Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(15): 4485-4492, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38578031

RESUMO

Confining DNA in nanochannels is an important approach to studying its structure and transportation dynamics. Graphene nanochannels are particularly attractive for studying DNA confinement due to their atomic flatness, precise height control, and excellent mechanical strength. Here, using femtosecond laser etching and wetting transfer, we fabricate graphene nanochannels down to less than 4.3 nm in height, with the length-to-height ratios up to 103. These channels exhibit high stability, low noise, and self-cleaning ability during the long-term ionic current recording. We report a clear linear relationship between DNA length and the residence time in the channel and further utilize this relationship to differentiate DNA fragments based on their lengths, ranging widely from 200 bps to 48.5 kbps. The graphene nanochannel presented here provides a potential platform for label-free analyses and reveals fundamental insights into the conformational dynamics of DNA and proteins in confined space.


Assuntos
Grafite , Eletricidade , Condutividade Elétrica , Proteínas , DNA/química
2.
Opt Lett ; 49(7): 1640-1643, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38560825

RESUMO

The development of super-oscillatory lens (SOL) offers opportunities to realize far-field label-free super-resolution microscopy. Most microscopes based on a high numerical aperture (NA) SOL operate in the point-by-point scanning mode, resulting in a slow imaging speed. Here, we propose a high-NA metalens operating in the single-shot wide-field mode to achieve real-time super-resolution imaging. An optimization model based on the exhaustion algorithm and angular spectrum (AS) theory is developed for metalens design. We numerically demonstrate that the optimized metalens with an NA of 0.8 realizes the imaging resolution (imaging pixel size) about 0.85 times the Rayleigh criterion. The metalens can achieve super-resolution imaging of an object with over 200 pixels, which is one order of magnitude higher than the unoptimized metalens. Our method provides an avenue toward single-shot far-field label-free super-resolution imaging for applications such as real-time imaging of living cells and temporally moving particles.

3.
Phys Rev Lett ; 132(18): 183801, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38759196

RESUMO

Optical amplification and massive information transfer in modern physics depend on stimulated radiation. However, regardless of traditional macroscopic lasers or emerging micro- and nanolasers, the information modulations are generally outside the lasing cavities. On the other hand, bound states in the continuum (BICs) with inherently enormous Q factors are limited to zero-dimensional singularities in momentum space. Here, we propose the concept of spatial information lasing, whose lasing information entropy can be correspondingly controlled by near-field Bragg coupling of guided modes. This concept is verified in gain-loss metamaterials supporting full-k-space BICs with both flexible manipulations and strong confinement of light fields. The counterintuitive high-dimensional BICs exist in a continuous energy band, which provide a versatile platform to precisely control each lasing Fourier component and, thus, can directly convey rich spatial information on the compact size. Single-mode operation achieved in our scheme ensures consistent and stable lasing information. Our findings can be expanded to different wave systems and open new scenarios in informational coherent amplification and high-Q physical frameworks for both classical and quantum applications.

4.
Nano Lett ; 23(13): 5886-5893, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37338120

RESUMO

Two-dimensional material nanochannels with molecular-scale confinement can be constructed by Van der Waals assembly and show unexpected fluid transport phenomena. The crystal structure of the channel surface plays a key role in controlling fluid transportation, and many strange properties are explored in these confined channels. Here, we use black phosphorus as the channel surface to enable ion transport along a specific crystal orientation. We observed a significant nonlinear and anisotropic ion transport phenomenon in the black phosphorus nanochannels. Theoretical results revealed an anisotropy of ion transport energy barrier on the black phosphorus surface, with the minimum energy barrier along the armchair direction approximately ten times larger than that along the zigzag direction. This difference in energy barrier affects the electrophoretic and electroosmotic transport of ions in the channel. This anisotropic transport, which depends on the orientation of the crystal, may provide new approaches to controlling the transport of fluids.

5.
Nano Lett ; 23(9): 3921-3928, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37102437

RESUMO

Twisted photons can in principle carry a discrete unbounded amount of orbital angular momentum (OAM), which are of great significance for quantum communication and fundamental tests of quantum theory. However, the methods for characterization of the OAM quantum states present a fundamental limit for miniaturization. Metasurfaces can exploit new degrees of freedom to manipulate optical fields beyond the capabilities of bulk optics, opening a broad range of novel and superior applications in quantum photonics. Here we present a scheme to reconstruct the density matrix of the OAM quantum states of single photons with all-dielectric metasurfaces composed of birefringent meta-atoms. We have also measured the Schmidt number of the OAM entanglement by the multiplexing of multiple degrees of freedom. Our work represents a step toward the practical application of quantum metadevices for the measurement of OAM quantum states in free-space quantum imaging and communications.

6.
Opt Express ; 31(3): 5016-5026, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36785454

RESUMO

Fourier ptychographic microscopy (FPM) can bypass the limitation of spatial bandwidth product to get images with large field-of-view and high resolution. The complicated sequential iterative calculation in the FPM reconstruction process reduces the reconstruction efficiency of the FPM. Therefore, we propose a parallel FPM reconstruction method based on field programmable gate array (FPGA) to accelerate the FPM reconstruction process. Using this method, multiple sub-regions in the Fourier domain can be computed in parallel and we customize a dedicated high-performance computational architecture for this approach. We deploy 4 FPM reconstruct computing architectures with a parallelism of 4 in a FPGA to compute the FPM reconstruction process, achieving the speed nearly 180 times faster than traditional methods. The proposed method provides a new perspective of parallel computing for FPM reconstruction.

7.
Nano Lett ; 22(15): 6342-6349, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35877932

RESUMO

Coherence, similar to amplitude, polarization, and phase, is a fundamental characteristic of the light fields and is dominated by the statistical optical property. Although spatial coherence is one of the pivotal optical dimensions, it has not been significantly manipulated on the photonic platform. Here, we theoretically and experimentally manipulate the spatial coherence of light fields by loading different random phase distributions onto the wavefront with a metasurface. We achieve the generation of partially coherent light with a predefined degree of coherence and continuously modulate it from coherent to incoherent by controlling the phase fluctuation ranges or the beam sizes. This design strategy can be easily extended to manipulate arbitrary phase-only special beams with the same degree of coherence. Our approach provides straightforward rules to manipulate the coherence of light fields in an extra-cavity-based manner and paves the way for further applications in ghost imaging and information transmission in turbulent media.

8.
Anal Chem ; 94(37): 12781-12787, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36054869

RESUMO

Liquid crystal (LC)-based sensors have been extensively applied in the detection of chemical and biological events. However, the calculation of the optical images of the LC-based sensors is usually time-consuming and also might bring some errors due to the use of different judgment criteria by different users. In the present study, an automated calculation method for LC sensing images based on deep learning is provided. A convolutional network is trained with the prepared LC sensing images and their corresponding segmentation annotations to predict the positive responses. The ratio is calculated from the area of positive response to the total area selected by our image processing method. The robustness of the proposed algorithm is validated on both the test set and the label-free Cd2+ detection. The results show that the method based on deep learning can detect the positive response area in real time and the speed is much faster than the manual processing method. In addition, deep learning method can be directly applied to other label-free molecular detection assays.


Assuntos
Aprendizado Profundo , Cristais Líquidos , Algoritmos , Cádmio , Processamento de Imagem Assistida por Computador/métodos
9.
Opt Lett ; 47(18): 4814-4817, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36107097

RESUMO

Optical chirality plays a key role in optical biosensing and spin-selective optical field manipulation. However, the maximum optical intrinsic chirality, which is represented by near-unity circular dichroism (CD), is yet to be achieved in a wide bandwidth range based on nanostructures. Here, we utilize dielectric bilayer polyatomic metasurfaces to realize the maximum optical intrinsic chirality over a wide bandwidth range. The CD efficiency of the two designed metasurfaces with opposite chirality is 99.9% at 1350 nm and over 98% from 1340 nm to 1361 nm. Our work provides a straightforward and powerful method for the realization of maximum optical intrinsic chirality, which has great potential in spin-selective optical wave manipulation.


Assuntos
Nanoestruturas , Dicroísmo Circular
10.
Appl Opt ; 61(6): 1420-1426, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35201025

RESUMO

Fourier ptychographic microscopy (FPM) is a recently developed computational imaging technique that can achieve both high-resolution and a wide field-of-view via a sequence of low-resolution images. FPM is a complex iterative process, and it is difficult to meet the needs of rapid reconstruction imaging with the conventional FPM deployed on general purpose processors. In this paper, we propose a high-performance heterogeneous field-programmable gate array (FPGA) architecture based on the principle of full pipeline and the data-flow structure for the iterative reconstruction procedure of FPM. By optimizing the architecture network at gate-level logic circuits, the running time of the FPGA-based FPM reconstruction procedure is nearly 20 times faster than conventional methods. Our proposed architecture can be used to develop FPM imaging equipment that meets resource and performance requirements.

11.
Opt Express ; 29(20): 31488-31498, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34615240

RESUMO

Perfect absorbers with high quality factors (Q-factors) are of great practical significance for optical filtering and sensing. Moreover, tunable multiwavelength absorbers provide a multitude of possibilities for realizing multispectral light intensity manipulation and optical switches. In this study, we demonstrate the use of vanadium dioxide (VO2)-assisted metasurfaces for tunable dual-band and high-quality-factor perfect absorption in the mid-infrared region. In addition, we discuss the potential applications of these metasurfaces in reflective intensity manipulation and optical switching. The Q-factors of the dual-band perfect absorption in the proposed metasurfaces are greater than 1000, which can be attributed to the low radiative loss induced by the guided-mode resonances and low intrinsic loss from the constituent materials. By utilizing the insulator-metal transition in VO2, we further proved that a continuous tuning of the reflectance with a large modulation depth (31.8 dB) can be realized in the designed metasurface accompanied by a dual-channel switching effect. The proposed VO2-assisted metasurfaces have potential applications in dynamic and multifunctional optical devices, such as tunable multiband filters, mid-infrared biochemical sensors, optical switches, and optical modulators.

12.
Opt Lett ; 46(15): 3528-3531, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34329216

RESUMO

We propose an approach to realize a multi-band on-chip photonic spin Hall effect and selective excitation of whispering gallery modes (WGMs) by integrating metasurfaces with microcavities. Free-space circularly polarized light with opposite spin angular momentum can effectively excite WGMs with opposite propagation directions at fixed wavelengths. Moreover, the different WGMs with different propagation directions and polarizations can be selectively excited by manipulating the number of antennas. We demonstrate that the optical properties (i.e., coupling efficiency, peak positions, and peak widths) of the proposed metasurface-integrated microcavities can be easily tailored by adjusting different geometric parameters. This study enables the realization of chiral microcavities with exciting novel functionalities, which may provide a further step in the development of photonic integrated circuits, optical sensing, and chiral optics.

13.
Phys Chem Chem Phys ; 23(36): 20666-20674, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34515274

RESUMO

Recently, palladium diselenide (PdSe2) has emerged as a promising material with potential applications in electronic and optoelectronic devices due to its intriguing electronic and optical properties. The performance of the device is strongly dependent on the charge-carrier dynamics and the related hot phonon behavior. Here, we investigate the photoexcited-carrier dynamics and coherent acoustic phonon (CAP) oscillations in mechanically exfoliated PdSe2 flakes with a thickness ranging from 10.6 nm to 54 nm using time-resolved non-degenerate pump-probe transient reflection (TR) spectroscopy. The results imply that the CAP frequency is thickness-dependent. Polarization-resolved transient reflection (PRTR) measurements reveal the isotropic charge-carrier relaxation dynamics and the CAP frequency in the 10.6 nm region. In addition, the deformation potential (DP) mechanism dominates the generation of the CAP. Moreover, a sound velocity of 6.78 × 103 m s-1 is extracted from the variation of the oscillation period with the flake thickness and the delay time of the acoustic echo. These results provide insight into the ultrafast optical coherent acoustic phonon and optoelectronic properties of PdSe2 and may open new possibilities for PdSe2 applications in THz-frequency mechanical resonators.

14.
Andrologia ; 53(11): e14230, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34472106

RESUMO

We mainly corroborated the potential mechanism of DLX1 and miR-129-5p in prostate cancer cells. DLX1 was upregulated in cancer cells according to qRT-PCR assay. We evaluated the functional changes of the transfected cells via Transwell assay, CCK-8 assay and wound healing assay. DLX1 was confirmed as a cancer promoter. In addition, qRT-PCR showed down-regulated miR-129-5p expression in prostate cancer. We further used dual-luciferase reporter detection to elucidate the targeting between these two genes. The inhibition of miR-129-5p on tumour was verified. Besides, co-transfection of oe-DLX1 and miR-129-5p mimics attenuated this inhibition. These data demonstrated functions of DLX1/miR-129-5p axis in prostate cancer: miR-129-5p hindered the biological functions of cancer cells via inhibiting DLX1 expression. We provide a novel biomarker for prostate cancer.


Assuntos
MicroRNAs , Neoplasias da Próstata , Linhagem Celular Tumoral , Movimento Celular , Humanos , Masculino , MicroRNAs/genética , Neoplasias da Próstata/genética , Transdução de Sinais
15.
Small ; 16(50): e2003593, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33230902

RESUMO

Achieving multifunctional van der Waals nanoelectronic devices on one structure is essential for the integration of 2D materials; however, it involves complex architectural designs and manufacturing processes. Herein, a facile, fast, and versatile laser direct write micro/nanoprocessing to fabricate diode, NPN (PNP) bipolar junction transistor (BJT) simultaneously based on a pre-fabricated black phosphorus/molybdenum disulfide heterostructure is demonstrated. The PN junctions exhibit good diode rectification behavior. Due to different carrier concentrations of BP and MoS2 , the NPN BJT, with a narrower base width, renders better performance than the PNP BJT. Furthermore, the current gain can be modulated efficiently through laser writing tunable base width WB , which is consistent with the theoretical results. The maximum gain for NPN and PNP is found to be ≈41 (@WB ≈600 nm) and ≈12 (@WB ≈600 nm), respectively. In addition, this laser write processing technique also can be utilized to realize multifunctional WSe2 /MoS2 heterostructure device. The current work demonstrates a novel, cost-effective, and universal method to fabricate multifunctional nanoelectronic devices. The proposed approach exhibits promise for large-scale integrated circuits based on 2D heterostructures.

16.
Phys Rev Lett ; 125(9): 093904, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32915597

RESUMO

Scatterings and transport in Weyl semimetals have caught growing attention in condensed matter physics, with observables including chiral zero modes and the associated magnetoresistance and chiral magnetic effects. Measurement of electrical conductance is usually performed in these studies, which, however, cannot resolve the momentum of electrons, preventing direct observation of the phase singularities in scattering matrix associated with Weyl point. Here we experimentally demonstrate a helical phase distribution in the angle (momentum) resolved scattering matrix of electromagnetic waves in a photonic Weyl metamaterial. It further leads to spiraling Fermi arcs in an air gap sandwiched between a Weyl metamaterial and a metal plate. Benefiting from the alignment-free feature of angular vortical reflection, our findings establish a new platform in manipulating optical angular momenta with photonic Weyl systems.

17.
Nano Lett ; 19(7): 4221-4228, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-30742772

RESUMO

Colors with high saturation are of prime significance for display and imaging devices. So far, structural colors arising from all-dielectric metasurfaces, particularly amorphous silicon and titanium oxide, have exceeded the gamut of standard RGB (sRGB) space. However, the excitation of higher-order modes for dielectric materials hinders the further increase of saturation. Here, to address the challenge, we propose a new design strategy of multipolar-modulated metasurfaces with multi-dielectric stacked layers to realize the deep modulation of multipolar modes. Index matching between layers can suppress the multipolar modes at nonresonant wavelength, resulting in the dramatic enhancement in the monochromaticity of reflection spectra. Ultrahigh-saturation colors ranging from 70% to 90% with full hue have been theoretically and experimentally obtained. The huge gamut space can be realized in an unprecedented way, taking up 171% sRGB space, 127% Adobe RGB space, and 57% CIE space. More interestingly, the coverage for Recommendation 2020 (Rec. 2020) space, which almost has not been successfully realized so far, can reach 90%. We anticipate that the proposed multipolar-modulated metasurfaces are promising for the enlargement of the color range for high-end and advanced display applications.

18.
Opt Lett ; 44(15): 3805-3808, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31368980

RESUMO

Spin-selective manipulation of optical waves is widely utilized in various optical techniques and plays a key role in modern nanophotonics. While numerous efficient approaches have been applied in metasurfaces to realize spin-selective manipulation of optical waves, the implementation of giant spin-selective asymmetric transmission remains a challenge. Here, we propose an all-dielectric metasurface to realize giant tri-band spin-selective asymmetric transmission in the near infrared regime. The proposed giant spin-selective asymmetric transmission is attributed to the excitation of overlapping multipolar resonances in the dielectric elliptic cylinders, which can be well manipulated by changing the structure parameters. This research demonstrates the great potential of all-dielectric metasurfaces for spin-selective transmission manipulation, which provide helpful insights and intriguing possibilities for applications in information optics, quantum optics, optical sensing, and imaging.

19.
Phys Rev Lett ; 122(10): 104302, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30932672

RESUMO

Weyl points (WPs), as the doubly degenerate points in three-dimensional momentum band structures, carry quantized topological charges and give rise to a variety of extraordinary properties, such as robust surface wave and chiral anomaly. Type-II Weyl semimetals, which have conical dispersions in Fermi surfaces and a strongly tilted dispersion with respect to type I, have recently been proposed in condensed-matter systems and photonics. Although the type-II WPs have been theoretically predicted in acoustics, the experimental realization in phononic crystals has not been reported so far. Here, we experimentally realize a type-II Weyl phononic crystal. We demonstrate the topological transitions observed at the WP frequencies and the topological surface acoustic waves between the Weyl frequencies. The experiment results are in good accordance with our theoretical analyses. Due to the violation of the Lorentz symmetry, the type-II WPs only exist in low energy systems. As the analog counterpart in classical waves, the phononic crystal brings a platform for the research of type-II WPs in macroscopic systems.

20.
Opt Express ; 26(26): 33895-33905, 2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30650821

RESUMO

The ultrafast nonlinear optical properties of bulk TlGaS2 crystal, a semiconductor with a layered structure, are studied by combining intensity dependent transmission, time-resolved transient absorption, and optical Kerr effect coupled to optical heterodyne detection. TlGaS2 demonstrates obvious two-photon absorption and electronic nonlinearities at 800 nm. The two-photon absorption coefficient and the nonlinear refractive index are determined to be of the order of 10-10 cm/W and 10-14 cm2/W, respectively. Furthermore, both the real and imaginary parts of the complex third-order susceptibility tensor elements are extracted. The large ultrafast optical nonlinearities make TlGaS2 a promising material for application in photonic techniques.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa