Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Circulation ; 134(16): 1176-1188, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27660294

RESUMO

BACKGROUND: Therapeutic targeting of arterial leukocyte recruitment in the context of atherosclerosis has been disappointing in clinical studies. Reasons for such failures include the lack of knowledge of arterial-specific recruitment patterns. Here we establish the importance of the cathepsin G (CatG) in the context of arterial myeloid cell recruitment. METHODS: Intravital microscopy of the carotid artery, the jugular vein, and cremasteric arterioles and venules in Apoe-/-and CatG-deficient mice (Apoe-/-Ctsg-/-) was used to study site-specific myeloid cell behavior after high-fat diet feeding or tumor necrosis factor stimulation. Atherosclerosis development was assessed in aortic root sections after 4 weeks of high-fat diet, whereas lung inflammation was assessed after inhalation of lipopolysaccharide. Endothelial deposition of CatG and CCL5 was quantified in whole-mount preparations using 2-photon and confocal microscopy. RESULTS: Our observations elucidated a crucial role for CatG during arterial leukocyte adhesion, an effect not found during venular adhesion. Consequently, CatG deficiency attenuates atherosclerosis but not acute lung inflammation. Mechanistically, CatG is immobilized on arterial endothelium where it activates leukocytes to firmly adhere engaging integrin clustering, a process of crucial importance to achieve effective adherence under high-shear flow. Therapeutic neutralization of CatG specifically abrogated arterial leukocyte adhesion without affecting myeloid cell adhesion in the microcirculation. Repetitive application of CatG-neutralizing antibodies permitted inhibition of atherogenesis in mice. CONCLUSIONS: Taken together, these findings present evidence of an arterial-specific recruitment pattern centered on CatG-instructed adhesion strengthening. The inhibition of this process could provide a novel strategy for treatment of arterial inflammation with limited side effects.


Assuntos
Artérias , Catepsina G/metabolismo , Quimiotaxia , Células Mieloides/metabolismo , Vênulas , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/etiologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Biomarcadores , Catepsina G/antagonistas & inibidores , Catepsina G/genética , Adesão Celular/genética , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Quimiotaxia/genética , Quimiotaxia/imunologia , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Humanos , Integrinas/metabolismo , Migração e Rolagem de Leucócitos , Camundongos , Camundongos Knockout , Microcirculação , Células Mieloides/imunologia , Ligação Proteica , Resistência ao Cisalhamento
2.
PLoS One ; 11(9): e0161218, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27583400

RESUMO

BACKGROUND: Treatment of acute lung injury (ALI) remains an unsolved problem in intensive care medicine. Recruitment of neutrophils into the lungs, regarded as a key mechanism in progression of ALI, depends on signaling between neutrophils and platelets. Consequently we explored the effect of platelet-targeted aspirin and tirofiban treatment in endotoxin induced acute lung injury. METHODS: C57Bl/6 mice were exposed to aerosolized LPS (500µg/ml) for 30min and treated with Aspirin (100µg/g bodyweight via intraperitoneal injection, 30 min before or 1 hour after LPS inhalation) or Tirofiban (0.5µg/ g bodyweight via tail vein injection 30 min before or 1 hour after LPS inhalation). The count of alveolar, interstitial, and intravascular neutrophils was assessed 4h later by flow cytometry. Lung permeability changes were assessed by FITC-dextran clearance and protein content in the BAL fluid. RESULTS: Aspirin both before and after LPS inhalation reduced neutrophil influx into the lung and lung permeability indicating the protective role of Aspirin in ALI. Tirofiban, however, did not alter neutrophil recruitment after LPS inhalation. Release of platelet-derived chemokines CCL5 and PF4 and neutrophil extracellular traps was reduced by Aspirin but not by Tirofiban. CONCLUSION: Aspirin, but not Tirofiban reduces neutrophil recruitment and displays protective effects during endotoxin induced lung injury.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Endotoxinas/toxicidade , Tirosina/análogos & derivados , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/patologia , Tirofibana , Tirosina/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa