Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864663

RESUMO

Allogeneic hematopoietic cell transplantation is an effective treatment for hematologic malignancies, but the complications such as graft-versus-host disease (GVHD) can limit its benefit. The conditioning regimens before transplant, including chemotherapy or irradiation, can trigger endoplasmic reticulum stress. IRE-1α is a major endoplasmic reticulum stress mediator that can further activate both spliced XBP-1 (XBP-1s) and regulated IRE-1-dependent decay (RIDD). IRE-1α-XBP-1s signaling controls dendritic cell (DC) differentiation and Ag presentation, crucial in GVHD progression. In this study, we used DC-specific XBP-1-deficient mice as donors or recipients and observed that XBP-1s was crucial for host DCs in the induction of GVHD but dispensable for the graft-versus-leukemia response. To specifically target IRE-1α in the host, we treated recipient mice with the IRE-1α inhibitor B-I09 for 3 d prior to bone marrow transplantation, which significantly suppressed GVHD development while maintaining the graft-versus-leukemia effect. XBP-1-deficient or BI09-treated recipients showed reduced DC survival after irradiation and bone marrow transplantation. Inhibition of IRE-1α also led to a reduction in DC alloreactivity, subsequently decreasing the proliferation and activation of allogeneic T cells. With further study using RIDD-deficient DCs, we observed that RIDD was also required for optimal DC activation. Taken together, XBP-1s and RIDD both promote host DC survival and alloreactivity that contribute to GVHD development.

2.
J Immunol ; 210(4): 486-495, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36548465

RESUMO

The gastrointestinal (GI) tract is a frequent target organ in acute graft-versus-host disease (aGVHD), which can determine the morbidity and nonrelapse mortality after allogeneic hematopoietic cell transplantation (allo-HCT). Donor T cells recognize allogeneic Ags presented by host APCs, proliferate, and differentiate into Th1 and Th17 cells that drive GVHD pathogenesis. IL-12 has been shown to play an important role in amplifying the allogeneic response in preclinical and clinical studies. This study demonstrates that IL-12Rß2 expression on recipient nonhematopoietic cells is required for optimal development of aGVHD in murine models of allo-HCT. aGVHD attenuation by genetic depletion of IL-12R signaling is associated with reduced MHC class II expression by intestinal epithelial cells and maintenance of intestinal integrity. We verified IL-12Rß2 expression on activated T cells and in the GI tract. This study, to our knowledge, reveals a novel function of IL-12Rß2 in GVHD pathogenesis and suggests that selectively targeting IL-12Rß2 on host nonhematopoietic cells may preserve the GI tract after allo-HCT.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Animais , Camundongos , Doença Aguda , Transplante de Medula Óssea , Doença Enxerto-Hospedeiro/genética , Intestinos/patologia , Transplante Homólogo
3.
Am J Transplant ; 21(11): 3538-3549, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33934505

RESUMO

IL-12 (p35/p40) and IL-23 (p19/p40) signal through IL-12R (IL-12Rß2/ß1) and IL-23R (IL-23Rα/IL-12Rß1), respectively, which can promote pathogenic T lymphocyte activation, differentiation, and function in graft-versus-host disease (GVHD). With the use of murine models of allogeneic hematopoietic cell transplantation (HCT), we found that IL-12Rß1 on donor T cells was dispensable to induce acute GVHD development in certain circumstances, while IL-23Rα was commonly required. This observation challenges the current paradigm regarding IL-12Rß1 as a prerequisite to transmit IL-23 signaling. We hypothesized that p19/EBI3 (IL-39) may have an important role during acute GVHD. With the use of gene transfection and immunoprecipitation approaches, we verified that p19 and EBI3 can form biological heterodimers. We found that IL-39 levels in recipient serum positively correlated with development of acute GVHD in experimental models and in clinical settings, thereby implicating IL-39 in the pathogenesis of acute GVHD. Furthermore, we observed that human T cells can signal in response to IL-39. In chronic GVHD, IL-23Rα and IL-12Rß1 were similarly required for donor T cell pathogenicity, and IL-39 levels were not significantly different from controls without GVHD. Collectively, we identify a novel cytokine, IL-39, as a pathogenic factor in acute GVHD, which represents a novel potential therapeutic target to control GVHD and other inflammatory disorders.


Assuntos
Doença Enxerto-Hospedeiro , Interleucinas/imunologia , Receptores de Interleucina/imunologia , Animais , Doença Enxerto-Hospedeiro/etiologia , Humanos , Interleucina-12 , Interleucina-23 , Camundongos , Linfócitos T , Virulência
4.
FASEB J ; 34(11): 14768-14779, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32939830

RESUMO

Mitochondria is a double membrane-bound cellular organelle that generates energy to maintain the homeostasis of cells. Immunity-related GTPase M (IRGM) in human locates at the inner membrane of mitochondria and is best known for its role in regulating autophagy against intracellular pathogens. Previous studies have shown that IRGM is crucial for the normal function of mitochondria, yet, the molecular mechanisms underlying IRGM-mediated quality control of mitochondria are still not fully understood. In this study, we showed that knocking-down IRGM inhibits CCCP induced mitophagy in SH-SY5Y cells. Furthermore, we reported that IRGM decreases the stability of Mitofilin (IMMT, MIC60) in the damaged mitochondria. Knocking down Mitofilin rescues the loss of mitophagy that is observed in the IRGM KD cells, suggesting that IRGM regulates mitophagy through the inhibition of Mitofilin. These data together provide molecular insight regarding how IRGM regulates mitophagy to control the quality of mitochondria.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Mitofagia , Linhagem Celular Tumoral , Proteínas de Ligação ao GTP/genética , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Musculares/metabolismo , Proteínas Quinases/metabolismo , Estabilidade Proteica
5.
BMC Med Genet ; 20(1): 5, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30616528

RESUMO

BACKGROUND: Infantile nystagmus (IN) is an oculomotor disorder that is characterized by conjugate involuntary, rapid and repetitive movement of the eyes. To date, the pathogenesis of IN remains unclear. Many patients show an X-linked inheritance pattern. In this study, we explored the mutation in the FERM domain-containing 7 (FRMD7) gene in a Chinese family with X-linked infantile nystagmus. METHODS: We conducted comprehensive ocular examinations and collected 5 ml of blood samples from members of a family with X-linked IN and 100 normal controls. Mutations in FRMD7 were identified by sequencing PCR products. RESULTS: We found a 7-bp deletion(c.823-829delACCCTAC) in the 9th exon of FRMD7 in a Chinese family with IN, which predicted a truncation of the protein. CONCLUSIONS: This study reported a novel mutation of the FRMD7 gene occurred in a Chinese family with IN, thus expanding the spectrum of FRMD7 mutations causing IN, and further confirming that the mutations of FRMD7 are the underlying molecular cause of IN.


Assuntos
Povo Asiático/genética , Proteínas do Citoesqueleto/genética , Mutação da Fase de Leitura , Doenças Genéticas Ligadas ao Cromossomo X/genética , Proteínas de Membrana/genética , Nistagmo Congênito/genética , Adulto , Sequência de Bases , Criança , China , Análise Mutacional de DNA , Éxons/genética , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Humanos , Masculino , Nistagmo Congênito/fisiopatologia , Deleção de Sequência
6.
Front Immunol ; 13: 904823, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052066

RESUMO

Allogeneic hematopoietic cell transplantation (allo-HCT) is an effective immunotherapy against hematopoietic malignancies. The infused donor lymphocytes attack malignant cells and normal tissues, termed a graft-verse-leukemia (GVL) effect and graft-verse-host (GVH) response or disease (GVHD), respectively. Although engineering techniques toward donor graft selection have made HCT more specific and effective, primary tumor relapse and GVHD are still major concerns post allo-HCT. High-dose systemic steroids remain to be the first line of GVHD treatment, which may lead to steroid-refractory GVHD with a dismal outcome. Therefore, identifying novel therapeutic strategies that prevent GVHD while preserving GVL activity is highly warranted. Sphingolipid metabolism and metabolites play pivotal roles in regulating T-cell homeostasis and biological functions. In this review, we summarized the recent research progress in this evolving field of sphingolipids with a focus on alloreactive T-cell responses in the context of allo-HCT. We discussed how sphingolipid metabolism regulates T-cell mediated GVH and GVL responses in allo-HCT and presented the rationale and means to target sphingolipid metabolism for the control of GVHD and leukemia relapse.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Leucemia/terapia , Recidiva , Esfingolipídeos , Linfócitos T , Transplante Homólogo
7.
Front Med (Lausanne) ; 9: 861745, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463009

RESUMO

Clinical Relevance: A vergence formula may provide a simple and reliable calculation of the refractive status of aphakic eyes. Background: Measuring the refractive error of pediatric eyes with aphakia is difficult. This study investigated the accuracy and applicability of a vergence formula for estimating the refractive status of such eyes. Methods: A retrospective review of the medical records, created between January 2016 and December 2018, of pediatric patients with aphakia was conducted. A vergence formula, based on axial length, was used to calculate the refractive status of the aphakic eyes. The refractive values determined using retinoscopy, an automatic refractometer, and the vergence formula were compared. Results: A total of 72 eyes (47 patients) were analyzed. The spherical equivalents of the refractive errors (mean ± standard deviation) of the eyes were determined using retinoscopy (13.01 ± 3.27 D), automatic refractometry (12.90 ± 3.23 D), and the vergence formula (12.70 ± 3.4 D). The correlation coefficient between retinoscopy values determined using retinoscopy and the vergence formula, automatic refractometry and the vergence formula, and retinoscopy and automatic refractometry were 0.968, 0.987, and 0.979, respectively. The Bland-Altman consistency analysis revealed that the mean differences in the spherical equivalent values between retinoscopy and automatic refractometry, retinoscopy and the vergence formula, and automatic refractometry and the vergence formula were 0.11 D, 0.31 D, and 0.21 D, respectively, with 95% limits of agreement of-1.20 to 1.41 D,-1.37 to 2.00 D, and-0.90 to 1.31 D, respectively. Conclusion: The vergence formula was effective for evaluating the refractive status of aphakic eyes in pediatric patients.

8.
Cell Mol Immunol ; 19(11): 1235-1250, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36071219

RESUMO

Graft-versus-host disease (GVHD) significantly contributes to patient morbidity and mortality after allogeneic hematopoietic cell transplantation (allo-HSCT). Sphingosine-1-phosphate (S1P) signaling is involved in the biogenetic processes of different immune cells. In the current study, we demonstrated that recipient sphingosine kinase 1 (Sphk1), but not Sphk2, was required for optimal S1PR1-dependent donor T-cell allogeneic responses by secreting S1P. Using genetic and pharmacologic approaches, we demonstrated that inhibition of Sphk1 or S1PR1 substantially attenuated acute GVHD (aGVHD) while retaining the graft-versus-leukemia (GVL) effect. At the cellular level, the Sphk1/S1P/S1PR1 pathway differentially modulated the alloreactivity of CD4+ and CD8+ T cells; it facilitated T-cell differentiation into Th1/Th17 cells but not Tregs and promoted CD4+ T-cell infiltration into GVHD target organs but was dispensable for the CTL activity of allogeneic CD8+ T cells. At the molecular level, the Sphk1/S1P/S1PR1 pathway augmented mitochondrial fission and increased mitochondrial mass in allogeneic CD4+ but not CD8+ T cells by activating the AMPK/AKT/mTOR/Drp1 pathway, providing a mechanistic basis for GVL maintenance when S1P signaling was inhibited. For translational purposes, we detected the regulatory efficacy of pharmacologic inhibitors of Sphk1 and S1PR1 in GVHD induced by human T cells in a xenograft model. Our study provides novel mechanistic insight into how the Sphk1/S1P/S1PR1 pathway modulates T-cell alloreactivity and validates Sphk1 or S1PR1 as a therapeutic target for the prevention of GVHD and leukemia relapse. This novel strategy may be readily translated into the clinic to benefit patients with hematologic malignancies and disorders.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia , Humanos , Linfócitos T CD8-Positivos , Dinâmica Mitocondrial , Receptores de Esfingosina-1-Fosfato , Linfócitos T CD4-Positivos
9.
Leukemia ; 36(7): 1907-1915, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35513703

RESUMO

Allogeneic hematopoietic cell transplantation (allo-HCT) is an effective immunotherapy for various hematologic malignancies, predominantly through potent graft-versus-leukemia (GVL) effect. However, the mortality after allo-HCT is because of relapse of primary malignancy and followed by graft-vs-host-disease (GVHD) as a major cause of transplant-related mortality. Hence, strategies to limit GVHD while preserving the GVL effect are highly desirable. Ceramide, which serves a central role in sphingolipid metabolism, is generated by ceramide synthases (CerS1-6). In this study, we found that genetic or pharmacologic targeting of CerS6 prevented and reversed chronic GVHD (cGVHD). Furthermore, specific inhibition of CerS6 with ST1072 significantly ameliorated acute GVHD (aGVHD) while preserving the GVL effect, which differed from FTY720 that attenuated aGVHD but impaired GVL activity. At the cellular level, blockade of CerS6 restrained donor T cells from migrating into GVHD target organs and preferentially reduced activation of donor CD4 T cells. At the molecular level, CerS6 was required for optimal TCR signaling, CD3/PKCθ co-localization, and subsequent N-RAS activation and ERK signaling, especially on CD4+ T cells. The current study provides rationale and means for targeting CerS6 to control GVHD and leukemia relapse, which would enhance the efficacy of allo-HCT as an immunotherapy for hematologic malignancies in the clinic.


Assuntos
Doença Enxerto-Hospedeiro , Neoplasias Hematológicas , Transplante de Células-Tronco Hematopoéticas , Leucemia , Ceramidas/farmacologia , GTP Fosfo-Hidrolases/metabolismo , Doença Enxerto-Hospedeiro/prevenção & controle , Efeito Enxerto vs Leucemia , Neoplasias Hematológicas/terapia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana/metabolismo , Oxirredutases , Recidiva , Linfócitos T , Transplante Homólogo
10.
Blood Adv ; 6(10): 3036-3052, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35073581

RESUMO

Chronic graft-versus-host disease (cGVHD) remains a major obstacle impeding successful allogeneic hematopoietic cell transplantation (HCT). MicroRNAs (miRs) play key roles in immune regulation during acute GVHD development. Preclinical studies to identify miRs that affect cGVHD pathogenesis are required to develop these as potential lifesaving interventions. Using oligonucleotide array, we identified miR-31, which was significantly elevated in allogeneic T cells after HCT in mice. Using genetic and pharmacologic approaches, we demonstrated a key role for miR-31 in mediating donor T-cell pathogenicity in cGVHD. Recipients of miR-31-deficient T cells displayed improved cutaneous and pulmonary cGVHD. Deficiency of miR-31 reduced T-cell expansion and T helper 17 (Th17) cell differentiation but increased generation and function of regulatory T cells (Tregs). MiR-31 facilitated neuropilin-1 downregulation, Foxp3 loss, and interferon-γ production in alloantigen-induced Tregs. Mechanistically, miR-31 was required for hypoxia-inducible factor 1α (HIF1α) upregulation in allogeneic T cells. Therefore, miR-31-deficient CD4 T cells displayed impaired activation, survival, Th17 cell differentiation, and glycolytic metabolism under hypoxia. Upregulation of factor-inhibiting HIF1, a direct target of miR-31, in miR-31-deficient T cells was essential for attenuating T-cell pathogenicity. However, miR-31-deficient CD8 T cells maintained intact glucose metabolism, cytolytic activity, and graft-versus-leukemia response. Importantly, systemic administration of a specific inhibitor of miR-31 effectively reduced donor T-cell expansion, improved Treg generation, and attenuated cGVHD. Taken together, miR-31 is a key driver for T-cell pathogenicity in cGVHD but not for antileukemia activity. MiR-31 is essential in driving cGVHD pathogenesis and represents a novel potential therapeutic target for controlling cGVHD.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , MicroRNAs , Animais , Doença Enxerto-Hospedeiro/patologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Hipóxia , Camundongos , Camundongos Knockout , MicroRNAs/genética
11.
Front Immunol ; 12: 705484, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659198

RESUMO

Allogeneic hematopoietic cell transplantation (allo-HCT) is an effective therapeutic procedure to treat hematological malignancies. However, the benefit of allo-HCT is limited by a major complication, chronic graft-versus-host disease (cGVHD). Since transmembrane and secretory proteins are generated and modified in the endoplasmic reticulum (ER), the ER stress response is of great importance to secretory cells including B cells. By using conditional knock-out (KO) of XBP-1, IRE-1α or both specifically on B cells, we demonstrated that the IRE-1α/XBP-1 pathway, one of the major ER stress response mediators, plays a critical role in B cell pathogenicity on the induction of cGVHD in murine models of allo-HCT. Endoribonuclease activity of IRE-1α activates XBP-1 signaling by converting unspliced XBP-1 (XBP-1u) mRNA into spliced XBP-1 (XBP-1s) mRNA but also cleaves other ER-associated mRNAs through regulated IRE-1α-dependent decay (RIDD). Further, ablation of XBP-1s production leads to unleashed activation of RIDD. Therefore, we hypothesized that RIDD plays an important role in B cells during cGVHD development. In this study, we found that the reduced pathogenicity of XBP-1 deficient B cells in cGVHD was reversed by RIDD restriction in IRE-1α kinase domain KO mice. Restraining RIDD activity per se in B cells resulted in an increased severity of cGVHD. Besides, inhibition of RIDD activity compromised B cell differentiation and led to dysregulated expression of MHC II and costimulatory molecules such as CD86, CD40, and ICOSL in B cells. Furthermore, restraining the RIDD activity without affecting XBP-1 splicing increased B cell ability to induce cGVHD after allo-HCT. These results suggest that RIDD is an important mediator for reducing cGVHD pathogenesis through targeting XBP-1s.


Assuntos
Linfócitos B/imunologia , Endorribonucleases/imunologia , Doença Enxerto-Hospedeiro/imunologia , Transplante de Células-Tronco Hematopoéticas , Proteínas Serina-Treonina Quinases/imunologia , Proteólise , Proteína 1 de Ligação a X-Box/imunologia , Aloenxertos , Animais , Doença Crônica , Estresse do Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/imunologia , Endorribonucleases/genética , Doença Enxerto-Hospedeiro/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Proteína 1 de Ligação a X-Box/genética
12.
Mol Ther Oncolytics ; 20: 187-198, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33665357

RESUMO

Previously, we showed that mouse immunity-related guanosine triphosphatase (GTPase) family M protein 1 (Irgm1) promotes malignant melanoma progression by inducing cellular autophagy flux and metastasis. Human IRGM, a truncated protein functionally distinct from its mouse counterpart, has several splice isoforms. In this study, we analyzed the association of IRGM and human melanoma clinical prognosis and investigated the function of IRGM in human melanoma cells. Data from the training cohort (n = 144) showed that overexpression of IRGM is proportional to melanoma genesis and clinical stages in human tissue chips. A validation cohort (n = 78) further confirmed that IRGM is an independent risk factor promoting melanoma progression and is associated with poor survival of patients. Among IRGM isoforms, we found that IRGMb is responsible for such correlation. In addition, IRGM promoted melanoma cell survival through autophagy, both in vitro and in vivo. We further showed that the blockade of translocation of high-mobility group box 1 (HMGB1) from the nucleus to cytoplasm inhibits IRGM1-mediated cellular autophagy and reduces cell survival. IRGM functions as a positive regulator of melanoma progression through autophagy and may serve as a promising prognostic marker and therapeutic target.

13.
JCI Insight ; 6(3)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33554953

RESUMO

Graft-versus-host disease (GVHD) is a pathological process caused by an exaggerated donor lymphocyte response to host antigens after allogeneic hematopoietic cell transplantation (allo-HCT). Donor T cells undergo extensive clonal expansion and differentiation, which culminate in damage to recipient target organs. Damage to the gastrointestinal tract is a main contributor to morbidity and mortality. The loss of diversity among intestinal bacteria caused by pretransplant conditioning regimens leads to an outgrowth of opportunistic pathogens and exacerbated GVHD after allo-HCT. Using murine models of allo-HCT, we found that an increase of Bacteroides in the intestinal microbiota of the recipients was associated with reduced GVHD in mice given fecal microbial transplantation. Administration of Bacteroides fragilis through oral gavage increased gut microbiota diversity and beneficial commensal bacteria and significantly ameliorated acute and chronic GVHD development. Preservation of gut integrity following B. fragilis exposure was likely attributed to increased short chain fatty acids, IL-22, and regulatory T cells, which in turn improved gut tight junction integrity and reduced inflammatory cytokine production of pathogenic T cells. The current study provides a proof of concept that a single strain of commensal bacteria can be a safe and effective means to protect gut integrity and ameliorate GVHD after allo-HCT.


Assuntos
Bacteroides fragilis/imunologia , Microbioma Gastrointestinal/imunologia , Doença Enxerto-Hospedeiro/prevenção & controle , Aloenxertos , Animais , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/microbiologia , Efeito Enxerto vs Leucemia/imunologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Isoantígenos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Linfócitos T/imunologia , Células Tumorais Cultivadas
14.
Cell Mol Immunol ; 18(3): 632-643, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33500563

RESUMO

Stimulator of interferon genes (STING)-mediated innate immune activation plays a key role in tumor- and self-DNA-elicited antitumor immunity and autoimmunity. However, STING can also suppress tumor immunity and autoimmunity. STING signaling in host nonhematopoietic cells was reported to either protect against or promote graft-versus-host disease (GVHD), a major complication of allogeneic hematopoietic cell transplantation (allo-HCT). Host hematopoietic antigen-presenting cells (APCs) play key roles in donor T-cell priming during GVHD initiation. However, how STING regulates host hematopoietic APCs after allo-HCT remains unknown. We utilized murine models of allo-HCT to assess the role of STING in hematopoietic APCs. STING-deficient recipients developed more severe GVHD after major histocompatibility complex-mismatched allo-HCT. Using bone marrow chimeras, we found that STING deficiency in host hematopoietic cells was primarily responsible for exacerbating the disease. Furthermore, STING on host CD11c+ cells played a dominant role in suppressing allogeneic T-cell responses. Mechanistically, STING deficiency resulted in increased survival, activation, and function of APCs, including macrophages and dendritic cells. Consistently, constitutive activation of STING attenuated the survival, activation, and function of APCs isolated from STING V154M knock-in mice. STING-deficient APCs augmented donor T-cell expansion, chemokine receptor expression, and migration into intestinal tissues, resulting in accelerated/exacerbated GVHD. Using pharmacologic approaches, we demonstrated that systemic administration of a STING agonist (bis-(3'-5')-cyclic dimeric guanosine monophosphate) to recipient mice before transplantation significantly reduced GVHD mortality. In conclusion, we revealed a novel role of STING in APC activity that dictates T-cell allogeneic responses and validated STING as a potential therapeutic target for controlling GVHD after allo-HCT.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Doença Enxerto-Hospedeiro/patologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Intestinos/patologia , Proteínas de Membrana/fisiologia , Animais , Feminino , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/metabolismo , Intestinos/imunologia , Intestinos/metabolismo , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transplante Homólogo
15.
Zhonghua Yan Ke Za Zhi ; 45(10): 913-8, 2009 Oct.
Artigo em Zh | MEDLINE | ID: mdl-20137453

RESUMO

OBJECTIVE: To estimate the accuracy of posterior curvature method in corneal power calculation after LASIK surgery. METHODS: Corneal power calculation in 11 eyes that underwent Intraocular Lens (IOL) implantation after LASIK surgery (10 cases of Phaco + IOL, 1 case of IOL displacement), all of which used posterior curvature method, was analyzed retrospectively. The differences between post-operative stable refraction and target refraction were calculated, the actual corneal powers were deduced, and the expected refractive errors using other corneal power evaluation methods (auto-keratometry, corneal topography, spherical equivalent method, anterior curvature method, Equivalent K Reading method provided by Pentacam) were analyzed. In addition, refraction of 23 eyes underwent LASIK surgery were done on their 6 months follow-up. The theoretical corneal powers were deduced by subtracting the change of refraction before and after LASIK surgery from the pre-operative corneal powers. The differences between calculated corneal powers using posterior curvature method and the theoretical corneal powers were analyzed, and were compared with other corneal power evaluation methods. RESULTS: The mean uncorrected post-operative visual acuity of IOL implantation eyes using posterior curvature method was 0.8 +/- 0.2, with mean absolute refractive error from target of (0.36 +/- 0.36) D (-0.63 to +0.85 D). The ratio of eyes with absolute error within 0.25 D, 0.50 D, and 1.00 D was 55%, 73%, and 91% respectively. This result was significantly lower than that of the auto-keratometry (2.50 +/- 1.08) D, corneal topography (1.90 +/- 0.88) D, and those obtained from spherical equivalent method (2.09 +/- 1.62) D (P < 0.01) or anterior curvature method (1.45 +/- 1.10) D (P < 0.05). It also showed less bias (-1.13 to 0.85 D) when compared to the Equivalent K Reading (-1.10 to 1.80 D), but the difference was not significant (P > 0.05). For the 23 post LASIK eyes, the absolute difference between the corrected corneal power using posterior curvature method and theoretical power was (0.67 +/- 0.45) D, also showed least bias compared with other methods. CONCLUSION: It is a practical and accurate way to calculate the corneal power after LASIK surgery using posterior curvature method.


Assuntos
Córnea , Ceratomileuse Assistida por Excimer Laser In Situ , Refração Ocular , Feminino , Humanos , Lentes Intraoculares , Masculino , Pessoa de Meia-Idade , Período Pós-Operatório , Estudos Retrospectivos
16.
Blood Adv ; 3(24): 4187-4201, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31856270

RESUMO

Adoptive transfer of induced regulatory T cells (iTregs) can ameliorate graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation (allo-HCT). CD4+ iTregs can effectively prevent GVHD but impair the graft-versus-leukemia (GVL) effect, whereas CD8+ iTregs preserve the GVL effect but have limited efficacy in GVHD control because of their instability under inflammatory conditions. Thus, we aimed to stabilize CD8+ iTregs via treatment with vitamin C (Vit C) to improve their efficacy in controlling GVHD. We found that addition of Vit C significantly improved the stability of forkhead box P3 (Foxp3) expression in CD8+ iTregs. Moreover, Vit C-treated CD8+ iTregs exhibited high efficacy in attenuating acute and chronic GVHD. The mechanistic study revealed that addition of Vit C to CD8+ iTreg culture markedly increased DNA demethylation in the conserved noncoding sequence 2 region and, hence, maintained higher Foxp3 expression levels compared with untreated controls. In acute GVHD, Vit C-treated CD8+ iTregs were able to inhibit pathogenic T-cell expansion and differentiation while reducing thymus damage and B-cell activation in cGVHD. Importantly, in contrast to CD4+ iTregs, Vit C-treated CD8+ iTregs retained the ability to control tumor relapse. These results provide a strong rationale to use Vit C in the clinic to stabilize CD8+ iTregs for the control of GVHD and preservation of GVL after allo-HCT.


Assuntos
Ácido Ascórbico/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/metabolismo , Leucemia/complicações , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Transferência Adotiva , Animais , Ácido Ascórbico/farmacologia , Biomarcadores , Metilação de DNA , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Doença Enxerto-Hospedeiro/patologia , Doença Enxerto-Hospedeiro/terapia , Xenoenxertos , Interferon gama , Leucemia/terapia , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Recidiva
18.
Neural Regen Res ; 13(10): 1759-1770, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30136691

RESUMO

Mild therapeutic hypothermia has been shown to mitigate cerebral ischemia, reduce cerebral edema, and improve the prognosis of patients with cerebral ischemia. Adipose-derived stem cell-based therapy can decrease neuronal death and infiltration of inflammatory cells, exerting a neuroprotective effect. We hypothesized that the combination of mild therapeutic hypothermia and adipose-derived stem cells would be neuroprotective for treatment of stroke. A rat model of transient middle cerebral artery occlusion was established using the nylon monofilament method. Mild therapeutic hypothermia (33°C) was induced after 2 hours of ischemia. Adipose-derived stem cells were administered through the femoral vein during reperfusion. The severity of neurological dysfunction was measured by a modified Neurological Severity Score Scaling System. The area of the infarct lesion was determined by 2,3,5-triphenyltetrazolium chloride staining. Apoptotic neurons were detected by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining. The regeneration of microvessels and changes in the glial scar were detected by immunofluorescence staining. The inflammatory responses after ischemic brain injury were evaluated by in situ staining using markers of inflammatory cells. The expression of inflammatory cytokines was measured by reverse transcription-polymerase chain reaction. Compared with mild therapeutic hypothermia or adipose-derived stem cell treatment alone, their combination substantially improved neurological deficits and decreased infarct size. They synergistically reduced the number of TUNEL-positive cells and glial fibrillary acidic protein expression, increased vascular endothelial growth factor levels, effectively reduced inflammatory cell infiltration and down-regulated the mRNA expression of the proinflammatory cytokines interleukin-1ß, tumor necrosis factor-α and interleukin-6. Our findings indicate that combined treatment is a better approach for treating stroke compared with mild therapeutic hypothermia or adipose-derived stem cells alone.

19.
Stem Cells Int ; 2017: 2153629, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28265288

RESUMO

Treatment of adipose-derived stem cell (ADSC) substantially improves the neurological deficits during stroke by reducing neuronal injury, limiting proinflammatory immune responses, and promoting neuronal repair, which makes ADSC-based therapy an attractive approach for treating stroke. However, the potential risk of tumorigenicity and low survival rate of the implanted cells limit the clinical use of ADSC. Cell-free extracts from ADSC (ADSC-E) may be a feasible approach that could overcome these limitations. Here, we aim to explore the potential usage of ADSC-E in treating rat transient middle cerebral artery occlusion (tMCAO). We demonstrated that intravenous (IV) injection of ADSC-E remarkably reduces the ischemic lesion and number of apoptotic neurons as compared to other control groups. Although ADSC and ADSC-E treatment results in a similar degree of a long-term clinical beneficial outcome, the dynamics between two ADSC-based therapies are different. While the injection of ADSC leads to a relatively mild but prolonged therapeutic effect, the administration of ADSC-E results in a fast and pronounced clinical improvement which was associated with a unique change in the molecular signature suggesting that potential mechanisms underlying different therapeutic approach may be different. Together these data provide translational evidence for using protein extracts from ADSC for treating stroke.

20.
Oncotarget ; 8(25): 40065-40078, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28454116

RESUMO

Inflammation eliminates pathogenic infections while also threatening the integrity of the central nervous system. In this study, using in vivo and in vitro models of acute neuroinflammation, we investigated the mechanisms by which inflammation and astrocytes affect neuronal apoptosis. The in vitro model mimicked acute neuroinflammation by incubation in IFN-γ-containing media with primary cultured cerebellar granule neurons, with or without cultured astrocytes. This quickly induced neuronal apoptosis characterized by cleaved caspase-3 expression, Hoechst 33342 staining, and intercellular Ca2+ influx, whereas the presence of astrocytes significantly protected neurons from these effects. IFN-γ in the inflammation media also promoted astrocyte secretion of IL-6, essential for protection. The supernatants of rat peripheral blood mononuclear cells stimulated by lymphocyte mitogen lipopolysaccharide or concanavalin A were used as inflammation media to verify the results. The in vivo model involved a peripheral challenge with lipopolysaccharide, with or without recombinant IFN-γ, in C57BL/6 mice. This confirmed the in vitro results: anti-IFN-γ antibodies exacerbated the acute course of neuroinflammation and led to neurocyte apoptosis in vivo. The pro-inflammatory cytokine IFN-γ provided neuroprotection during acute neuroinflammation via induction of astrocyte-secreted IL-6. The findings provide novel insights into the mechanisms of neuroprotection by IFN-γ during acute neuroinflammation, and may impact therapies for inflammation-related central nervous system injury and disease.


Assuntos
Astrócitos/metabolismo , Inflamação/metabolismo , Interferon gama/metabolismo , Interleucina-6/metabolismo , Doença Aguda , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Células Cultivadas , Cerebelo/citologia , Técnicas de Cocultura , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Feminino , Interferon gama/farmacologia , Interleucina-6/farmacologia , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuroproteção/efeitos dos fármacos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa