Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 39(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36727493

RESUMO

MOTIVATION: Gene-disease associations are fundamental for understanding disease etiology and developing effective interventions and treatments. Identifying genes not yet associated with a disease due to a lack of studies is a challenging task in which prioritization based on prior knowledge is an important element. The computational search for new candidate disease genes may be eased by positive-unlabeled learning, the machine learning (ML) setting in which only a subset of instances are labeled as positive while the rest of the dataset is unlabeled. In this work, we propose a set of effective network-based features to be used in a novel Markov diffusion-based multi-class labeling strategy for putative disease gene discovery. RESULTS: The performances of the new labeling algorithm and the effectiveness of the proposed features have been tested on 10 different disease datasets using three ML algorithms. The new features have been compared against classical topological and functional/ontological features and a set of network- and biological-derived features already used in gene discovery tasks. The predictive power of the integrated methodology in searching for new disease genes has been found to be competitive against state-of-the-art algorithms. AVAILABILITY AND IMPLEMENTATION: The source code of NIAPU can be accessed at https://github.com/AndMastro/NIAPU. The source data used in this study are available online on the respective websites. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Software , Aprendizado de Máquina , Difusão
2.
Brief Bioinform ; 22(2): 1543-1559, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33197934

RESUMO

Systems medicine (SM) has emerged as a powerful tool for studying the human body at the systems level with the aim of improving our understanding, prevention and treatment of complex diseases. Being able to automatically extract relevant features needed for a given task from high-dimensional, heterogeneous data, deep learning (DL) holds great promise in this endeavour. This review paper addresses the main developments of DL algorithms and a set of general topics where DL is decisive, namely, within the SM landscape. It discusses how DL can be applied to SM with an emphasis on the applications to predictive, preventive and precision medicine. Several key challenges have been highlighted including delivering clinical impact and improving interpretability. We used some prototypical examples to highlight the relevance and significance of the adoption of DL in SM, one of them is involving the creation of a model for personalized Parkinson's disease. The review offers valuable insights and informs the research in DL and SM.


Assuntos
Aprendizado Profundo , Análise de Sistemas , Algoritmos , Biomarcadores/metabolismo , Doença/classificação , Registros Eletrônicos de Saúde , Genômica , Humanos , Metabolômica , Redes Neurais de Computação , Medicina de Precisão/métodos , Proteômica , Transcriptoma
3.
Bioinformatics ; 37(16): 2398-2404, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-33367514

RESUMO

MOTIVATION: Unsupervised learning approaches are frequently used to stratify patients into clinically relevant subgroups and to identify biomarkers such as disease-associated genes. However, clustering and biclustering techniques are oblivious to the functional relationship of genes and are thus not ideally suited to pinpoint molecular mechanisms along with patient subgroups. RESULTS: We developed the network-constrained biclustering approach Biclustering Constrained by Networks (BiCoN) which (i) restricts biclusters to functionally related genes connected in molecular interaction networks and (ii) maximizes the difference in gene expression between two subgroups of patients. This allows BiCoN to simultaneously pinpoint molecular mechanisms responsible for the patient grouping. Network-constrained clustering of genes makes BiCoN more robust to noise and batch effects than typical clustering and biclustering methods. BiCoN can faithfully reproduce known disease subtypes as well as novel, clinically relevant patient subgroups, as we could demonstrate using breast and lung cancer datasets. In summary, BiCoN is a novel systems medicine tool that combines several heuristic optimization strategies for robust disease mechanism extraction. BiCoN is well-documented and freely available as a python package or a web interface. AVAILABILITY AND IMPLEMENTATION: PyPI package: https://pypi.org/project/bicon. WEB INTERFACE: https://exbio.wzw.tum.de/bicon. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

4.
Brief Bioinform ; 20(3): 1057-1062, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29220509

RESUMO

Systems medicine holds many promises, but has so far provided only a limited number of proofs of principle. To address this road block, possible barriers and challenges of translating systems medicine into clinical practice need to be identified and addressed. The members of the European Cooperation in Science and Technology (COST) Action CA15120 Open Multiscale Systems Medicine (OpenMultiMed) wish to engage the scientific community of systems medicine and multiscale modelling, data science and computing, to provide their feedback in a structured manner. This will result in follow-up white papers and open access resources to accelerate the clinical translation of systems medicine.


Assuntos
Ciência de Dados , Análise de Sistemas , Simulação por Computador , Humanos
5.
Bioinformatics ; 36(19): 4957-4959, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-32289146

RESUMO

SUMMARY: Simulated data are crucial for evaluating epistasis detection tools in genome-wide association studies. Existing simulators are limited, as they do not account for linkage disequilibrium (LD), support limited interaction models of single nucleotide polymorphisms (SNPs) and only dichotomous phenotypes or depend on proprietary software. In contrast, EpiGEN supports SNP interactions of arbitrary order, produces realistic LD patterns and generates both categorical and quantitative phenotypes. AVAILABILITY AND IMPLEMENTATION: EpiGEN is implemented in Python 3 and is freely available at https://github.com/baumbachlab/epigen. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Epistasia Genética , Estudo de Associação Genômica Ampla , Simulação por Computador , Epigen , Polimorfismo de Nucleotídeo Único , Software
6.
BMC Bioinformatics ; 21(Suppl 17): 508, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33308172

RESUMO

BACKGROUND: The aim of a recent research project was the investigation of the mechanisms involved in the onset of type 2 diabetes in the absence of familiarity. This has led to the development of a computational model that recapitulates the aetiology of the disease and simulates the immunological and metabolic alterations linked to type-2 diabetes subjected to clinical, physiological, and behavioural features of prototypical human individuals. RESULTS: We analysed the time course of 46,170 virtual subjects, experiencing different lifestyle conditions. We then set up a statistical model able to recapitulate the simulated outcomes. CONCLUSIONS: The resulting machine learning model adequately predicts the synthetic dataset and can, therefore, be used as a computationally-cheaper version of the detailed mathematical model, ready to be implemented on mobile devices to allow self-assessment by informed and aware individuals. The computational model used to generate the dataset of this work is available as a web-service at the following address: http://kraken.iac.rm.cnr.it/T2DM .


Assuntos
Diabetes Mellitus Tipo 2/patologia , Aprendizado de Máquina , Adulto , Idoso , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Risco , Interface Usuário-Computador , Dispositivos Eletrônicos Vestíveis
7.
PLoS Comput Biol ; 14(4): e1006073, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29698395

RESUMO

The beneficial effects of physical activity for the prevention and management of several chronic diseases are widely recognized. Mathematical modeling of the effects of physical exercise in body metabolism and in particular its influence on the control of glucose homeostasis is of primary importance in the development of eHealth monitoring devices for a personalized medicine. Nonetheless, to date only a few mathematical models have been aiming at this specific purpose. We have developed a whole-body computational model of the effects on metabolic homeostasis of a bout of physical exercise. Built upon an existing model, it allows to detail better both subjects' characteristics and physical exercise, thus determining to a greater extent the dynamics of the hormones and the metabolites considered.


Assuntos
Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Modelos Biológicos , Adulto , Glicemia/metabolismo , Biologia Computacional , Simulação por Computador , Epinefrina/sangue , Glucagon/sangue , Gluconeogênese , Glicerol/sangue , Glicogenólise , Homeostase/fisiologia , Humanos , Insulina/sangue , Masculino , Consumo de Oxigênio/fisiologia , Medicina de Precisão , Distribuição Tecidual , Adulto Jovem
8.
Brief Bioinform ; 17(3): 408-18, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-25810307

RESUMO

One of the greatest challenges in biomedicine is to get a unified view of observations made from the molecular up to the organism scale. Towards this goal, multiscale models have been highly instrumental in contexts such as the cardiovascular field, angiogenesis, neurosciences and tumour biology. More recently, such models are becoming an increasingly important resource to address immunological questions as well. Systematic mining of the literature in multiscale modelling led us to identify three main fields of immunological applications: host-virus interactions, inflammatory diseases and their treatment and development of multiscale simulation platforms for immunological research and for educational purposes. Here, we review the current developments in these directions, which illustrate that multiscale models can consistently integrate immunological data generated at several scales, and can be used to describe and optimize therapeutic treatments of complex immune diseases.


Assuntos
Modelos Imunológicos , Humanos
9.
BMC Bioinformatics ; 17(Suppl 19): 506, 2016 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-28155642

RESUMO

BACKGROUND: Macrophages cover a major role in the immune system, being the most plastic cell yielding several key immune functions. METHODS: Here we derived a minimalistic gene regulatory network model for the differentiation of macrophages into the two phenotypes M1 (pro-) and M2 (anti-inflammatory). RESULTS: To test the model, we simulated a large number of such networks as in a statistical ensemble. In other words, to enable the inter-cellular crosstalk required to obtain an immune activation in which the macrophage plays its role, the simulated networks are not taken in isolation but combined with other cellular agents, thus setting up a discrete minimalistic model of the immune system at the microscopic/intracellular (i.e., genetic regulation) and mesoscopic/intercellular scale. CONCLUSIONS: We show that within the mesoscopic level description of cellular interaction and cooperation, the gene regulatory logic is coherent and contributes to the overall dynamics of the ensembles that shows, statistically, the expected behaviour.


Assuntos
Diferenciação Celular , Redes Reguladoras de Genes , Macrófagos/citologia , Macrófagos/metabolismo , Modelos Estatísticos , Biologia de Sistemas/métodos , Regulação da Expressão Gênica , Humanos
10.
Sci Rep ; 13(1): 1578, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36709357

RESUMO

Assessing the validity of a psychometric test is fundamental to ensure a reliable interpretation of its outcomes. Few attempts have been made recently to complement classical approaches (e.g., factor models) with a novel technique based on network analysis. The objective of the current study is to carry out a network-based validation of the Eating Disorder Inventory 3 (EDI-3), a questionnaire designed for the assessment of eating disorders. Exploiting a reliable, open source sample of 1206 patients diagnosed with an eating disorder, we set up a robust validation process encompassing detection and handling of redundant EDI-3 items, estimation of the cross-sample psychometric network, resampling bootstrap procedure and computation of the median network of the replica samples. We then employed a community detection algorithm to identify the topological clusters, evaluated their coherence with the EDI-3 subscales and replicated the full validation analysis on the subpopulations corresponding to patients diagnosed with either anorexia nervosa or bulimia nervosa. Results of the network-based analysis, and particularly the topological community structures, provided support for almost all the composite scores of the EDI-3 and for 2 single subscales: Bulimia and Maturity Fear. A moderate instability of some dimensions led to the identification of a few multidimensional items that should be better located in the intersection of multiple psychological scales. We also found that, besides symptoms typically attributed to eating disorders, such as drive for thinness, also non-specific symptoms like low self-esteem and interoceptive deficits play a central role in both the cross-sample and the diagnosis-specific networks. Our work adds insights into the complex and multidimensional structure of EDI-3 by providing support to its network-based validity on both mixed and diagnosis-specific samples. Moreover, we replicated previous results that reinforce the transdiagnostic theory of eating disorders.


Assuntos
Anorexia Nervosa , Bulimia , Transtornos da Alimentação e da Ingestão de Alimentos , Humanos , Psicometria , Transtornos da Alimentação e da Ingestão de Alimentos/diagnóstico , Anorexia Nervosa/psicologia , Inquéritos e Questionários
11.
IEEE/ACM Trans Comput Biol Bioinform ; 20(2): 1009-1019, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35839194

RESUMO

Drug repurposing is a highly active research area, aiming at finding novel uses for drugs that have been previously developed for other therapeutic purposes. Despite the flourishing of methodologies, success is still partial, and different approaches offer, each, peculiar advantages. In this composite landscape, we present a novel methodology focusing on an efficient mathematical procedure based on gene similarity scores and biased random walks which rely on robust drug-gene-disease association data sets. The recommendation mechanism is further unveiled by means of the Markov chain underlying the random walk process, hence providing explainability about how findings are suggested. Performances evaluation and the analysis of a case study on rheumatoid arthritis show that our approach is accurate in providing useful recommendations and is computationally efficient, compared to the state of the art of drug repurposing approaches.


Assuntos
Reposicionamento de Medicamentos , Reposicionamento de Medicamentos/métodos , Matemática , Cadeias de Markov
12.
Comput Biol Med ; 163: 107158, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37390762

RESUMO

Regular physical exercise and appropriate nutrition affect metabolic and hormonal responses and may reduce the risk of developing chronic non-communicable diseases such as high blood pressure, ischemic stroke, coronary heart disease, some types of cancer, and type 2 diabetes mellitus. Computational models describing the metabolic and hormonal changes due to the synergistic action of exercise and meal intake are, to date, scarce and mostly focussed on glucose absorption, ignoring the contribution of the other macronutrients. We here describe a model of nutrient intake, stomach emptying, and absorption of macronutrients in the gastrointestinal tract during and after the ingestion of a mixed meal, including the contribution of proteins and fats. We integrated this effort to our previous work in which we modeled the effects of a bout of physical exercise on metabolic homeostasis. We validated the computational model with reliable data from the literature. The simulations are overall physiologically consistent and helpful in describing the metabolic changes due to everyday life stimuli such as multiple mixed meals and variable periods of physical exercise over prolonged periods of time. This computational model may be used to design virtual cohorts of subjects differing in sex, age, height, weight, and fitness status, for specialized in silico challenge studies aimed at designing exercise and nutrition schemes to support health.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Homeostase , Exercício Físico/fisiologia , Insulina , Nutrientes , Simulação por Computador , Glicemia/metabolismo
13.
PLoS One ; 17(10): e0276341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36315522

RESUMO

BACKGROUND: Network science represents a powerful and increasingly promising method for studying complex real-world problems. In the last decade, it has been applied to psychometric data in the attempt to explain psychopathologies as complex systems of causally interconnected symptoms. One category of mental disorders, relevant for their severity, incidence and multifaceted structure, is that of eating disorders (EDs), serious disturbances that negatively affect a person's eating behavior. AIMS: We aimed to review the corpus of psychometric network analysis methods by scrutinizing a large sample of network-based studies that exploit psychometric data related to EDs. A particular focus is given to the description of the methodologies for network estimation, network description and network stability analysis providing also a review of the statistical software packages currently used to carry out each phase of the network estimation and analysis workflow. Moreover, we try to highlight aspects with potential clinical impact such as core symptoms, influences of external factors, comorbidities, and related changes in network structure and connectivity across both time and subpopulations. METHODS: A systematic search was conducted (February 2022) on three different literature databases to identify 57 relevant research articles. The exclusion criteria comprehended studies not based on psychometric data, studies not using network analysis, studies with different aims or not focused on ED, and review articles. RESULTS: Almost all the selected 57 papers employed the same analytical procedures implemented in a collection of R packages specifically designed for psychometric network analysis and are mostly based on cross-sectional data retrieved from structured psychometric questionnaires, with just few exemptions of panel data. Most of them used the same techniques for all phases of their analysis. In particular, a pervasive use of the Gaussian Graphical Model with LASSO regularization was registered for in network estimation step. Among the clinically relevant results, we can include the fact that all papers found strong symptom interconnections between specific and nonspecific ED symptoms, suggesting that both types should therefore be addressed by clinical treatment. CONCLUSIONS: We here presented the largest and most comprehensive review to date about psychometric network analysis methods. Although these methods still need solid validation in the clinical setting, they have already been able to show many strengths and important results, as well as great potentials and perspectives, which have been analyzed here to provide suggestions on their use and their possible improvement.


Assuntos
Transtornos da Alimentação e da Ingestão de Alimentos , Humanos , Psicometria , Estudos Transversais , Inquéritos e Questionários , Psicopatologia
14.
Biomedicines ; 10(7)2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35884999

RESUMO

Primary biliary cholangitis (PBC) is a chronic, cholestatic, immune-mediated, and progressive liver disorder. Treatment to preventing the disease from advancing into later and irreversible stages is still an unmet clinical need. Accordingly, we set up a drug repurposing framework to find potential therapeutic agents targeting relevant pathways derived from an expanded pool of genes involved in different stages of PBC. Starting with updated human protein-protein interaction data and genes specifically involved in the early and late stages of PBC, a network medicine approach was used to provide a PBC "proximity" or "involvement" gene ranking using network diffusion algorithms and machine learning models. The top genes in the proximity ranking, when combined with the original PBC-related genes, resulted in a final dataset of the genes most involved in PBC disease. Finally, a drug repurposing strategy was implemented by mining and utilizing dedicated drug-gene interaction and druggable genome information knowledge bases (e.g., the DrugBank repository). We identified several potential drug candidates interacting with PBC pathways after performing an over-representation analysis on our initial 1121-seed gene list and the resulting disease-associated (algorithm-obtained) genes. The mechanism and potential therapeutic applications of such drugs were then thoroughly discussed, with a particular emphasis on different stages of PBC disease. We found that interleukin/EGFR/TNF-alpha inhibitors, branched-chain amino acids, geldanamycin, tauroursodeoxycholic acid, genistein, antioestrogens, curcumin, antineovascularisation agents, enzyme/protease inhibitors, and antirheumatic agents are promising drugs targeting distinct stages of PBC. We developed robust and transparent selection mechanisms for prioritizing already approved medicinal products or investigational products for repurposing based on recognized unmet medical needs in PBC, as well as solid preliminary data to achieve this goal.

15.
Genome Biol ; 22(1): 338, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34906207

RESUMO

Aggregating transcriptomics data across hospitals can increase sensitivity and robustness of differential expression analyses, yielding deeper clinical insights. As data exchange is often restricted by privacy legislation, meta-analyses are frequently employed to pool local results. However, the accuracy might drop if class labels are inhomogeneously distributed among cohorts. Flimma ( https://exbio.wzw.tum.de/flimma/ ) addresses this issue by implementing the state-of-the-art workflow limma voom in a federated manner, i.e., patient data never leaves its source site. Flimma results are identical to those generated by limma voom on aggregated datasets even in imbalanced scenarios where meta-analysis approaches fail.


Assuntos
Expressão Gênica , Privacidade , Pesquisa Biomédica , Redes de Comunicação de Computadores , Segurança Computacional/legislação & jurisprudência , Segurança Computacional/normas , Bases de Dados Factuais/legislação & jurisprudência , Bases de Dados Factuais/normas , Expressão Gênica/ética , Genes , Regulamentação Governamental , Humanos , Aprendizado de Máquina
16.
Trends Microbiol ; 29(2): 92-97, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33288385

RESUMO

Despite the international guidelines on the containment of the coronavirus disease 2019 (COVID-19) pandemic, the European scientific community was not sufficiently prepared to coordinate scientific efforts. To improve preparedness for future pandemics, we have initiated a network of nine European-funded Cooperation in Science and Technology (COST) Actions that can help facilitate inter-, multi-, and trans-disciplinary communication and collaboration.


Assuntos
Pesquisa Biomédica/organização & administração , COVID-19/virologia , SARS-CoV-2/fisiologia , Comunicação , Europa (Continente) , Humanos , Pessoal de Laboratório , Pandemias , SARS-CoV-2/genética
17.
Netw Syst Med ; 4(1): 2-50, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33659919

RESUMO

Background: Systems Medicine is a novel approach to medicine, that is, an interdisciplinary field that considers the human body as a system, composed of multiple parts and of complex relationships at multiple levels, and further integrated into an environment. Exploring Systems Medicine implies understanding and combining concepts coming from diametral different fields, including medicine, biology, statistics, modeling and simulation, and data science. Such heterogeneity leads to semantic issues, which may slow down implementation and fruitful interaction between these highly diverse fields. Methods: In this review, we collect and explain more than100 terms related to Systems Medicine. These include both modeling and data science terms and basic systems medicine terms, along with some synthetic definitions, examples of applications, and lists of relevant references. Results: This glossary aims at being a first aid kit for the Systems Medicine researcher facing an unfamiliar term, where he/she can get a first understanding of them, and, more importantly, examples and references for digging into the topic.

18.
Theor Biol Med Model ; 7: 32, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-20701759

RESUMO

Recently, the network paradigm, an application of graph theory to biology, has proven to be a powerful approach to gaining insights into biological complexity, and has catalyzed the advancement of systems biology. In this perspective and focusing on the immune system, we propose here a more comprehensive view to go beyond the concept of network. We start from the concept of degeneracy, one of the most prominent characteristic of biological complexity, defined as the ability of structurally different elements to perform the same function, and we show that degeneracy is highly intertwined with another recently-proposed organizational principle, i.e. 'bow tie architecture'. The simultaneous consideration of concepts such as degeneracy, bow tie architecture and network results in a powerful new interpretative tool that takes into account the constructive role of noise (stochastic fluctuations) and is able to grasp the major characteristics of biological complexity, i.e. the capacity to turn an apparently chaotic and highly dynamic set of signals into functional information.


Assuntos
Sistema Imunitário/metabolismo , Modelos Imunológicos , Animais , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores Toll-Like/metabolismo
19.
Front Cell Dev Biol ; 8: 545089, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123533

RESUMO

The ongoing COVID-19 pandemic still requires fast and effective efforts from all fronts, including epidemiology, clinical practice, molecular medicine, and pharmacology. A comprehensive molecular framework of the disease is needed to better understand its pathological mechanisms, and to design successful treatments able to slow down and stop the impressive pace of the outbreak and harsh clinical symptomatology, possibly via the use of readily available, off-the-shelf drugs. This work engages in providing a wider picture of the human molecular landscape of the SARS-CoV-2 infection via a network medicine approach as the ground for a drug repurposing strategy. Grounding on prior knowledge such as experimentally validated host proteins known to be viral interactors, tissue-specific gene expression data, and using network analysis techniques such as network propagation and connectivity significance, the host molecular reaction network to the viral invasion is explored and exploited to infer and prioritize candidate target genes, and finally to propose drugs to be repurposed for the treatment of COVID-19. Ranks of potential target genes have been obtained for coherent groups of tissues/organs, potential and distinct sites of interaction between the virus and the organism. The normalization and the aggregation of the different scores allowed to define a preliminary, restricted list of genes candidates as pharmacological targets for drug repurposing, with the aim of contrasting different phases of the virus infection and viral replication cycle.

20.
Netw Syst Med ; 3(1): 67-90, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32954378

RESUMO

Introduction: Network and systems medicine has rapidly evolved over the past decade, thanks to computational and integrative tools, which stem in part from systems biology. However, major challenges and hurdles are still present regarding validation and translation into clinical application and decision making for precision medicine. Methods: In this context, the Collaboration on Science and Technology Action on Open Multiscale Systems Medicine (OpenMultiMed) reviewed the available advanced technologies for multidimensional data generation and integration in an open-science approach as well as key clinical applications of network and systems medicine and the main issues and opportunities for the future. Results: The development of multi-omic approaches as well as new digital tools provides a unique opportunity to explore complex biological systems and networks at different scales. Moreover, the application of findable, applicable, interoperable, and reusable principles and the adoption of standards increases data availability and sharing for multiscale integration and interpretation. These innovations have led to the first clinical applications of network and systems medicine, particularly in the field of personalized therapy and drug dosing. Enlarging network and systems medicine application would now imply to increase patient engagement and health care providers as well as to educate the novel generations of medical doctors and biomedical researchers to shift the current organ- and symptom-based medical concepts toward network- and systems-based ones for more precise diagnoses, interventions, and ideally prevention. Conclusion: In this dynamic setting, the health care system will also have to evolve, if not revolutionize, in terms of organization and management.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa