Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
iScience ; 26(4): 106381, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37009211

RESUMO

Small molecule IAP antagonists - SMAC mimetics (SM) - are being developed as an anticancer therapy. SM therapy was demonstrated not only to sensitize tumor cells to TNFα-mediated cell death but also to exert immunostimulatory properties. Their good safety and tolerability profile, plus promising preclinical data, warrants further investigation into their various effects within the tumor microenvironment. Using in vitro models of human tumor cells and fibroblast spheroids co-cultured with primary immune cells, we investigated the effects of SM on immune cell activation. SM treatment induces the maturation of human PBMC- and patient-derived dendritic cells (DC), and modulates cancer-associated fibroblasts towards an immune interacting phenotype. Finally, SM-induced tumor necroptosis further enhances DC activation, leading also to higher T-cell activation and infiltration into the tumor site. These results highlight the relevance of using heterotypic in vitro models to investigate the effects of targeted therapies on different components of the tumor microenvironment.

2.
Front Immunol ; 13: 862757, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967294

RESUMO

VISTA (PD-1H) is an immune regulatory molecule considered part of the next wave of immuno-oncology targets. VISTA is an immunoglobulin (Ig) superfamily cell surface molecule mainly expressed on myeloid cells, and to some extent on NK cells and T cells. In previous preclinical studies, some VISTA-targeting antibodies provided immune inhibitory signals, while other antibodies triggered immune stimulatory signals. Importantly, for therapeutic antibodies, the isotype backbone can have a strong impact on antibody function. To elucidate the mode of action of immune stimulatory anti-VISTA antibodies, we studied three different anti-human VISTA antibody clones, each on three different IgG isotypes currently used for therapeutic antibodies: unaltered IgG1 (IgG1-WT), IgG1-KO (IgG1-LL234,235AA-variant with reduced Fc-effector function), and IgG4-Pro (IgG4- S228P-variant with stabilized hinge region). Antibody functionality was analysed in mixed leukocyte reaction (MLR) of human peripheral blood mononuclear cells (PBMCs), as a model system for ongoing immune reactions, on unstimulated human PBMCs, as a model system for a resting immune system, and also on acute myeloid leukemia (AML) patient samples to evaluate anti-VISTA antibody effects on primary tumor material. The functions of three anti-human VISTA antibodies were determined by their IgG isotype backbones. An MLR of healthy donor PBMCs was effectively augmented by anti-VISTA-IgG4-Pro and anti-VISTA-IgG1-WT antibodies, as indicated by increased levels of cytokines, T cell activation markers and T cell proliferation. However, in a culture of unstimulated PBMCs of single healthy donors, only anti-VISTA-IgG1-WT antibodies increased the activation marker HLA-DR on resting myeloid cells, and chemokine levels. Interestingly, interactions with different Fc-receptors were required for these effects, namely CD64 for augmentation of MLR, and CD16 for activation of resting myeloid cells. Furthermore, anti-VISTA-IgG1-KO antibodies had nearly no impact in any model system. Similarly, in AML patient samples, anti-VISTA-antibody on IgG4-Pro backbone, but not on IgG1-KO backbone, increased interactions, as a novel readout of activity, between immune cells and CD34+ AML cancer cells. In conclusion, the immune stimulatory effects of antagonistic anti-VISTA antibodies are defined by the antibody isotype and interaction with different Fc-gamma-receptors, highlighting the importance of understanding these interactions when designing immune stimulatory antibody therapeutics for immuno-oncology applications.


Assuntos
Antígenos B7/imunologia , Neoplasias , Receptores Fc , Humanos , Imunoglobulina G , Leucócitos Mononucleares , Receptores de IgG
3.
Front Immunol ; 13: 1008764, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159851

RESUMO

Colorectal cancer (CRC) is one of the most common cancers worldwide and demands more effective treatments. We sought to identify tumor selective CRC antigens and their therapeutic potential for cytotoxic T-cell targeting by transcriptomic and immunohistochemical analysis. LY6G6D was identified as a tumor selectively expressed CRC antigen, mainly in the microsatellite stable (MSS) subtype. A specific anti LY6G6D/CD3 T cell engager (TcE) was generated and demonstrated potent tumor cell killing and T cell activation in vitro. Ex vivo treatment of primary patient-derived CRC tumor slice cultures with the LY6G6D/CD3 TcE led to IFNγ secretion in LY6G6D positive tumor samples. In vivo, LY6G6D/CD3 TcE monotherapy demonstrated tumor regressions in pre-clinical mouse models of engrafted human CRC tumor cells and PBMCs. Lastly, 2D and 3D cocultures of LY6G6D positive and negative cells were used to explore the bystander killing of LY6G6D negative cells after specific activation of T cells by LY6G6D positive cells. LY6G6D/CD3 TcE treatment was shown to lyse target negative cells in the vicinity of target positive cells through a combined effect of IFNγ, TNFα and Fas/FasL. In summary, LY6G6D was identified as a selectively expressed CRC antigen that can be utilized to potently re-direct and activate cytotoxic T-cells to lyse LY6G6D expressing CRC using a TcE. This effect can be spread to target negative neighboring tumor cells, potentially leading to improved therapeutic efficacy.


Assuntos
Neoplasias Colorretais , Fator de Necrose Tumoral alfa , Animais , Antígenos de Neoplasias , Humanos , Imunoglobulinas , Ativação Linfocitária , Camundongos , Linfócitos T Citotóxicos
4.
Oncoimmunology ; 11(1): 2080328, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756842

RESUMO

Upregulation of inhibitory receptors, such as lymphocyte activation gene-3 (LAG-3), may limit the antitumor activity of therapeutic antibodies targeting the programmed cell death protein-1 (PD-1) pathway. We describe the binding properties of ezabenlimab, an anti-human PD-1 antibody, and BI 754111, an anti-human LAG-3 antibody, and assess their activity alone and in combination. Ezabenlimab bound with high affinity to human PD-1 (KD = 6 nM) and blocked the interaction of PD-1 with PD-L1 and PD-L2. Ezabenlimab dose-dependently increased interferon-γ secretion in human T cells expressing PD-1 in co-culture with PD-L1-expressing dendritic cells. Administration of ezabenlimab to human PD-1 knock-in mice dose-dependently inhibited growth of MC38 tumors. To reduce immunogenicity, ezabenlimab was reformatted from a human IgG4 to a chimeric variant with a mouse IgG1 backbone (BI 905725) for further in vivo studies. Combining BI 905725 with anti-mouse LAG-3 antibodies improved antitumor activity versus BI 905725 monotherapy in the MC38 tumor model. We generated BI 754111, which bound with high affinity to human LAG-3 and prevented LAG-3 interaction with its ligand, major histocompatibility complex class II. In an in vitro model of antigen-experienced memory T cells expressing PD-1 and LAG-3, interferon-γ secretion increased by an average 1.8-fold versus isotype control (p = 0.027) with BI 754111 monotherapy, 6.9-fold (p < 0.0001) with ezabenlimab monotherapy and 13.2-fold (p < 0.0001) with BI 754111 plus ezabenlimab. Overall, ezabenlimab and BI 754111 bound to their respective targets with high affinity and prevented ligand binding. Combining ezabenlimab with BI 754111 enhanced in vitro activity versus monotherapy, supporting clinical investigation of this combination (NCT03156114; NCT03433898).


Assuntos
Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Animais , Anticorpos Bloqueadores , Anticorpos Monoclonais/farmacologia , Estudos Clínicos como Assunto , Inibidores de Checkpoint Imunológico , Interferon gama , Ligantes , Camundongos
5.
Mol Cancer Ther ; 20(1): 96-108, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33037135

RESUMO

Activation of TRAILR2 has emerged as an important therapeutic concept in cancer treatment. TRAILR2 agonistic molecules have only had limited clinical success, to date, due either to lack of efficacy or hepatotoxicity. BI 905711 is a novel tetravalent bispecific antibody targeting both TRAILR2 and CDH17 and represents a novel liver-sparing TRAILR2 agonist specifically designed to overcome the disadvantages of previous strategies. Here, we show that BI 905711 effectively triggered apoptosis in a broad panel of CDH17-positive colorectal cancer tumor cells in vitro. Efficient induction of apoptosis was dependent on the presence of CDH17, as exemplified by the greater than 1,000-fold drop in potency in CDH17-negative cells. BI 905711 demonstrated single-agent tumor regressions in CDH17-positive colorectal cancer xenografts, an effect that was further enhanced upon combination with irinotecan. Antitumor efficacy correlated with induction of caspase activation, as measured in both the tumor and plasma. Effective tumor growth inhibition was further demonstrated across a series of different colorectal cancer PDX models. BI 905711 induced apoptosis in both a cis (same cell) as well as trans (adjacent cell) fashion, translating into significant antitumor activity even in xenograft models with heterogeneous CDH17 expression. In summary, we demonstrate that BI 905711 has potent and selective antitumor activity in CDH17-positive colorectal cancer models both in vitro and in vivo. The high prevalence of over 95% CDH17-positive tumors in patients with colorectal cancer, the molecule preclinical efficacy together with its potential for a favorable safety profile, support the ongoing BI 905711 phase I trial in colorectal cancer and additional CDH17-positive cancer types (NCT04137289).


Assuntos
Anticorpos Biespecíficos/farmacologia , Apoptose , Caderinas/metabolismo , Neoplasias Colorretais/patologia , Fígado/patologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/agonistas , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular Tumoral , Humanos , Fígado/efeitos dos fármacos , Camundongos , Metástase Neoplásica , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Indução de Remissão
6.
Int Immunol ; 21(7): 871-9, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19505890

RESUMO

Dendritic cells (DC) are key players in the initiation and modulation of adaptive immune responses due to their ability to acquire and present antigen and stimulate T cells. For the induction of effector T cell functions, antigen must be presented by activated DC. In this study, we have compared uptake of antigen by mouse DC in the presence of different Toll-like receptor (TLR) agonists, which are potent inducers of DC activation. Here we show that the reduction in uptake of soluble antigen in the presence of the viral double-stranded RNA (dsRNA) analogues polyinosinic-polycytidylic acid and Ampligen is independent of TLR-mediated DC activation. A reduction in antigen uptake by bone marrow-derived and splenic DC was also observed in response to other RNA homopolymers such as polyinosinic and polyguanylic acids, which are known inhibitors of scavenger receptor-mediated endocytosis. Pinocytosis and mannose receptor-mediated uptake of soluble antigen were not affected by any of the tested nucleic acids. The reduction in antigen uptake by dsRNA did not negatively influence the T cell stimulating properties of the DC. In summary, we conclude that the decrease in antigen endocytosis observed in the presence of a variety of TLR agonists is independent of TLR signalling and is caused by competition for specific surface receptors that are involved in the uptake of these TLR agonists and the antigen.


Assuntos
Adjuvantes Imunológicos/farmacologia , Células Dendríticas/efeitos dos fármacos , Indutores de Interferon/farmacologia , Poli I-C/farmacologia , RNA de Cadeia Dupla/farmacologia , Receptores Toll-Like/agonistas , Animais , Antígenos/imunologia , Células Dendríticas/imunologia , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Lipopolissacarídeos/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Receptor de Manose , Lectinas de Ligação a Manose/imunologia , Lectinas de Ligação a Manose/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos/farmacologia , Pinocitose/efeitos dos fármacos , Pinocitose/imunologia , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/metabolismo , Receptores Toll-Like/imunologia
7.
Oncoimmunology ; 9(1): 1736792, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850194

RESUMO

Despite the success of immunotherapy using checkpoint blockade, many patients with solid tumors remain refractory to these treatments. In human cancer, the experimental options to investigate the specific effects of antibodies blocking inhibitory receptors are limited and it is still unclear which cell types are involved. We addressed the question whether the direct interaction between T cells and tumor cells can be enforced through blocking a set of inhibitory receptors including PD-1, TIM-3, BTLA and LAG-3, blocked either individually or in dual combinations with the anti-PD-1 antibody, and to determine the condition that induces maximal T cell function preventing tumor cell proliferation. Using short-term Melan-A-specific or autologous re-stimulations, checkpoint blockade did not consistently increase cytokine production by tumor-derived expanded T cells. We next set up a 5-day co-culture assay with autologous melanoma cell lines and expanded tumor infiltrating T cells, originating from tumor specimens obtained from 6 different patients. Amongst all combos tested, we observed that blockade of LAG-3 alone, and more strongly when combined with PD-1 blockade, enforced T cell responses and tumor cell growth control. The combination of anti-LAG-3 plus anti-PD-1 acted through CD8 T cells and led to increased IFNγ production and cytotoxic capacity. Our results show that LAG-3 and PD-1 are regulating the direct interaction between tumor cells and autologous T cells, suggesting that therapy effects may be promoted by enhanced access of the corresponding blocking reagents to the tumor microenvironment.


Assuntos
Melanoma , Receptor de Morte Celular Programada 1 , Técnicas de Cocultura , Humanos , Imunoterapia , Ativação Linfocitária , Melanoma/tratamento farmacológico , Microambiente Tumoral
8.
Cancer Res ; 66(4): 2442-50, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16489051

RESUMO

Artificially enforced expression of CD80 (B7-1) and CD86 (B7-2) on tumor cells renders them more immunogenic by triggering the CD28 receptor on T cells. The enigma is that such B7s interact with much higher affinity with CTLA-4 (CD152), an inhibitory receptor expressed by activated T cells. We show that unmutated CD80 is spontaneously expressed at low levels by mouse colon carcinoma cell lines and other transplantable tumor cell lines of various tissue origins. Silencing of CD80 by interfering RNA led to loss of tumorigenicity of CT26 colon carcinoma in immunocompetent mice, but not in immunodeficient Rag-/- mice. CT26 tumor cells bind CTLA-4Ig, but much more faintly with a similar CD28Ig chimeric protein, thus providing an explanation for the dominant inhibitory effects on tumor immunity displayed by CD80 at that expression level. Interestingly, CD80-negative tumor cell lines such as MC38 colon carcinoma and B16 melanoma express CD80 at dim levels during in vivo growth in syngeneic mice. Therefore, low CD80 surface expression seems to give an advantage to cancer cells against the immune system. Our findings are similar with the inhibitory role described for the dim CD80 expression on immature dendritic cells, providing an explanation for the low levels of CD80 expression described in various human malignancies.


Assuntos
Adenocarcinoma/imunologia , Antígeno B7-1/imunologia , Neoplasias do Colo/imunologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animais , Antígenos CD , Antígenos de Diferenciação/imunologia , Antígenos de Diferenciação/metabolismo , Antígeno B7-1/biossíntese , Antígeno B7-1/genética , Sequência de Bases , Antígeno CTLA-4 , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Feminino , Inativação Gênica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Transfecção
9.
Cancer Cell ; 33(3): 495-511.e12, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29502954

RESUMO

The lysine-specific demethylase KDM1A is a key regulator of stem cell potential in acute myeloid leukemia (AML). ORY-1001 is a highly potent and selective KDM1A inhibitor that induces H3K4me2 accumulation on KDM1A target genes, blast differentiation, and reduction of leukemic stem cell capacity in AML. ORY-1001 exhibits potent synergy with standard-of-care drugs and selective epigenetic inhibitors, reduces growth of an AML xenograft model, and extends survival in a mouse PDX (patient-derived xenograft) model of T cell acute leukemia. Surrogate pharmacodynamic biomarkers developed based on expression changes in leukemia cell lines were translated to samples from patients treated with ORY-1001. ORY-1001 is a selective KDM1A inhibitor in clinical trials and is currently being evaluated in patients with leukemia and solid tumors.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Histona Desmetilases/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Modelos Animais de Doenças , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/genética , Humanos , Leucemia Mieloide Aguda/genética , Camundongos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
10.
World J Gastroenterol ; 13(44): 5822-31, 2007 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-17990348

RESUMO

Immunotherapy encompasses a variety of interventions and techniques with the common goal of eliciting tumor cell destructive immune responses. Colorectal carcinoma often presents as metastatic disease that impedes curative surgery. Novel strategies such as active immunization with dendritic cells (DCs), gene transfer of cytokines into tumor cells or administration of immunostimulatory monoclonal antibodies (such as anti-CD137 or anti-CTLA-4) have been assessed in preclinical studies and are at an early clinical development stage. Importantly, there is accumulating evidence that chemotherapy and immunotherapy can be combined in the treatment of some cases with colorectal cancer, with synergistic potentiation as a result of antigens cross-presented by dendritic cells and/or elimination of competitor or suppressive T lymphocyte populations (regulatory T-cells). However, genetic and epigenetic unstable carcinoma cells frequently evolve mechanisms of immunoevasion that are the result of either loss of antigen presentation, or an active expression of immunosuppressive substances. Some of these actively immunosuppressive mechanisms are inducible by cytokines that signify the arrival of an effector immune response. For example, induction of 2, 3 indoleamine dioxygenase (IDO) by IFNgamma in colorectal carcinoma cells. Combinational and balanced strategies fostering antigen presentation, T-cell costimulation and interference with immune regulatory mechanisms will probably take the stage in translational research in the treatment of colorectal carcinoma.


Assuntos
Neoplasias Colorretais/imunologia , Neoplasias Colorretais/terapia , Imunoterapia/métodos , Anticorpos Monoclonais/uso terapêutico , Neoplasias Colorretais/genética , Terapia Genética , Humanos , Imunização , Evasão Tumoral/imunologia
11.
J Clin Oncol ; 23(5): 999-1010, 2005 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-15598979

RESUMO

PURPOSE: To evaluate the feasibility and safety of intratumoral injection of autologous dendritic cells (DCs) transfected with an adenovirus encoding interleukin-12 genes (AFIL-12) for patients with metastatic gastrointestinal carcinomas. Secondarily, we have evaluated biologic effects and antitumoral activity. PATIENTS AND METHODS: Seventeen patients with metastatic pancreatic (n = 3), colorectal (n = 5), or primary liver (n = 9) malignancies entered the study. DCs were generated from CD14+ monocytes from leukapheresis, cultured and transfected with AFIL-12 before administration. Doses from 10 x 10(6) to 50 x 10(6) cells were escalated in three cohorts of patients. Patients received up to three doses at 21-day intervals. RESULTS: Fifteen (88%) and 11 of 17 (65%) patients were assessable for toxicity and response, respectively. Intratumoral DC injections were mainly guided by ultrasound. Treatment was well tolerated. The most common side effects were lymphopenia, fever, and malaise. Interferon gamma and interleukin-6 serum concentrations were increased in 15 patients after each treatment, as well as peripheral blood natural killer activity in five patients. DC transfected with AFIL-12 stimulated a potent antibody response against adenoviral capsides. DC treatment induced a marked increase of infiltrating CD8+ T lymphocytes in three of 11 tumor biopsies analyzed. A partial response was observed in one patient with pancreatic carcinoma. Stable disease was observed in two patients and progression in eight patients, with two of the cases fast-progressing during treatment. CONCLUSION: Intratumoral injection of DC transfected with an adenovirus encoding interleukin-12 to patients with metastatic gastrointestinal malignancies is feasible and well tolerated. Further studies are necessary to define and increase clinical efficacy.


Assuntos
Adenoviridae/genética , Carcinoma/secundário , Células Dendríticas/imunologia , Neoplasias Gastrointestinais/secundário , Interleucina-12/metabolismo , Engenharia Tecidual , Adulto , Idoso , Linfócitos T CD8-Positivos/imunologia , Carcinoma/terapia , Estudos de Coortes , Estudos de Viabilidade , Feminino , Febre/etiologia , Neoplasias Gastrointestinais/terapia , Humanos , Injeções Intralesionais , Interferon gama/sangue , Interleucina-6/sangue , Células Matadoras Naturais/imunologia , Linfopenia/etiologia , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes , Indução de Remissão , Segurança , Transfecção
12.
Cancer Res ; 62(11): 3167-74, 2002 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12036930

RESUMO

Monoclonal antibodies (mAbs) can mediate antitumor effects by indirect mechanisms involving antiangiogenesis and up-regulation of the cellular immune response rather than by direct tumor cell destruction. From mAbs raised by immunization of rats with transformed murine endothelial cells, a mAb (EOL4G8) was selected for its ability to eradicate a fraction of established colon carcinomas that did not express the EOL4G8-recognized antigen. The antigen was found to be ICAM-2 (CD102). Antitumor effects of EOL4G8, which required a functional T-cell compartment, were abrogated by depletion of CD8(+) cells and correlated with antitumor CTL activity, whereas only a mild inhibition of angiogenesis was observed. Interestingly, we found that EOL4G8 acting on endothelial ICAM-2 markedly enhances leukotactic factor activity-1-independent adhesion of immature dendritic cells to endothelium-an effect that is at least in part mediated by DC-SIGN (CD209).


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos CD/imunologia , Moléculas de Adesão Celular/imunologia , Neoplasias do Colo/imunologia , Lectinas Tipo C , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/farmacologia , Adesão Celular/imunologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/terapia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Endotélio/citologia , Endotélio/imunologia , Feminino , Humanos , Lectinas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Transplante de Neoplasias , Receptores de Superfície Celular/imunologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Linfócitos T Citotóxicos/imunologia , Regulação para Cima
13.
Clin Cancer Res ; 9(15): 5454-64, 2003 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-14654524

RESUMO

Immunotherapeutic monoclonal antibodies (mAbs) can be defined as those that exert their functions by tampering with immune system cell molecules, causing an enhancement of antitumor immune responses. Some of these antibodies are agonistic ligands for surface receptors involved in the activation of lymphocytes and/or antigen-presenting cells, whereas others are antagonists of mechanisms that normally limit the intensity of immune reactions. Several mAbs of this category have been described to display in vivo antitumor activity in mouse models. Only anti-CTLA-4 (CD152) mAb has entered clinical trials, but the preclinical effects described for anti-CD40, anti-CD137 (4-1BB), anti-CD102 (intercellular adhesion molecule-2), and regulatory T cell-depleting mAbs should lead to their prompt clinical development. Their use in combination with immunizations against tumor antigens has been reported to be endowed with synergistic properties. This new group of antitumor agents holds promise for at least additive effects with conventional therapies of cancer and deserves intensive translational research.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Neoplasias/imunologia , Antígenos CD/imunologia , Antígenos de Diferenciação/imunologia , Antígeno CTLA-4 , Moléculas de Adesão Celular/imunologia , Humanos , Imunidade Celular , Modelos Imunológicos , Receptores de Fator de Crescimento Neural/imunologia , Receptores do Fator de Necrose Tumoral/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral
14.
Clin Cancer Res ; 9(10 Pt 1): 3546-54, 2003 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-14506140

RESUMO

PURPOSE: Systemic treatment with an anti-ICAM-2 monoclonal antibody (mAb; EOL4G8) eradicates certain established mouse tumors through a mechanism dependent on the potentiation of a CTL-mediated response. However, well-established tumors derived from the MC38 colon carcinoma cell line were largely refractory to this treatment as well as to intratumor injection of a recombinant adenovirus encoding interleukin-12 (IL-12; AdCMVIL-12). We sought to design combined therapy strategies with AdCMVIL-12 plus anti-ICAM-2 mAbs and to identify their mechanism of action. EXPERIMENTAL DESIGN: Analysis of antitumor and toxic effects were performed with C57BL/6 mice bearing established MC38 tumors. Anti-ovalbumin T-cell receptor transgenic mice and tumors transfected with this antigen were used for in vitro and in vivo studies on activation-induced cell death (AICD) of CD8(+) T cells. RESULTS: Combined treatment with various systemic doses of EOL4G8 mAb plus intratumor injection of AdCMVIL-12 induced complete regression of MC38 tumors treated 7 days after implantation. Unfortunately, most of such mice succumbed to a systemic inflammatory syndrome that could be prevented if IFN-gamma activity were neutralized once tumors had been rejected. Importantly, dose reduction of EOL4G8 mAb opened a therapeutic window (complete cure of 9 of 18 cases without toxicity). We also show that ICAM-2 ligation by EOL4G8 mAb on activated CTLs prevents AICD, thus extending IFN-gamma production. CONCLUSIONS: Combination of intratumor gene transfer of IL-12and systemic anti-ICAM-2 mAb display synergistic therapeutic and toxic effects. CTL life extension resulting from AICD inhibition by anti-ICAM-2 mAbs is the plausible mechanism of action.


Assuntos
Anticorpos Monoclonais/química , Antígenos CD/química , Antígenos CD/imunologia , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/imunologia , Técnicas de Transferência de Genes , Interleucina-12/metabolismo , Linfócitos T/citologia , Adenoviridae/genética , Animais , Linfócitos T CD8-Positivos/metabolismo , Morte Celular , Linhagem Celular Tumoral , Separação Celular , Reagentes de Ligações Cruzadas/farmacologia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transplante de Neoplasias , Peptídeos/química , Linfócitos T Citotóxicos/metabolismo , Fatores de Tempo
15.
Exp Hematol ; 30(3): 195-204, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11882356

RESUMO

OBJECTIVE: Injection of dendritic cells (DC) engineered with recombinant adenoviral vectors to produce interleukin-12 (IL-12) inside experimental murine tumors frequently achieves complete regressions. In such a system the function of CD8(+) T cells has been shown to be an absolute requirement, in contrast to observations made upon depletion of CD4(+) T cells, which minimally affected the outcome. The aim of this work was to study the possible involvement of natural killer (NK) cells in this setting. MATERIALS, METHODS, AND RESULTS: Depletions with anti-AsialoGM1 antiserum showed only a small decrease in the proportion of complete regressions obtained that correlated with induction of NK activities in lymphatic tissues into which DC migrate, whereas combined depletions of CD4(+) and NK cells completely eliminated the antitumor effects. Likewise in vivo neutralization of interferon-gamma (IFN-gamma) also eliminated those therapeutic effects. Trying to define the cellular role played by NK cells in vivo, it was observed that injection of cultured DC inside the spleen of T- and B-cell-deficient (Rag1(-/-)) mice induced upregulation of NK activity only if DC had been adenovirally engineered to produce IL-12. In addition, identically transfected fibroblasts also activated NK cells, indicating that IL-12 transfection was the unique requirement. Equivalent human DC only activated in vitro the cytolytic and cytokine-secreting functions of autologous NK cells if transfected to express human IL-12. CONCLUSIONS: Overall, these results point out an important role played by NK cell activation in the potent immunotherapeutic effects elicited by intratumoral injection of IL-12--secreting DC and that NK activation under these conditions is mainly, if not only, dependent on IL-12.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/transplante , Engenharia Genética , Imunoterapia , Interleucina-12/genética , Células Matadoras Naturais/imunologia , Neoplasias Experimentais/terapia , Animais , Anticorpos Monoclonais/farmacologia , Antígenos CD4/análise , Separação Celular , Células Cultivadas , Neoplasias do Colo/terapia , Fluoresceína-5-Isotiocianato , Corantes Fluorescentes , Gangliosídeo G(M1)/análise , Glicoesfingolipídeos/análise , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Interleucina-12/biossíntese , Interleucina-4/farmacologia , Magnetismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Transfecção
16.
Exp Hematol ; 30(12): 1355-64, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12482496

RESUMO

Expansion and activation of cytolytic T lymphocytes bearing high-affinity T-cell receptors specific for tumor antigens is a major goal of active cancer immunotherapy. Physiologically, T cells receive promitotic and activating signals from endogenous professional antigen-presenting cells (APC) rather than directly from malignant cells. This phenomenon fits with the broader concept of cross-presentation that earlier was demonstrated for minor histocompatibility and viral antigens. Many mechanisms have been found to be capable of transferring antigenic material from malignant cells to APC so that it can be processed and subsequently presented by MHC class I molecules expressed on APC. Dendritic cells (DC) are believed to be the most relevant APC mediating cross-presentation because they can take up antigens from apoptotic, necrotic, and even intact tumor cells. There exist specific molecular mechanisms that ensure this transfer of antigenic material: 1) opsonization of apoptotic bodies; 2) receptors for released heat shock proteins carrying peptides processed intracellularly; 3) Fc receptors that uptake immunocomplexes and immunoglobulins; and 4) pinocytosis. DC have the peculiar capability of reentering the exogenously captured material into the MHC class I pathway. Exploitation of these pieces of knowledge is achieved by providing DC with complex mixtures of tumor antigens ex vivo and by agents and procedures that promote infiltration of malignant tissue by DC. The final outcome of DC cross-presentation could be T-cell activation (cross-priming) but also, and importantly, T-cell tolerance contingent upon the activation/maturation status of DC. Artificial enhancement of tumor antigen cross-presentation and control of the immune-promoting status of the antigen-presenting DC will have important therapeutic implications in the near future.


Assuntos
Apresentação de Antígeno/fisiologia , Células Dendríticas/imunologia , Células Neoplásicas Circulantes/imunologia , Animais , Humanos , Imunoterapia Adotiva/métodos , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia
17.
Arch Immunol Ther Exp (Warsz) ; 50(1): 13-8, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11916305

RESUMO

Cellular immune responses can destroy cancer cells, achieving the cure of experimental malignancies. An expanding wealth of knowledge on the molecular basis of how to prime and amplify a T cell response has fueled a number of strategies successful at treating established tumors (rather than merely preventing tumor grafting). The most efficacious approaches operate at different stages, including: 1) priming the immune response using tumor antigen-expressing dendritic cells or tumor cells transfected with genes that render them immunogenic, 2) sustaining and amplifying immunity using agonistic monoclonal antibodies against costimulatory molecules or immune-potentiating cytokines, and 3) eliminating mechanisms that self-regulate the strength of the immune response, such as inhibitory receptors or regulatory T cells. A rational combination of such approaches holds great hope for cumulative and synergistic effects, but there is also evidence that they can open the flood-gates for unwanted inflammatory reactions. The next decade can be envisioned as the time when the first reproducibly efficacious combination regimes for cancer immunotherapy will become available and widely used in the clinic, as clinicians learn the best strategies and try to harness their potentially damaging effects.


Assuntos
Imunoconjugados , Imunoterapia , Neoplasias/terapia , Abatacepte , Animais , Antígenos CD , Antígenos de Diferenciação/metabolismo , Autoimunidade , Antígenos CD40/metabolismo , Antígeno CTLA-4 , Células Dendríticas/imunologia , Humanos , Imunoterapia/efeitos adversos , Receptores de Interleucina-2/metabolismo , Linfócitos T/imunologia
18.
Eur J Immunol ; 38(10): 2740-50, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18825742

RESUMO

Cancer immunotherapy aims at inducing immune responses against tumour-associated antigens that mediate the eradication of tumour cells. For successful vaccination against antigens expressed by the tumour, the immune system has to be provided with sufficient amounts of these antigens in connection with strong immunostimulatory signals such as toll-like receptor (TLR) ligands. Tumour cells represent a convenient source of relevant tumour-associated antigens but can have suppressive properties. In this study, we explored how different forms of tumour cell material influence the activation of dendritic cells (DC), which play a crucial role in the induction of anti-tumour immune responses. We show that freeze-and-thaw-disrupted tumour cells inhibit DC activation in response to TLR stimulation, a phenomenon that is only partially seen with non-disrupted control cells. This suppression of DC stimulation is independent of tumour cell- and species-specific factors. We tested the hypothesis that phosphatidylserine on cells with disrupted membrane integrity mediates inhibition of TLR-induced DC activation. Our experimental evidence indicates that phosphatidylserine is not involved in the inhibition of TLR-mediated DC activation by freeze-and-thaw-disrupted cells. The inhibitory activity associated with disrupted tumour cells could explain why such preparations are less effective tumour vaccines than apoptotic tumour cells.


Assuntos
Células Dendríticas/imunologia , Melanoma Experimental/imunologia , Receptores Toll-Like/imunologia , Animais , Antígeno B7-2/imunologia , Antígeno B7-2/metabolismo , Antígenos CD40/imunologia , Antígenos CD40/metabolismo , Linhagem Celular Tumoral , Chlorocebus aethiops , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Congelamento , Imunoterapia , Interleucina-12/biossíntese , Interleucina-12/imunologia , Interleucina-6/biossíntese , Interleucina-6/imunologia , Lipossomos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias , Fosfatidilserinas/farmacologia , Fosfatidilserinas/fisiologia , Receptores Toll-Like/metabolismo , Células Vero
19.
Int J Cancer ; 121(6): 1282-95, 2007 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17520674

RESUMO

Better understanding of the mechanisms that mediate spontaneous immune rejections ought to be important in the quest for improvements in immunotherapy of cancer. A set of intraperitoneal tumors of mesenchymal origin that had been chemically induced in ubiquitously expressing EGFP transgenic mice provided a model in which both T and NK cells were absolutely required for tumor rejection. Tumor cells were traceable because of being fluorescent and readily grafted in RAG1(-/-) immunodeficient mice, whereas they were rejected in a majority of syngeneic C57BL/6 and EGFP-transgenic mice. Tumor-cell clones with the highest EGFP expression tended to be rejected, but a direct involvement of EGFP as the antigen recognized for the immune rejections was ruled out. Rejections were absolutely dependent on NK cells as well as on CD4(+) and CD8(+) T lymphocytes according to selective depletion studies. Furthermore, CD8(+) and CD4(+) T lymphocytes as well as NK cells were detected in the inflammatory infiltrate that mediates tumor rejection along with some DC. The effects of IFN gamma, produced at the tumor site by T and NK lymphocytes, were only required at the malignant cell level and were necessary for tumor eradication. NK recognition of tumor cells was mediated by the NKG2D-activating receptor and blocking its function in vivo partially interfered with rejection. Therefore, complete rejection of these mesenchymal tumors requires a concerted set of activities including direct tumor-cell destruction and IFN gamma production that are mediated by both NK and T cells.


Assuntos
Proteínas de Fluorescência Verde/genética , Interferon gama/metabolismo , Células Matadoras Naturais/imunologia , Neoplasias Peritoneais/imunologia , Receptores Imunológicos/metabolismo , Linfócitos T/imunologia , Animais , Linhagem Celular Tumoral , Feminino , Citometria de Fluxo , Imunofluorescência , Mesoderma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/metabolismo , Neoplasias Peritoneais/metabolismo , Receptores de Células Matadoras Naturais
20.
Mol Ther ; 14(1): 129-38, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16627004

RESUMO

Recombinant adenovirus administration gives rise to transgene-independent effects caused by the ability of the vector to activate innate immunity mechanisms. We show that recombinant adenoviruses encoding reporter genes trigger IFN-alpha and IFN-beta transcription from both plasmacytoid and myeloid mouse dendritic cells. Interestingly, IFN-beta and IFN-alpha5 are the predominant transcribed type I IFN genes both in vitro and in vivo. In human peripheral blood leukocytes type I IFNs are induced by adenoviral vectors, with a preponderance of IFN-beta together with IFN-alpha1 and IFN-alpha5 subtypes. Accordingly, functional type I IFN is readily detected in serum samples from human cancer patients who have been treated intratumorally with a recombinant adenovirus encoding thymidine kinase. Despite inducing functional IFN-alpha release in both mice and humans, gene transfer by recombinant adenoviruses is not interfered with by type I IFNs either in vitro or in vivo. Moreover, IFN-alpha does not impair replication of wild-type adenovirus. As a consequence, cancer gene therapy strategies with defective or replicative-competent adenoviruses are not expected to be hampered by the effect of the type I IFNs induced by the vector itself. However, type I IFN might modulate antitumor and antiadenoviral immune responses and thus influence the outcome of gene immunotherapy.


Assuntos
Adenoviridae/genética , Expressão Gênica/genética , Interferon Tipo I/genética , Transgenes/genética , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Feminino , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Interferon Tipo I/farmacologia , Interferon-alfa/genética , Interferon-alfa/farmacologia , Interferon beta/genética , Interferon beta/farmacologia , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Timidina Quinase/genética , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa