Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochemistry ; 48(23): 5339-49, 2009 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-19459657

RESUMO

The c-Met receptor tyrosine kinase (RTK) is a key regulator in cancer, in part, through oncogenic mutations. Eight clinically relevant mutants were characterized by biochemical, biophysical, and cellular methods. The c-Met catalytic domain was highly active in the unphosphorylated state (k(cat) = 1.0 s(-1)) and achieved 160-fold enhanced catalytic efficiency (k(cat)/K(m)) upon activation to 425000 s(-1) M(-1). c-Met mutants had 2-10-fold higher basal enzymatic activity (k(cat)) but achieved maximal activities similar to those of wild-type c-Met, except for Y1235D, which underwent a reduction in maximal activity. Small enhancements of basal activity were shown to have profound effects on the acquisition of full enzymatic activity achieved through accelerating rates of autophosphorylation. Biophysical analysis of c-Met mutants revealed minimal melting temperature differences indicating that the mutations did not alter protein stability. A model of RTK activation is proposed to describe how a RTK response may be matched to a biological context through enzymatic properties. Two c-Met clinical candidates from aminopyridine and triazolopyrazine chemical series (PF-02341066 and PF-04217903) were studied. Biochemically, each series produced molecules that are highly selective against a large panel of kinases, with PF-04217903 (>1000-fold selective relative to 208 kinases) being more selective than PF-02341066. Although these prototype inhibitors have similar potencies against wild-type c-Met (K(i) = 6-7 nM), significant differences in potency were observed for clinically relevant mutations evaluated in both biochemical and cellular contexts. In particular, PF-02341066 was 180-fold more active against the Y1230C mutant c-Met than PF-04217903. These highly optimized inhibitors indicate that for kinases susceptible to active site mutations, inhibitor design may need to balance overall kinase selectivity with the ability to inhibit multiple mutant forms of the kinase (penetrance).


Assuntos
Aminopiridinas/química , Mutação , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-met/química , Pirazinas/química , Aminopiridinas/farmacologia , Sítios de Ligação , Catálise , Humanos , Cinética , Fosforilação , Conformação Proteica , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/genética , Pirazinas/farmacologia
3.
Biochemistry ; 41(30): 9654-62, 2002 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-12135387

RESUMO

Conversion of carboxylate-containing nonsteroidal antiinflammatory drugs, such as indomethacin, to esters or amides provides potent and selective inhibitors of cyclooxygenase-2 (COX-2) [Kalgutkar et al. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 925-930]. Synthesis of cinnamyl- or coumarinyl-substituted ethanolamide derivatives of indomethacin produced fluorescent probes of inhibitor interaction with COX-2 and COX-1. Binding of either derivative to apoCOX-2 or apoCOX-1 resulted in a rapid, reversible enhancement of fluorescence. Following this rapid phase, a slow additional increase in fluorescence was observed with apoCOX-2 but not with apoCOX-1. The slow, COX-2-specific increase in fluorescence was prevented or reversed by addition of the nonfluorescent COX inhibitor (S)-flurbiprofen. Detailed kinetic studies of the interaction of the coumarinyl derivative with COX-2 showed that the observed changes in fluorescence could be described by two sequential equilibria, the first of which is rapid, reversible, and bimolecular in the forward direction. The second equilibrium is slower, reversible, and unimolecular in both directions. The forward rate constant for the slow equilibrium determined by fluorescence enhancement [(3.1 +/- 0.6) x 10(-3) s(-1)] corresponded closely to the forward rate constant for inhibition of COX-2 activity [(6.8 +/- 2.3) x 10(-3) s(-1)], suggesting that the slow fluorescence enhancement is associated with selective COX-2 inhibition. Site-directed mutagenesis indicated that residues in the carboxylate-binding region of the COX-2 active site (Arg-120, Tyr-355, and Glu-524) are critical for the binding of the indomethacin conjugates that leads to slow fluorescence enhancement and cyclooxygenase inhibition. The indomethacin conjugates described herein represent powerful tools for the investigation of a novel class of selective inhibitors of COX-2.


Assuntos
Indometacina/metabolismo , Isoenzimas/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Amidas/metabolismo , Animais , Ciclo-Oxigenase 2 , Inibidores de Ciclo-Oxigenase 2 , Inibidores de Ciclo-Oxigenase/farmacologia , Indometacina/química , Cinética , Camundongos , Mutagênese Sítio-Dirigida , Ovinos , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa