Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 22(7): 895-902, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37322141

RESUMO

Owing to the unique combination of electrical conductivity and tissue-like mechanical properties, conducting polymer hydrogels have emerged as a promising candidate for bioelectronic interfacing with biological systems. However, despite the recent advances, the development of hydrogels with both excellent electrical and mechanical properties in physiological environments is still challenging. Here we report a bi-continuous conducting polymer hydrogel that simultaneously achieves high electrical conductivity (over 11 S cm-1), stretchability (over 400%) and fracture toughness (over 3,300 J m-2) in physiological environments and is readily applicable to advanced fabrication methods including 3D printing. Enabled by these properties, we further demonstrate multi-material 3D printing of monolithic all-hydrogel bioelectronic interfaces for long-term electrophysiological recording and stimulation of various organs in rat models.


Assuntos
Hidrogéis , Polímeros , Animais , Ratos , Condutividade Elétrica , Impressão Tridimensional
2.
Small ; : e2308778, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38063822

RESUMO

Electrical bioadhesive interface (EBI), especially conducting polymer hydrogel (CPH)-based EBI, exhibits promising potential applications in various fields, including biomedical devices, neural interfaces, and wearable devices. However, current fabrication techniques of CPH-based EBI mostly focus on conventional methods such as direct casting, injection, and molding, which remains a lingering challenge for further pushing them toward customized practical bioelectronic applications and commercialization. Herein, 3D printable high-performance CPH-based EBI precursor inks are developed through composite engineering of PEDOT:PSS and adhesive ionic macromolecular dopants within tough hydrogel matrices (PVA). Such inks allow the facile fabrication of high-resolution and programmable patterned EBI through 3D printing. Upon successive freeze-thawing, the as-printed PEDOT:PSS-based EBI simultaneously exhibits high conductivity of 1.2 S m-1 , low interfacial impedance of 20 Ω, high stretchability of 349%, superior toughness of 109 kJ m-3 , and satisfactory adhesion to various materials. Enabled by these advantageous properties and excellent printability, the facile and continuous manufacturing of EBI-based skin electrodes is further demonstrated via 3D printing, and the fabricated electrodes display excellent ECG and EMG signal recording capability superior to commercial products. This work may provide a new avenue for rational design and fabrication of next-generation EBI for soft bioelectronics, further advancing seamless human-machine integration.

3.
Molecules ; 23(7)2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29949931

RESUMO

Deregulation of the receptor tyrosine kinase mesenchymal epithelial transition factor (MET) has been implicated in several human cancers and is an attractive target for small molecule drug discovery. Herein, a series of 6,7-disubstituted-4-phenoxyquinoline derivatives bearing pyridazinone derivatives were designed, synthesized and evaluated for their enzymatic inhibitory activity against c-Met kinase and cellular potency against A549, HepG2, and MCF-7 cell lines. Eight of them are equal to more active than positive control Foretinib against one or more cell lines and enzyme. The most promising compound 53 showed superior activity to Foretinib, which possessed excellent c-Met kinase inhibition on a singledigital nanomolar level (IC50 = 0.6 nM), and cancer cells of A549 (IC50 = 0.003 µM), HepG2 (IC50 = 0.49 µM) and MCF-7 cells (IC50 = 0.006 µM). The result of AO single staining indicated that compound 53 could induce remarkable apoptosis of HepG2 cell.


Assuntos
Desenho de Fármacos , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Piridazinas/síntese química , Piridazinas/farmacologia , Quinolinas/síntese química , Quinolinas/farmacologia , Linhagem Celular Tumoral , Forma Celular , Humanos , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-met/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Coloração e Rotulagem
4.
J Colloid Interface Sci ; 638: 339-348, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36746052

RESUMO

Conducting polymers are emerging as promising neural interfaces towards diverse applications such as deep brain stimulation due to their superior biocompatibility, electrical, and mechanical properties. However, existing conducting polymer-based neural interfaces still suffer from several challenges and limitations such as complex preparation procedures, weak interfacial adhesion, poor long-term fidelity and stability, and expensive microfabrication, significantly hindering their broad practical applications and marketization. Herein, we develop an adhesive and long-term stable conducting polymer neural interface by a simple two-step electropolymerization methodology, namely, the pre-polymerization of polydopamine (PDA) as an adhesive thin layer followed by electropolymerization of hydroxymethylated 3,4-ethylenedioxythiophene (EDOT-MeOH) with polystyrene sulfonate (PSS) to form stable interpenetrating PEDOT-MeOH:PSS/PDA networks. As-prepared PEDOT-MeOH:PSS/PDA interface exhibits remarkably improved interfacial adhesion against metallic electrodes, showing 93% area retention against vigorous sonication for 20 min, which is one of the best tenacious conducting polymer interfaces so far. Enabled by the simple methodology, we can facilely fabricate the PEDOT-MeOH:PSS/PDA interface onto ultrasmall Pt-Ir wire microelectrodes (diameter: 10 µm). The modified microelectrodes display two orders of magnitude lower impedance than commercial products, and also superior long-term stability to previous reports with high charge injection capacity retention up to 99.5% upon 10,000,000 biphasic input pulse cycles. With these findings, such a simple methodology, together with the fabricated high-performance and stable neural interface, can potentially provide a powerful tool for both advanced neuroscience researches and cutting-edge clinical applications like brain-controlled intelligence.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Polímeros , Microeletrodos
5.
Polymers (Basel) ; 15(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37112003

RESUMO

Supercapacitors are widely used in various fields due to their high power density, fast charging and discharging speeds, and long service life. However, with the increasing demand for flexible electronics, integrated supercapacitors in devices are also facing more challenges, such as extensibility, bending stability, and operability. Despite many reports on stretchable supercapacitors, challenges still exist in their preparation process, which involves multiple steps. Therefore, we prepared stretchable conducting polymer electrodes by depositing thiophene and 3-methylthiophene on patterned 304 stainless steel (SS 304) through electropolymerization. The cycling stability of the prepared stretchable electrodes could be further improved by protecting them with poly(vinyl alcohol)/sulfuric acid (PVA/H2SO4) gel electrolyte. Specifically, the mechanical stability of the polythiophene (PTh) electrode was improved by 2.5%, and the stability of the poly(3-methylthiophene (P3MeT) electrode was improved by 7.0%. As a result, the assembled flexible supercapacitors maintained 93% of their stability even after 10,000 cycles of strain at 100%, which indicates potential applications in flexible electronics.

6.
Polymers (Basel) ; 14(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35631873

RESUMO

Stretchable, adhesive, and conductive hydrogels have been regarded as ideal interfacial materials for seamless and biocompatible integration with the human body. However, existing hydrogels can rarely achieve good mechanical, electrical, and adhesive properties simultaneously, as well as limited patterning/manufacturing techniques posing severe challenges to bioelectronic research and their practical applications. Herein, we develop a stretchable, adhesive, and conductive Ti3C2Tx-polyacrylic acid hydrogel by a simple pre-crosslinking method followed by successive direct ink writing 3D printing. Pre-polymerization of acrylic acid can be initiated by mechanical mixing with Ti3C2Tx nanosheet suspension, leading to the formation of viscous 3D printable ink. Secondary free radical polymerization of the ink patterns via 3D printing can achieve a stretchable, adhesive, and conductive Ti3C2Tx-polyacrylic acid hydrogel. The as-formed hydrogel exhibits remarkable stretchability (~622%), high electrical conductivity (5.13 S m-1), and good adhesion strength on varying substrates. We further demonstrate the capability of facilely printing such hydrogels into complex geometries like mesh and rhombus patterns with high resolution and robust integration.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa