand the COVID-19 pandemic and to take appropriate action. Therefore, since early 2020, numerous research projects have also been initiated in Germany. However, due to the large amount of information, it is currently difficult to get an overview of the diverse research activities and their results. Based on the "Federated research data infrastructure for personal health data" (NFDI4Health) initiative, the "COVID-19 task force" is able to create easier access to SARS-CoV-2- and COVID-19-related clinical, epidemiological, and public health research data. Therefore, the so-called FAIR data principles (findable, accessible, interoperable, reusable) are taken into account and should allow an expedited communication of results. The most essential work of the task force includes the generation of a study portal with metadata, selected instruments, other study documents, and study results as well as a search engine for preprint publications. Additional contents include a concept for the linkage between research and routine data, a service for an enhanced practice of image data, and the application of a standardized analysis routine for harmonized quality assessment. This infrastructure, currently being established, will facilitate the findability and handling of German COVID-19 research. The developments initiated in the context of the NFDI4Health COVID-19 task force are reusable for further research topics, as the challenges addressed are generic for the findability of and the handling with research data.


Assuntos
Pesquisa Biomédica/tendências , COVID-19 , Disseminação de Informação , Alemanha , Humanos , Metadados , Pandemias , SARS-CoV-2
7.
BMC Med Inform Decis Mak ; 20(1): 341, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33349259

RESUMO

BACKGROUND: The current COVID-19 pandemic has led to a surge of research activity. While this research provides important insights, the multitude of studies results in an increasing fragmentation of information. To ensure comparability across projects and institutions, standard datasets are needed. Here, we introduce the "German Corona Consensus Dataset" (GECCO), a uniform dataset that uses international terminologies and health IT standards to improve interoperability of COVID-19 data, in particular for university medicine. METHODS: Based on previous work (e.g., the ISARIC-WHO COVID-19 case report form) and in coordination with experts from university hospitals, professional associations and research initiatives, data elements relevant for COVID-19 research were collected, prioritized and consolidated into a compact core dataset. The dataset was mapped to international terminologies, and the Fast Healthcare Interoperability Resources (FHIR) standard was used to define interoperable, machine-readable data formats. RESULTS: A core dataset consisting of 81 data elements with 281 response options was defined, including information about, for example, demography, medical history, symptoms, therapy, medications or laboratory values of COVID-19 patients. Data elements and response options were mapped to SNOMED CT, LOINC, UCUM, ICD-10-GM and ATC, and FHIR profiles for interoperable data exchange were defined. CONCLUSION: GECCO provides a compact, interoperable dataset that can help to make COVID-19 research data more comparable across studies and institutions. The dataset will be further refined in the future by adding domain-specific extension modules for more specialized use cases.


Assuntos
Pesquisa Biomédica , COVID-19 , Conjuntos de Dados como Assunto , Medicina , Consenso , Humanos , Pandemias
8.
J Med Syst ; 44(8): 137, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32642856

RESUMO

This paper presents an approach to enable interoperability of the research data management system XNAT by the implementation of the HL7 standards framework Fast Healthcare Interoperability Resources (FHIR). The FHIR implementation is realized as an XNAT plugin (Source code: https://github.com/somnonetz/xnat-fhir-plugin ), that allows easy adoption in arbitrary XNAT instances. The approach is demonstrated on patient data exchange between a FHIR reference implementation and XNAT.


Assuntos
Nível Sete de Saúde/organização & administração , Sistemas Computadorizados de Registros Médicos/organização & administração , Neuroimagem/métodos , Gerenciamento de Dados , Registros Eletrônicos de Saúde , Nível Sete de Saúde/normas , Humanos , Sistemas Computadorizados de Registros Médicos/normas , Integração de Sistemas
9.
Radiology ; 291(3): 547-552, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30938629

RESUMO

The four grand challenges of imaging research­increasing evidence levels, enhancing global collaboration, improving research reporting quality, and sharing trial data­can be addressed, utilizing the tail wind of digital transformation, by consolidating actions of all stakeholders, with the ultimate goal of evidence-based, reproducible, generalizable, and broadly accepted results that will improve the quality and consistency of patient care.


Assuntos
Pesquisa Biomédica/normas , Diagnóstico por Imagem , Humanos , Disseminação de Informação , Cooperação Internacional
10.
Artigo em Alemão | MEDLINE | ID: mdl-29846742

RESUMO

BACKGROUND: Medical documentation is no longer used primarily for administrative processes or healthcare billing, but for the entire electronic health record with accompanying eHealth use cases. OBJECTIVES: It shall be examined to what extent classifications such as the International Statistical Classification of Diseases and Related Health Problems (ICD-11) and the International Classification of Health Interventions (ICHI), in comparison to the international reference terminology SNOMED CT, meet the requirements of current eHealth applications and ensure interoperability. MATERIALS AND METHODS: The strengths and weaknesses of ICD-11 and ICHI are highlighted in terms of literature, contextual mapping within the international patient summary, telemedicine applications and the use in IT standards, such as HL7 in comparison to SNOMED CT. RESULTS: The whole range of medical terminology is not covered by ICHI and ICD-10, but with SNOMED CT, because ICD-11 and ICHI may be used in strict limitations to annotate procedures and diagnosis. A sample value set (n = 30) shows high mapping equivalence in SNOMED CT. In the literature, ICD-11 to SNOMED CT mappings are described as complex and error-prone. CONCLUSIONS: In terms of content expressivity and international usability, the potential of SNOMED CT in eHealth applications can be considered more favorable than ICD-11 or ICHI, even considering the original scope of these classifications, diagnoses and procedures. ICHI may even be recommended for specific use cases (e. g. statistics).


Assuntos
Registros Eletrônicos de Saúde , Classificação Internacional de Doenças , Systematized Nomenclature of Medicine , Telemedicina , Alemanha , Humanos
11.
Stud Health Technol Inform ; 310: 18-22, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38269757

RESUMO

Adhering to FAIR principles (findability, accessibility, interoperability, reusability) ensures sustainability and reliable exchange of data and metadata. Research communities need common infrastructures and information models to collect, store, manage and work with data and metadata. The German initiative NFDI4Health created a metadata schema and an infrastructure integrating existing platforms based on different information models and standards. To ensure system compatibility and enhance data integration possibilities, we mapped the Investigation-Study-Assay (ISA) model to Fast Healthcare Interoperability Resources (FHIR). We present the mapping in FHIR logical models, a resulting FHIR resources' network and challenges that we encountered. Challenges mainly related to ISA's genericness, and to different structures and datatypes used in ISA and FHIR. Mapping ISA to FHIR is feasible but requires further analyses of example data and adaptations to better specify target FHIR elements, and enable possible automatized conversions from ISA to FHIR.


Assuntos
Medicamentos Genéricos , Instalações de Saúde , Humanos , Metadados , Atenção à Saúde
12.
medRxiv ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38854034

RESUMO

The Global Alliance for Genomics and Health (GA4GH) Phenopacket Schema was released in 2022 and approved by ISO as a standard for sharing clinical and genomic information about an individual, including phenotypic descriptions, numerical measurements, genetic information, diagnoses, and treatments. A phenopacket can be used as an input file for software that supports phenotype-driven genomic diagnostics and for algorithms that facilitate patient classification and stratification for identifying new diseases and treatments. There has been a great need for a collection of phenopackets to test software pipelines and algorithms. Here, we present phenopacket-store. Version 0.1.12 of phenopacket-store includes 4916 phenopackets representing 277 Mendelian and chromosomal diseases associated with 236 genes, and 2872 unique pathogenic alleles curated from 605 different publications. This represents the first large-scale collection of case-level, standardized phenotypic information derived from case reports in the literature with detailed descriptions of the clinical data and will be useful for many purposes, including the development and testing of software for prioritizing genes and diseases in diagnostic genomics, machine learning analysis of clinical phenotype data, patient stratification, and genotype-phenotype correlations. This corpus also provides best-practice examples for curating literature-derived data using the GA4GH Phenopacket Schema.

13.
Stud Health Technol Inform ; 302: 133-134, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37203627

RESUMO

Several European health data research initiatives aim to make health data FAIR for research and healthcare, and supply their national communities with coordinated data models, infrastructures, and tools. We present a first map of the Swiss Personalized Healthcare Network dataset to Fast Healthcare Interoperability Resources (FHIR®). All concepts could be mapped using 22 FHIR resources and three datatypes. Deeper analyses will follow before creating a FHIR specification, to potentially enable data conversion and exchange between research networks.


Assuntos
Registros Eletrônicos de Saúde , Nível Sete de Saúde
14.
Stud Health Technol Inform ; 302: 741-742, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37203481

RESUMO

The need to harness large amounts of data, possibly within a short period of time, became apparent during the Covid-19 pandemic outbreak. In 2022, the Corona Data Exchange Platform (CODEX), which had been developed within the German Network University Medicine (NUM), was extended by a number of common components, including a section on FAIR science. The FAIR principles enable research networks to evaluate how well they comply with current standards in open and reproducible science. To be more transparent, but also to guide scientists on how to improve data and software reusability, we disseminated an online survey within the NUM. Here we present the outcomes and lessons learnt.


Assuntos
COVID-19 , Medicina , Humanos , COVID-19/epidemiologia , Universidades , Pandemias , Software
15.
Sci Data ; 10(1): 654, 2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741862

RESUMO

The COVID-19 pandemic has made it clear: sharing and exchanging data among research institutions is crucial in order to efficiently respond to global health threats. This can be facilitated by defining health data models based on interoperability standards. In Germany, a national effort is in progress to create common data models using international healthcare IT standards. In this context, collaborative work on a data set module for microbiology is of particular importance as the WHO has declared antimicrobial resistance one of the top global public health threats that humanity is facing. In this article, we describe how we developed a common model for microbiology data in an interdisciplinary collaborative effort and how we make use of the standard HL7 FHIR and terminologies such as SNOMED CT or LOINC to ensure syntactic and semantic interoperability. The use of international healthcare standards qualifies our data model to be adopted beyond the environment where it was first developed and used at an international level.


Assuntos
COVID-19 , Humanos , Pandemias , Alemanha , Instalações de Saúde , Ciências Humanas
16.
J Am Med Inform Assoc ; 30(6): 1179-1189, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37080557

RESUMO

OBJECTIVE: The objective was to develop a dataset definition, information model, and FHIR® specification for key data elements contained in a German molecular genomics (MolGen) report to facilitate genomic and phenotype integration in electronic health records. MATERIALS AND METHODS: A dedicated expert group participating in the German Medical Informatics Initiative reviewed information contained in MolGen reports, determined the key elements, and formulated a dataset definition. HL7's Genomics Reporting Implementation Guide (IG) was adopted as a basis for the FHIR® specification which was subjected to a public ballot. In addition, elements in the MolGen dataset were mapped to the fields defined in ISO/TS 20428:2017 standard to evaluate compliance. RESULTS: A core dataset of 76 data elements, clustered into 6 categories was created to represent all key information of German MolGen reports. Based on this, a FHIR specification with 16 profiles, 14 derived from HL7®'s Genomics Reporting IG and 2 additional profiles (of the FamilyMemberHistory and RiskAssessment resources), was developed. Five example resource bundles show how our adaptation of an international standard can be used to model MolGen report data that was requested following oncological or rare disease indications. Furthermore, the map of the MolGen report data elements to the fields defined by the ISO/TC 20428:2017 standard, confirmed the presence of the majority of required fields. CONCLUSIONS: Our report serves as a template for other research initiatives attempting to create a standard format for unstructured genomic report data. Use of standard formats facilitates integration of genomic data into electronic health records for clinical decision support.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Nível Sete de Saúde , Registros Eletrônicos de Saúde , Genômica , Alemanha
17.
Lancet Digit Health ; 5(2): e93-e101, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36707190

RESUMO

Substantial opportunities for global health intelligence and research arise from the combined and optimised use of secondary data within data ecosystems. Secondary data are information being used for purposes other than those intended when they were collected. These data can be gathered from sources on the verge of widespread use such as the internet, wearables, mobile phone apps, electronic health records, or genome sequencing. To utilise their full potential, we offer guidance by outlining available sources and approaches for the processing of secondary data. Furthermore, in addition to indicators for the regulatory and ethical evaluation of strategies for the best use of secondary data, we also propose criteria for assessing reusability. This overview supports more precise and effective policy decision making leading to earlier detection and better prevention of emerging health threats than is currently the case.


Assuntos
Telefone Celular , Aplicativos Móveis , Ecossistema , Saúde Global , Internet
18.
JMIR Med Inform ; 11: e45496, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37490312

RESUMO

Background: The COVID-19 pandemic has spurred large-scale, interinstitutional research efforts. To enable these efforts, researchers must agree on data set definitions that not only cover all elements relevant to the respective medical specialty but also are syntactically and semantically interoperable. Therefore, the German Corona Consensus (GECCO) data set was developed as a harmonized, interoperable collection of the most relevant data elements for COVID-19-related patient research. As the GECCO data set is a compact core data set comprising data across all medical fields, the focused research within particular medical domains demands the definition of extension modules that include data elements that are the most relevant to the research performed in those individual medical specialties. Objective: We aimed to (1) specify a workflow for the development of interoperable data set definitions that involves close collaboration between medical experts and information scientists and (2) apply the workflow to develop data set definitions that include data elements that are the most relevant to COVID-19-related patient research regarding immunization, pediatrics, and cardiology. Methods: We developed a workflow to create data set definitions that were (1) content-wise as relevant as possible to a specific field of study and (2) universally usable across computer systems, institutions, and countries (ie, interoperable). We then gathered medical experts from 3 specialties-infectious diseases (with a focus on immunization), pediatrics, and cardiology-to select data elements that were the most relevant to COVID-19-related patient research in the respective specialty. We mapped the data elements to international standardized vocabularies and created data exchange specifications, using Health Level Seven International (HL7) Fast Healthcare Interoperability Resources (FHIR). All steps were performed in close interdisciplinary collaboration with medical domain experts and medical information specialists. Profiles and vocabulary mappings were syntactically and semantically validated in a 2-stage process. Results: We created GECCO extension modules for the immunization, pediatrics, and cardiology domains according to pandemic-related requests. The data elements included in each module were selected, according to the developed consensus-based workflow, by medical experts from these specialties to ensure that the contents aligned with their research needs. We defined data set specifications for 48 immunization, 150 pediatrics, and 52 cardiology data elements that complement the GECCO core data set. We created and published implementation guides, example implementations, and data set annotations for each extension module. Conclusions: The GECCO extension modules, which contain data elements that are the most relevant to COVID-19-related patient research on infectious diseases (with a focus on immunization), pediatrics, and cardiology, were defined in an interdisciplinary, iterative, consensus-based workflow that may serve as a blueprint for developing further data set definitions. The GECCO extension modules provide standardized and harmonized definitions of specialty-related data sets that can help enable interinstitutional and cross-country COVID-19 research in these specialties.

19.
Stud Health Technol Inform ; 298: 132-136, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36073471

RESUMO

On May 3rd, 2022, the European Commission published its legislative proposal to create a European Health Data Space (EHDS) enabling citizens of the European Union to gain secure access to their electronic health data by establishing a market for digital health. This market will feature the primary and secondary use of electronic health records by digital products and services. The articles of the proposal address many aspects of ensuring health data interoperability. That includes the creation of a European Electronic Health Record Exchange Format for defined data categories including patient summaries and electronic prescriptions, the development of a central platform to provide a cross-border digital infrastructure and that each Member State institutes a digital health authority and a national point of contact. In addition, the Commission will define common specifications that electronic health record systems and medical devices will have to meet as interoperability requirements. In its current form, the proposal does not stipulate specific standards that need to be universally adopted to ensure semantic and syntactical interoperability. Considering that many datasets are not internationally harmonized and lack standardization, these specifications will need to be provided for example by existing standards like the International Patient Summary.


Assuntos
Registros Eletrônicos de Saúde , União Europeia , Humanos
20.
Stud Health Technol Inform ; 294: 649-653, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35612169

RESUMO

SNOMED CT fosters interoperability in healthcare and research. This use case implemented SNOMED CT for browsing COVID-19 questionnaires in the open-software solutions OPAL/MICA. We implemented a test server requiring files in a given YAML format for implementation of taxonomies with only two levels of hierarchy. Within this format, neither the implementation of SNOMED CT hierarchies and post-coordination nor the use of release files were possible. To solve this, Python scripts were written to integrate the required SNOMED CT concepts (Fully Specified Name, FSN and SNOMED CT Identifier, SCTID) into the YAML format (YAML Mode). Mappings of SNOMED CT to data items of the questionnaires had to be provided as Excel files for implementation into Opal/MICA and further Python scripts were established within the Excel Mode. Finally, a total of eight questionnaires containing 1.178 data items were successfully mapped to SNOMED CT and implemented in OPAL/MICA. This use case showed that implementing SNOMED CT for browsing COVID-19 questionnaires is feasible despite software solutions not supporting SNOMED CT. However, limitations of not being able to implement SNOMED CT release files and its provided hierarchy and post-coordination still have to be overcome.


Assuntos
COVID-19 , Systematized Nomenclature of Medicine , Atenção à Saúde , Humanos , Software , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa