Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Nature ; 612(7941): 714-719, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36477531

RESUMO

Molecular phylogenetics of microbial eukaryotes has reshaped the tree of life by establishing broad taxonomic divisions, termed supergroups, that supersede the traditional kingdoms of animals, fungi and plants, and encompass a much greater breadth of eukaryotic diversity1. The vast majority of newly discovered species fall into a small number of known supergroups. Recently, however, a handful of species with no clear relationship to other supergroups have been described2-4, raising questions about the nature and degree of undiscovered diversity, and exposing the limitations of strictly molecular-based exploration. Here we report ten previously undescribed strains of microbial predators isolated through culture that collectively form a diverse new supergroup of eukaryotes, termed Provora. The Provora supergroup is genetically, morphologically and behaviourally distinct from other eukaryotes, and comprises two divergent clades of predators-Nebulidia and Nibbleridia-that are superficially similar to each other, but differ fundamentally in ultrastructure, behaviour and gene content. These predators are globally distributed in marine and freshwater environments, but are numerically rare and have consequently been overlooked by molecular-diversity surveys. In the age of high-throughput analyses, investigation of eukaryotic diversity through culture remains indispensable for the discovery of rare but ecologically and evolutionarily important eukaryotes.


Assuntos
Eucariotos , Cadeia Alimentar , Microbiologia , Filogenia , Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Organismos Aquáticos/ultraestrutura , Biodiversidade , Ecologia , Eucariotos/classificação , Eucariotos/genética , Eucariotos/ultraestrutura , Células Eucarióticas/classificação , Células Eucarióticas/metabolismo , Células Eucarióticas/ultraestrutura , Comportamento Predatório , Especificidade da Espécie
2.
Nature ; 609(7928): 747-753, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36002568

RESUMO

Animals and fungi have radically distinct morphologies, yet both evolved within the same eukaryotic supergroup: Opisthokonta1,2. Here we reconstructed the trajectory of genetic changes that accompanied the origin of Metazoa and Fungi since the divergence of Opisthokonta with a dataset that includes four novel genomes from crucial positions in the Opisthokonta phylogeny. We show that animals arose only after the accumulation of genes functionally important for their multicellularity, a tendency that began in the pre-metazoan ancestors and later accelerated in the metazoan root. By contrast, the pre-fungal ancestors experienced net losses of most functional categories, including those gained in the path to Metazoa. On a broad-scale functional level, fungal genomes contain a higher proportion of metabolic genes and diverged less from the last common ancestor of Opisthokonta than did the gene repertoires of Metazoa. Metazoa and Fungi also show differences regarding gene gain mechanisms. Gene fusions are more prevalent in Metazoa, whereas a larger fraction of gene gains were detected as horizontal gene transfers in Fungi and protists, in agreement with the long-standing idea that transfers would be less relevant in Metazoa due to germline isolation3-5. Together, our results indicate that animals and fungi evolved under two contrasting trajectories of genetic change that predated the origin of both groups. The gradual establishment of two clearly differentiated genomic contexts thus set the stage for the emergence of Metazoa and Fungi.


Assuntos
Evolução Molecular , Fungos , Genoma , Genômica , Filogenia , Animais , Fungos/genética , Transferência Genética Horizontal , Genes , Genoma/genética , Genoma Fúngico/genética , Metabolismo/genética
3.
Nature ; 572(7768): 240-243, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31316212

RESUMO

Rhodophyta (red algae) is one of three lineages of Archaeplastida1, a supergroup that is united by the primary endosymbiotic origin of plastids in eukaryotes2,3. Red algae are a diverse and species-rich group, members of which are typically photoautotrophic, but are united by a number of highly derived characteristics: they have relatively small intron-poor genomes, reduced metabolism and lack cytoskeletal structures that are associated with motility, flagella and centrioles. This suggests that marked gene loss occurred around their origin4; however, this is difficult to reconstruct because they differ so much from the other archaeplastid lineages, and the relationships between these lineages are unclear. Here we describe the novel eukaryotic phylum Rhodelphidia and, using phylogenomics, demonstrate that it is a closely related sister to red algae. However, the characteristics of the two Rhodelphis species described here are nearly opposite to those that define red algae: they are non-photosynthetic, flagellate predators with gene-rich genomes, along with a relic genome-lacking primary plastid that probably participates in haem synthesis. Overall, these findings alter our views of the origins of Rhodophyta, and Archaeplastida evolution as a whole, as they indicate that mixotrophic feeding-that is, a combination of predation and phototrophy-persisted well into the evolution of the group.


Assuntos
Filogenia , Rodófitas/classificação , Rodófitas/metabolismo , Forma Celular , Sobrevivência Celular , Genoma , Fotossíntese , Rodófitas/citologia , Rodófitas/genética
4.
Mol Phylogenet Evol ; 190: 107964, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37951557

RESUMO

Unlike morphologically conspicuous ochrophytes, many flagellates belonging to basally branching stramenopiles are small and often overlooked. As a result, many of these lineages are known only through molecular surveys and identified as MArine STramenopiles (MAST), and remain largely uncharacterized at the cellular or genomic level. These likely phagotrophic flagellates are not only phylogenetically diverse, but also extremely abundant in some environments, making their characterization all the more important. MAST-6 is one example of a phylogenetically distinct group that has been known to be associated with sediments, but little else is known about it. Indeed, until the present study, only a single species from this group, Pseudophyllomitus vesiculosus (Pseudophyllomitidae), has been both formally described and associated with genomic information. Here, we describe four new species including two new genera of sediment-dwelling MAST-6, Vomastramonas tehuelche gen. et sp. nov., Mastreximonas tlaamin gen. et sp. nov., one undescribed Pseudophyllomitus sp., BSC2, and a new species belonging to Placididea, the potentially halotolerant Haloplacidia sinai sp. nov. We also provide two additional bikosian transcriptomes from a public culture collection, to allow for better phylogenetic reconstructions of deep-branching stramenopiles. With the SSU rRNA sequences of the new MAST-6 species, we investigate the phylogenetic diversity of the MAST-6 group and show a high relative abundance of MAST-6 related to M. tlaamin in samples across various depths and geographical locations. Using the new MAST-6 species, we also update the phylogenomic tree of stramenopiles, particularly focusing on the paraphyly of Bigyra.


Assuntos
Estramenópilas , Filogenia , RNA Ribossômico
5.
J Eukaryot Microbiol ; 71(2): e12995, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37548159

RESUMO

Rhodelphidia is a recently discovered phylum within the supergroup Archaeplastida, comprising only two known representatives (Rhodelphis marinus and Rhodelphis limneticus). Despite its close phylogenetic relatedness to red algae, Rhodelphidia differ markedly by being nonphotosynthetic eukaryotrophic flagellates with gene- and intron-rich genomes. Here, we describe a new freshwater Rhodelphidia species, Rhodelphis mylnikovi sp. n., strain Rhod-M. It shows clear morphological differences with the two other Rhodelphis species, including larger cell body size, presence of two contractile vacuoles, short and blunt pseudopodia, absence of cysts, and tendency to cannibalism. 18S rRNA-based phylogenetic analysis placed it sister to the freshwater species R. limneticus.


Assuntos
Água Doce , Genoma , Filogenia , RNA Ribossômico 18S/genética
6.
J Eukaryot Microbiol ; 70(6): e12992, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37452443

RESUMO

Centrohelids (Haptista: Centroplasthelida) are axopodial protists with a remarkable diversity of external siliceous scale morphologies. It is believed that the last common ancestor of centrohelids had a double layer of siliceous scales composed of plate scales closer to a cell surface and spine scales radiating outwards. The characteristic morphotype of spine scales with a heart-shaped base was once believed to be a unique feature of the genus Choanocystis, as it was defined by Siemensma and Roijackers (1988). Further research revealed that this morphology is present in different and sometimes distantly related lineages: Ozanamiidae, Meringosphaeridae, and Marophryidae. Here, we report the fourth clade, Pterocystidae, which is also revealed to contain representatives having this phenotype. Cernunnos gen. nov. is erected here to place Cernunnos uralica sp. nov., Cernunnos arctica sp. nov., Cernunnos america sp. nov., and Cernunnos antarctica Tikhonenkov et Mylnikov, 2010, Gerasimova comb. nov. C. uralica was studied with scanning electron microscopy and SSU rDNA sequencing. Molecular phylogenetic analysis placed it into marine environmental clade P within Pterocystida. The ubiquity of spine scales with heart-shaped bases could be an example of parallel evolution, but taking into account the considerable similarity it is likely an ancestral trait, acquired from the last common ancestor of centrohelids.


Assuntos
Eucariotos , Filogenia , Microscopia Eletrônica de Varredura , DNA Ribossômico/genética , Regiões Antárticas
7.
Mol Phylogenet Evol ; 171: 107468, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35358688

RESUMO

Stramenopiles are a diverse but relatively well-studied eukaryotic supergroup with considerable genomic information available (Sibbald and Archibald, 2017). Nevertheless, the relationships between major stramenopile subgroups remain unresolved, in part due to a lack of data from small nanoflagellates that make up a lot of the genetic diversity of the group. This is most obvious in Bigyromonadea, which is one of four major stramenopile subgroups but represented by a single transcriptome. To examine the diversity of Bigyromonadea and how the lack of data affects the tree, we generated transcriptomes from seven novel bigyromonada species described in this study: Develocauda condao n. gen. n. sp., Develocanicus komovi n. gen. n. sp., Develocanicus vyazemskyi n. sp., Cubaremonas variflagellatum n. gen. n. sp., Pirsonia chemainus nom. prov., Feodosia pseudopoda nom. prov., and Koktebelia satura nom. prov. Both maximum likelihood and Bayesian phylogenomic trees based on a 247 gene-matrix recovered a monophyletic Bigyromonadea that includes two diverse subgroups, Developea and Pirsoniales, that were not previously related based on single gene trees. Maximum likelihood analyses show Bigyromonadea related to oomycetes, whereas Bayesian analyses and topology testing were inconclusive. We observed similarities between the novel bigyromonad species and motile zoospores of oomycetes in morphology and the ability to self-aggregate. Rare formation of pseudopods and fused cells were also observed, traits that are also found in members of labyrinthulomycetes, another osmotrophic stramenopiles. Furthermore, we report the first case of eukaryovory in the flagellated stages of Pirsoniales. These analyses reveal new diversity of Bigyromonadea, and altogether suggest their monophyly with oomycetes, collectively known as Pseudofungi, is the most likely topology of the stramenopile tree.


Assuntos
Estramenópilas , Teorema de Bayes , Genoma , Genômica , Filogenia , Estramenópilas/genética
8.
BMC Biol ; 18(1): 39, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32272915

RESUMO

BACKGROUND: The origin of animals from their unicellular ancestor was one of the most important events in evolutionary history, but the nature and the order of events leading up to the emergence of multicellular animals are still highly uncertain. The diversity and biology of unicellular relatives of animals have strongly informed our understanding of the transition from single-celled organisms to the multicellular Metazoa. Here, we analyze the cellular structures and complex life cycles of the novel unicellular holozoans Pigoraptor and Syssomonas (Opisthokonta), and their implications for the origin of animals. RESULTS: Syssomonas and Pigoraptor are characterized by complex life cycles with a variety of cell types including flagellates, amoeboflagellates, amoeboid non-flagellar cells, and spherical cysts. The life cycles also include the formation of multicellular aggregations and syncytium-like structures, and an unusual diet for single-celled opisthokonts (partial cell fusion and joint sucking of a large eukaryotic prey), all of which provide new insights into the origin of multicellularity in Metazoa. Several existing models explaining the origin of multicellular animals have been put forward, but these data are interestingly consistent with one, the "synzoospore hypothesis." CONCLUSIONS: The feeding modes of the ancestral metazoan may have been more complex than previously thought, including not only bacterial prey, but also larger eukaryotic cells and organic structures. The ability to feed on large eukaryotic prey could have been a powerful trigger in the formation and development of both aggregative (e.g., joint feeding, which also implies signaling) and clonal (e.g., hypertrophic growth followed by palintomy) multicellular stages that played important roles in the emergence of multicellular animals.


Assuntos
Evolução Biológica , Eucariotos/fisiologia , Invertebrados/fisiologia , Animais , Evolução Molecular , Filogenia , Comportamento Predatório
9.
BMC Biol ; 18(1): 23, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32122335

RESUMO

BACKGROUND: The Euglenozoa are a protist group with an especially rich history of evolutionary diversity. They include diplonemids, representing arguably the most species-rich clade of marine planktonic eukaryotes; trypanosomatids, which are notorious parasites of medical and veterinary importance; and free-living euglenids. These different lifestyles, and particularly the transition from free-living to parasitic, likely require different metabolic capabilities. We carried out a comparative genomic analysis across euglenozoan diversity to see how changing repertoires of enzymes and structural features correspond to major changes in lifestyles. RESULTS: We find a gradual loss of genes encoding enzymes in the evolution of kinetoplastids, rather than a sudden decrease in metabolic capabilities corresponding to the origin of parasitism, while diplonemids and euglenids maintain more metabolic versatility. Distinctive characteristics of molecular machines such as kinetochores and the pre-replication complex that were previously considered specific to parasitic kinetoplastids were also identified in their free-living relatives. Therefore, we argue that they represent an ancestral rather than a derived state, as thought until the present. We also found evidence of ancient redundancy in systems such as NADPH-dependent thiol-redox. Only the genus Euglena possesses the combination of trypanothione-, glutathione-, and thioredoxin-based systems supposedly present in the euglenozoan common ancestor, while other representatives of the phylum have lost one or two of these systems. Lastly, we identified convergent losses of specific metabolic capabilities between free-living kinetoplastids and ciliates. Although this observation requires further examination, it suggests that certain eukaryotic lineages are predisposed to such convergent losses of key enzymes or whole pathways. CONCLUSIONS: The loss of metabolic capabilities might not be associated with the switch to parasitic lifestyle in kinetoplastids, and the presence of a highly divergent (or unconventional) kinetochore machinery might not be restricted to this protist group. The data derived from the transcriptomes of free-living early branching prokinetoplastids suggests that the pre-replication complex of Trypanosomatidae is a highly divergent version of the conventional machinery. Our findings shed light on trends in the evolution of metabolism in protists in general and open multiple avenues for future research.


Assuntos
Evolução Biológica , Euglenozoários/genética , Genoma de Protozoário , Euglênidos/genética , Euglênidos/metabolismo , Euglenozoários/metabolismo , Evolução Molecular , Kinetoplastida/genética , Kinetoplastida/metabolismo
10.
Mol Biol Evol ; 36(4): 757-765, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668767

RESUMO

The resolution of the broad-scale tree of eukaryotes is constantly improving, but the evolutionary origin of several major groups remains unknown. Resolving the phylogenetic position of these "orphan" groups is important, especially those that originated early in evolution, because they represent missing evolutionary links between established groups. Telonemia is one such orphan taxon for which little is known. The group is composed of molecularly diverse biflagellated protists, often prevalent although not abundant in aquatic environments. Telonemia has been hypothesized to represent a deeply diverging eukaryotic phylum but no consensus exists as to where it is placed in the tree. Here, we established cultures and report the phylogenomic analyses of three new transcriptome data sets for divergent telonemid lineages. All our phylogenetic reconstructions, based on 248 genes and using site-heterogeneous mixture models, robustly resolve the evolutionary origin of Telonemia as sister to the Sar supergroup. This grouping remains well supported when as few as 60% of the genes are randomly subsampled, thus is not sensitive to the sets of genes used but requires a minimal alignment length to recover enough phylogenetic signal. Telonemia occupies a crucial position in the tree to examine the origin of Sar, one of the most lineage-rich eukaryote supergroups. We propose the moniker "TSAR" to accommodate this new mega-assemblage in the phylogeny of eukaryotes.


Assuntos
Eucariotos/genética , Filogenia , Eucariotos/metabolismo , Transcriptoma
11.
Mol Phylogenet Evol ; 149: 106839, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32325195

RESUMO

Alveolates are a major supergroup of eukaryotes encompassing more than ten thousand free-living and parasitic species, including medically, ecologically, and economically important apicomplexans, dinoflagellates, and ciliates. These three groups are among the most widespread eukaryotes on Earth, and their environmental success can be linked to unique innovations that emerged early in each group. Understanding the emergence of these well-studied and diverse groups and their innovations has relied heavily on the discovery and characterization of early-branching relatives, which allow ancestral states to be inferred with much greater confidence. Here we report the phylogenomic analyses of 313 eukaryote protein-coding genes from transcriptomes of three members of one such group, the colponemids (Colponemidia), which support their monophyly and position as the sister lineage to all other known alveolates. Colponemid-related sequences from environmental surveys and our microscopical observations show that colponemids are not common in nature, but they are diverse and widespread in freshwater habitats around the world. Studied colponemids possess two types of extrusive organelles (trichocysts or toxicysts) for active hunting of other unicellular eukaryotes and potentially play an important role in microbial food webs. Colponemids have generally plesiomorphic morphology and illustrate the ancestral state of Alveolata. We further discuss their importance in understanding the evolution of alveolates and the origin of myzocytosis and plastids.


Assuntos
Alveolados/classificação , Comportamento Predatório/fisiologia , Alveolados/genética , Alveolados/ultraestrutura , Animais , Biodiversidade , Geografia , Filogenia , Subunidades Ribossômicas Menores/genética
12.
Mol Phylogenet Evol ; 130: 416-423, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30318266

RESUMO

The phylum Cercozoa consists of a diverse assemblage of amoeboid and flagellated protists that forms a major component of the supergroup, Rhizaria. However, despite its size and ubiquity, the phylogeny of the Cercozoa remains unclear as morphological variability between cercozoan species and ambiguity in molecular analyses, including phylogenomic approaches, have produced ambiguous results and raised doubts about the monophyly of the group. Here we sought to resolve these ambiguities using a 161-gene phylogenetic dataset with data from newly available genomes and deeply sequenced transcriptomes, including three new transcriptomes from Aurigamonas solis, Abollifer prolabens, and a novel species, Lapot gusevi n. gen. n. sp. Our phylogenomic analysis strongly supported a monophyletic Cercozoa, and approximately-unbiased tests rejected the paraphyletic topologies observed in previous studies. The transcriptome of L. gusevi represents the first transcriptomic data from the large and recently characterized Aquavolonidae-Treumulida-'Novel Clade 12' group, and phylogenomics supported its position as sister to the cercozoan subphylum, Endomyxa. These results provide insights into the phylogeny of the Cercozoa and the Rhizaria as a whole.


Assuntos
Cercozoários/classificação , Cercozoários/genética , Genoma , Filogenia , Teorema de Bayes , Funções Verossimilhança
13.
J Eukaryot Microbiol ; 65(6): 828-842, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29658156

RESUMO

Rhizarian 'Novel Clade 10' (NC10) is frequently detected by 18S rRNA gene sequencing studies in freshwater planktonic samples. We describe a new genus and two species of eukaryovorous biflagellate protists, Aquavolon hoantrani n. gen. n. sp. and A. dientrani n. gen. n. sp., which represent the first morphologically characterized members of NC10, here named Aquavolonida ord. nov. The slightly metabolic cells possess naked heterodynamic flagella, whose kinetosomes lie at a right angle to each other and are connected by at least one fibril. Unlike their closest known relative Tremula longifila, they rotate around their longitudinal axis when swimming and only very rarely glide on surfaces. Screening of a wide range of environmental DNA extractions with lineage-specific PCR primers reveals that Aquavolonida consists of a large radiation of protists, which are most diversified in freshwater planktonic habitats and as yet undetected in marine environments. Earlier-branching lineages in Aquavolonida include less frequently detected organisms from soils and freshwater sediments. The 18S rRNA gene phylogeny suggests that Aquavolonida forms a common evolutionary lineage with tremulids and uncharacterized 'Novel Clade 12', which likely represents one of the deepest lineages in the Rhizaria, separate from Cercozoa (Filosa), Endomyxa, and Retaria.


Assuntos
Filogenia , Rhizaria/classificação , Rhizaria/genética , Corpos Basais/ultraestrutura , Evolução Biológica , Cercozoários/classificação , DNA de Protozoário/genética , DNA Ribossômico/genética , Eucariotos/classificação , Eucariotos/genética , Flagelos/ultraestrutura , Água Doce/parasitologia , Sedimentos Geológicos , Plâncton , RNA Ribossômico 18S/genética , Rhizaria/citologia , Rhizaria/isolamento & purificação , Análise de Sequência de DNA
14.
Proc Natl Acad Sci U S A ; 112(33): 10200-7, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-25717057

RESUMO

Apicomplexans are a major lineage of parasites, including causative agents of malaria and toxoplasmosis. How such highly adapted parasites evolved from free-living ancestors is poorly understood, particularly because they contain nonphotosynthetic plastids with which they have a complex metabolic dependency. Here, we examine the origin of apicomplexan parasitism by resolving the evolutionary distribution of several key characteristics in their closest free-living relatives, photosynthetic chromerids and predatory colpodellids. Using environmental sequence data, we describe the diversity of these apicomplexan-related lineages and select five species that represent this diversity for transcriptome sequencing. Phylogenomic analysis recovered a monophyletic lineage of chromerids and colpodellids as the sister group to apicomplexans, and a complex distribution of retention versus loss for photosynthesis, plastid genomes, and plastid organelles. Reconstructing the evolution of all plastid and cytosolic metabolic pathways related to apicomplexan plastid function revealed an ancient dependency on plastid isoprenoid biosynthesis, predating the divergence of apicomplexan and dinoflagellates. Similarly, plastid genome retention is strongly linked to the retention of two genes in the plastid genome, sufB and clpC, altogether suggesting a relatively simple model for plastid retention and loss. Lastly, we examine the broader distribution of a suite of molecular characteristics previously linked to the origins of apicomplexan parasitism and find that virtually all are present in their free-living relatives. The emergence of parasitism may not be driven by acquisition of novel components, but rather by loss and modification of the existing, conserved traits.


Assuntos
Apicomplexa/fisiologia , Apicoplastos/fisiologia , Parasitos/fisiologia , Plastídeos/fisiologia , Animais , Apicomplexa/genética , Apicoplastos/genética , Sequência de Bases , Teorema de Bayes , Linhagem da Célula , Biologia Computacional , Citosol/metabolismo , DNA Ribossômico/genética , Genes Bacterianos , Genoma , Funções Verossimilhança , Redes e Vias Metabólicas , Dados de Sequência Molecular , Parasitos/genética , Fotossíntese , Filogenia , Plastídeos/genética
15.
Proc Biol Sci ; 283(1823)2016 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-26817772

RESUMO

Assembling the global eukaryotic tree of life has long been a major effort of Biology. In recent years, pushed by the new availability of genome-scale data for microbial eukaryotes, it has become possible to revisit many evolutionary enigmas. However, some of the most ancient nodes, which are essential for inferring a stable tree, have remained highly controversial. Among other reasons, the lack of adequate genomic datasets for key taxa has prevented the robust reconstruction of early diversification events. In this context, the centrohelid heliozoans are particularly relevant for reconstructing the tree of eukaryotes because they represent one of the last substantial groups that was missing large and diverse genomic data. Here, we filled this gap by sequencing high-quality transcriptomes for four centrohelid lineages, each corresponding to a different family. Combining these new data with a broad eukaryotic sampling, we produced a gene-rich taxon-rich phylogenomic dataset that enabled us to refine the structure of the tree. Specifically, we show that (i) centrohelids relate to haptophytes, confirming Haptista; (ii) Haptista relates to SAR; (iii) Cryptista share strong affinity with Archaeplastida; and (iv) Haptista + SAR is sister to Cryptista + Archaeplastida. The implications of this topology are discussed in the broader context of plastid evolution.


Assuntos
Evolução Biológica , Eucariotos/genética , Variação Genética , Genômica , Filogenia , Eucariotos/classificação
16.
J Eukaryot Microbiol ; 63(2): 220-32, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26399688

RESUMO

A small free-living freshwater bacteriotrophic flagellate Neobodo borokensis n. sp. was investigated by electron microscopy and analysis of its SSU ribosomal RNA gene. This protist has paraxonemal rods of typical bodonid structure in the flagella, mastigonemes on the proximal part of the posterior flagellum, two nearly parallel basal bodies, a compact kinetoplast, and discoid mitochondrial cristae. The flagellar pocket is supported by three microtubular roots (R1, R2 and R3) originating from the kinetosome. The cytopharynx is supported by the root R2, a microtubular prism, cytopharynx associated additional microtubules (CMT) and cytostome associated microtubules (FAS) bands. Symbiotic bacteria and small glycosomes were found in the cytoplasm. Cysts have not been found. The flagellate prefers freshwater habitats, but tolerates salinity up to 3-4‰. The overall morphological and ultrastructural features confirm that N. borokensis represents a new species of the genus Neobodo. Phylogenetic analysis of SSU rRNA genes is congruent with the ultrastructure and strongly supports the close relationship of N. borokensis to Neobodo saliens, N. designis, Actuariola, and a misidentified sequence of "Bodo curvifilus" within the class Kinetoplastea.


Assuntos
Genes de Protozoários , Genes de RNAr , Kinetoplastida/genética , Kinetoplastida/ultraestrutura , DNA de Protozoário/genética , Água Doce/parasitologia , Processos Heterotróficos , Kinetoplastida/isolamento & purificação , Microscopia Eletrônica de Transmissão , Filogenia , RNA Ribossômico 18S/genética , Análise de Sequência de DNA
17.
J Eukaryot Microbiol ; 62(2): 227-38, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25227416

RESUMO

Most protozoans that have been cultivated recently from high salinity waters appear to be obligate halophiles. Phylogenetic analyses indicate that these species mostly represent independent lineages. Here, we report the cultivation, morphological characterization, and phylogenetic analysis of two strains (XLG1 and HLM-8) of a new extremely halotolerant heterolobosean amoeboflagellate. This species is closely related to the obligate halophiles Tulamoeba peronaphora and Pleurostomum flabellatum, and more specifically to the former. Like Tulamoeba, the new species has a monopodial limax amoeba stage, however, its cyst stage lacks an intrusive pore plug. The flagellate stage bears a combination of a planar spiral feeding apparatus and unequal heterodynamic flagella that discriminates it from described Pleurostomum species. Strain XLG1 grows at salinities from 35‰ to 225‰. This degree of halotolerance is uncommon in protozoa, as most species showing growth in seawater are unable to grow at 200‰ salinity. The unrelatedness of most halophilic protozoa suggested that independent colonization of the hypersaline environment is more common than speciation within it. However, this study supports the idea that the Tulamoeba-Pleurostomum clade underwent an adaptive radiation within the hypersaline environment. A new species Tulamoeba bucina n. sp. is described, with Tulamoebidae n. fam. proposed for the Tulamoeba-Pleurostomum clade.


Assuntos
Eucariotos/classificação , DNA Ribossômico/genética , Eucariotos/citologia , Eucariotos/genética , Eucariotos/ultraestrutura , Flagelos/ultraestrutura , Genes de RNAr , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 18S/genética , Salinidade , Água do Mar , Análise de Sequência de DNA
18.
Eur J Protistol ; 94: 126064, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38531148

RESUMO

A new species of centrohelid heliozoans, Pterocystis polycristalepis sp. nov. (Pterocystidae), was examined using light and electron microscopy. The novel centrohelid is characterized by the presence of leaf-like spine-scales with a broad pedicel-like structure on the proximal part and many subparallel ribs on the lateral wing surface. The plate-scales are ovoid with medial tubular thickening and many subparallel ribs on the very extensive marginal rim. The closely related species Pterocystis striata has also been studied in detail using light and electron microscopy. Phylogenetic analysis of 18S rRNA gene sequences placed both species into a separate clade within Pterista. The closest morphologically characterized species to the new clade is Triangulopteris lacunata. The 18S rRNA sequence of Pseudoraphidiophrys veliformis was grouped within Pterista and found to be closely related to Pterocystis polycristalepis, Pterocystis striata, and Triangulopteris lacunata. Cyst-scales of various shapes, cell and cyst aggregations, syncytia, and a cell with a stalk were revealed in a clonal culture of P. veliformis. Analysis of the morphology and phylogenetic position of the studied species and other centrohelids revealed a large number of taxonomic and phylogenetic problems in Pterista.


Assuntos
Filogenia , RNA Ribossômico 18S , Especificidade da Espécie , RNA Ribossômico 18S/genética , Haptófitas/classificação , Haptófitas/genética , Haptófitas/ultraestrutura
19.
Curr Biol ; 33(15): R790-R791, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37552939

RESUMO

Tikhonenkov et al. introduce the Provora-a newly described, yet ancient, supergroup of unicellular protists encompassing as much genetic diversity as animals and fungi combined.


Assuntos
Eucariotos , Filogenia
20.
Nat Commun ; 14(1): 7049, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923716

RESUMO

Microbial eukaryotes are important components of marine ecosystems, and the Marine Alveolates (MALVs) are consistently both abundant and diverse in global environmental sequencing surveys. MALVs are dinoflagellates that are thought to be parasites of other protists and animals, but the lack of data beyond ribosomal RNA gene sequences from all but a few described species means much of their biology and evolution remain unknown. Using single-cell transcriptomes from several MALVs and their free-living relatives, we show that MALVs evolved independently from two distinct, free-living ancestors and that their parasitism evolved in parallel. Phylogenomics shows one subgroup (MALV-II and -IV, or Syndiniales) is related to a novel lineage of free-living, eukaryovorous predators, the eleftherids, while the other (MALV-I, or Ichthyodinida) is related to the free-living predator Oxyrrhis and retains proteins targeted to a non-photosynthetic plastid. Reconstructing the evolution of photosynthesis, plastids, and parasitism in early-diverging dinoflagellates shows a number of parallels with the evolution of their apicomplexan sisters. In both groups, similar forms of parasitism evolved multiple times and photosynthesis was lost many times. By contrast, complete loss of the plastid organelle is infrequent and, when this does happen, leaves no residual genes.


Assuntos
Dinoflagellida , Parasitos , Animais , Parasitos/genética , Ecossistema , Filogenia , Plastídeos/genética , Fotossíntese/genética , Dinoflagellida/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa