Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(40): 10076-10081, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30213852

RESUMO

Chromosomal rearrangements, including translocations, are early and essential events in the formation of many tumors. Previous studies that defined the genetic requirements for rearrangement formation have identified differences between murine and human cells, most notably in the role of classic and alternative nonhomologous end-joining (NHEJ) factors. We reported that poly(ADP)ribose polymerase 3 (PARP3) promotes chromosomal rearrangements induced by endonucleases in multiple human cell types. We show here that in contrast to classic (c-NHEJ) factors, Parp3 also promotes rearrangements in murine cells, including translocations in murine embryonic stem cells (mESCs), class-switch recombination in primary B cells, and inversions in tail fibroblasts that generate Eml4-Alk fusions. In mESCs, Parp3-deficient cells had shorter deletion lengths at translocation junctions. This was corroborated using next-generation sequencing of Eml4-Alk junctions in tail fibroblasts and is consistent with a role for Parp3 in promoting the processing of DNA double-strand breaks. We confirmed a previous report that Parp1 also promotes rearrangement formation. In contrast with Parp3, rearrangement junctions in the absence of Parp1 had longer deletion lengths, suggesting that Parp1 may suppress double-strand break processing. Together, these data indicate that Parp3 and Parp1 promote rearrangements with distinct phenotypes.


Assuntos
Linfócitos B/metabolismo , Reparo do DNA por Junção de Extremidades/fisiologia , Switching de Imunoglobulina/fisiologia , Células-Tronco Embrionárias Murinas/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Quinase do Linfoma Anaplásico , Animais , Fibroblastos/metabolismo , Camundongos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo
2.
Microb Ecol ; 80(1): 223-236, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31982929

RESUMO

The success of symbioses between cnidarian hosts (e.g., corals and sea anemones) and micro-algal symbionts hinges on the molecular interactions that govern the establishment and maintenance of intracellular mutualisms. As a fundamental component of innate immunity, glycan-lectin interactions impact the onset of marine endosymbioses, but our understanding of the effects of cell surface glycome composition on symbiosis establishment remains limited. In this study, we examined the canonical N-glycan biosynthesis pathway in the genome of the dinoflagellate symbiont Breviolum minutum (family Symbiodiniaceae) and found it to be conserved with the exception of the transferase GlcNAc-TII (MGAT2). Using coupled liquid chromatography-mass spectrometry (LC-MS/MS), we characterized the cell surface N-glycan content of B. minutum, providing the first insight into the molecular composition of surface glycans in dinoflagellates. We then used the biosynthesis inhibitors kifunensine and swainsonine to alter the glycan composition of B. minutum. Successful high-mannose enrichment via kifunensine treatment resulted in a significant decrease in colonization of the model sea anemone Aiptasia (Exaiptasia pallida) by B. minutum. Hybrid glycan enrichment via swainsonine treatment, however, could not be confirmed and did not impact colonization. We conclude that functional Golgi processing of N-glycans is critical for maintaining appropriate cell surface glycan composition and for ensuring colonization success by B. minutum.


Assuntos
Antozoários/microbiologia , Dinoflagellida/fisiologia , Polissacarídeos/fisiologia , Simbiose , Animais , Interações entre Hospedeiro e Microrganismos , Polissacarídeos/biossíntese , Polissacarídeos/química
3.
Blood ; 128(21): 2517-2526, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27742706

RESUMO

The Bruton tyrosine kinase (BTK) inhibitor ibrutinib induces responses in 70% of patients with relapsed and refractory mantle cell lymphoma (MCL). Intrinsic resistance can occur through activation of the nonclassical NF-κB pathway and acquired resistance may involve the BTK C481S mutation. Outcomes after ibrutinib failure are dismal, indicating an unmet medical need. We reasoned that newer heat shock protein 90 (HSP90) inhibitors could overcome ibrutinib resistance by targeting multiple oncogenic pathways in MCL. HSP90 inhibition induced the complete degradation of both BTK and IκB kinase α in MCL lines and CD40-dependent B cells, with downstream loss of MAPK and nonclassical NF-κB signaling. A proteome-wide analysis in MCL lines and an MCL patient-derived xenograft identified a restricted set of targets from HSP90 inhibition that were enriched for factors involved in B-cell receptor and JAK/STAT signaling, the nonclassical NF-κB pathway, cell-cycle regulation, and DNA repair. Finally, multiple HSP90 inhibitors potently killed MCL lines in vitro, and the clinical agent AUY922 was active in vivo against both patient-derived and cell-line xenografts. Together, these findings define the HSP90-dependent proteome in MCL. Considering the disappointing clinical activity of HSP90 inhibitors in other contexts, trials in patients with MCL will be essential for defining the efficacy of and mechanisms of resistance after ibrutinib failure.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Isoxazóis/farmacologia , Linfoma de Célula do Manto/tratamento farmacológico , Pirazóis/farmacologia , Pirimidinas/farmacologia , Resorcinóis/farmacologia , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia , Substituição de Aminoácidos , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/metabolismo , Linfoma de Célula do Manto/patologia , Camundongos , Mutação de Sentido Incorreto , Piperidinas , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
mBio ; 11(2)2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32156819

RESUMO

The cell cycle is a critical component of cellular proliferation, differentiation, and response to stress, yet its role in the regulation of intracellular symbioses is not well understood. To explore host-symbiont cell cycle coordination in a marine symbiosis, we employed a model for coral-dinoflagellate associations: the tropical sea anemone Aiptasia (Exaiptasia pallida) and its native microalgal photosymbionts (Breviolum minutum and Breviolum psygmophilum). Using fluorescent labeling and spatial point-pattern image analyses to characterize cell population distributions in both partners, we developed protocols that are tailored to the three-dimensional cellular landscape of a symbiotic sea anemone tentacle. Introducing cultured symbiont cells to symbiont-free adult hosts increased overall host cell proliferation rates. The acceleration occurred predominantly in the symbiont-containing gastrodermis near clusters of symbionts but was also observed in symbiont-free epidermal tissue layers, indicating that the presence of symbionts contributes to elevated proliferation rates in the entire host during colonization. Symbiont cell cycle progression differed between cultured algae and those residing within hosts; the endosymbiotic state resulted in increased S-phase but decreased G2/M-phase symbiont populations. These phenotypes and the deceleration of cell cycle progression varied with symbiont identity and host nutritional status. These results demonstrate that host and symbiont cells have substantial and species-specific effects on the proliferation rates of their mutualistic partners. This is the first empirical evidence to support species-specific regulation of the symbiont cell cycle within a single cnidarian-dinoflagellate association; similar regulatory mechanisms likely govern interpartner coordination in other coral-algal symbioses and shape their ecophysiological responses to a changing climate.IMPORTANCE Biomass regulation is critical to the overall health of cnidarian-dinoflagellate symbioses. Despite the central role of the cell cycle in the growth and proliferation of cnidarian host cells and dinoflagellate symbionts, there are few studies that have examined the potential for host-symbiont coregulation. This study provides evidence for the acceleration of host cell proliferation when in local proximity to clusters of symbionts within cnidarian tentacles. The findings suggest that symbionts augment the cell cycle of not only their enveloping host cells but also neighboring cells in the epidermis and gastrodermis. This provides a possible mechanism for rapid colonization of cnidarian tissues. In addition, the cell cycles of symbionts differed depending on nutritional regime, symbiotic state, and species identity. The responses of cell cycle profiles to these different factors implicate a role for species-specific regulation of symbiont cell cycles within host cnidarian tissues.


Assuntos
Ciclo Celular , Dinoflagellida/fisiologia , Nutrientes/metabolismo , Anêmonas-do-Mar/fisiologia , Simbiose/fisiologia , Animais , Dinoflagellida/citologia , Anêmonas-do-Mar/citologia , Especificidade da Espécie
5.
Front Microbiol ; 9: 842, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29765363

RESUMO

Mutualisms between cnidarian hosts and dinoflagellate endosymbionts are foundational to coral reef ecosystems. These symbioses are often re-established every generation with high specificity, but gaps remain in our understanding of the cellular mechanisms that control symbiont recognition and uptake dynamics. Here, we tested whether differences in glycan profiles among different symbiont species account for the different rates at which they initially colonize aposymbiotic polyps of the model sea anemone Aiptasia (Exaiptasia pallida). First, we used a lectin array to characterize the glycan profiles of colonizing Symbiodinium minutum (ITS2 type B1) and noncolonizing Symbiodinium pilosum (ITS2 type A2), finding subtle differences in the binding of lectins Euonymus europaeus lectin (EEL) and Urtica dioica agglutinin lectin (UDA) that distinguish between high-mannoside and hybrid-type protein linked glycans. Next, we enzymatically cleaved glycans from the surfaces of S. minutum cultures and followed their recovery using flow cytometry, establishing a 48-72 h glycan turnover rate for this species. Finally, we exposed aposymbiotic host polyps to cultured S. minutum cells masked by EEL or UDA lectins for 48 h, then measured cell densities the following day. We found no effect of glycan masking on symbiont density, providing further support to the hypothesis that glycan-lectin interactions are more important for post-phagocytic persistence of specific symbionts than they are for initial uptake. We also identified several methodological and biological factors that may limit the utility of studying glycan masking in the Aiptasia system.

6.
Nat Commun ; 8: 15110, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28447610

RESUMO

Chromosomal rearrangements are essential events in the pathogenesis of both malignant and nonmalignant disorders, yet the factors affecting their formation are incompletely understood. Here we develop a zinc-finger nuclease translocation reporter and screen for factors that modulate rearrangements in human cells. We identify UBC9 and RAD50 as suppressors and 53BP1, DDB1 and poly(ADP)ribose polymerase 3 (PARP3) as promoters of chromosomal rearrangements across human cell types. We focus on PARP3 as it is dispensable for murine viability and has druggable catalytic activity. We find that PARP3 regulates G quadruplex (G4) DNA in response to DNA damage, which suppresses repair by nonhomologous end-joining and homologous recombination. Chemical stabilization of G4 DNA in PARP3-/- cells leads to widespread DNA double-strand breaks and synthetic lethality. We propose a model in which PARP3 suppresses G4 DNA and facilitates DNA repair by multiple pathways.


Assuntos
Proteínas de Ciclo Celular/genética , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , DNA/metabolismo , Quadruplex G , Poli(ADP-Ribose) Polimerases/genética , Translocação Genética/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Enzimas de Conjugação de Ubiquitina/genética , Células A549 , Hidrolases Anidrido Ácido , Linhagem Celular Tumoral , Cromossomos/metabolismo , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Reparo do DNA por Junção de Extremidades/genética , Técnicas de Inativação de Genes , Células HEK293 , Células HeLa , Recombinação Homóloga , Humanos , Modelos Genéticos , Mutações Sintéticas Letais
8.
Nat Med ; 21(1): 71-5, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25485910

RESUMO

Activating mutations in genes encoding G protein α (Gα) subunits occur in 4-5% of all human cancers, but oncogenic alterations in Gß subunits have not been defined. Here we demonstrate that recurrent mutations in the Gß proteins GNB1 and GNB2 confer cytokine-independent growth and activate canonical G protein signaling. Multiple mutations in GNB1 affect the protein interface that binds Gα subunits as well as downstream effectors and disrupt Gα interactions with the Gßγ dimer. Different mutations in Gß proteins clustered partly on the basis of lineage; for example, all 11 GNB1 K57 mutations were in myeloid neoplasms, and seven of eight GNB1 I80 mutations were in B cell neoplasms. Expression of patient-derived GNB1 variants in Cdkn2a-deficient mouse bone marrow followed by transplantation resulted in either myeloid or B cell malignancies. In vivo treatment with the dual PI3K-mTOR inhibitor BEZ235 suppressed GNB1-induced signaling and markedly increased survival. In several human tumors, mutations in the gene encoding GNB1 co-occurred with oncogenic kinase alterations, including the BCR-ABL fusion protein, the V617F substitution in JAK2 and the V600K substitution in BRAF. Coexpression of patient-derived GNB1 variants with these mutant kinases resulted in inhibitor resistance in each context. Thus, GNB1 and GNB2 alterations confer transformed and resistance phenotypes across a range of human tumors and may be targetable with inhibitors of G protein signaling.


Assuntos
Transformação Celular Neoplásica/genética , Resistencia a Medicamentos Antineoplásicos/genética , Subunidades beta da Proteína de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/genética , Linfoma de Células B/genética , Animais , Linhagem Celular Tumoral , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Janus Quinase 2/biossíntese , Linfoma de Células B/tratamento farmacológico , Linfoma de Células B/patologia , Camundongos , Mutação , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/biossíntese , Proteínas Proto-Oncogênicas c-akt/genética
9.
Cancer Cell ; 28(1): 29-41, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26175414

RESUMO

A variety of cancers depend on JAK2 signaling, including the high-risk subset of B cell acute lymphoblastic leukemias (B-ALLs) with CRLF2 rearrangements. Type I JAK2 inhibitors induce paradoxical JAK2 hyperphosphorylation in these leukemias and have limited activity. To improve the efficacy of JAK2 inhibition in B-ALL, we developed the type II inhibitor CHZ868, which stabilizes JAK2 in an inactive conformation. CHZ868 potently suppressed the growth of CRLF2-rearranged human B-ALL cells, abrogated JAK2 signaling, and improved survival in mice with human or murine B-ALL. CHZ868 and dexamethasone synergistically induced apoptosis in JAK2-dependent B-ALLs and further improved in vivo survival compared to CHZ868 alone. These data support the testing of type II JAK2 inhibition in patients with JAK2-dependent leukemias and other disorders.


Assuntos
Aminopiridinas/administração & dosagem , Antineoplásicos/administração & dosagem , Benzimidazóis/administração & dosagem , Dexametasona/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Janus Quinase 2/antagonistas & inibidores , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Inibidores de Proteínas Quinases/administração & dosagem , Aminopiridinas/farmacologia , Animais , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Apoptose , Benzimidazóis/farmacologia , Linhagem Celular Tumoral , Citoproteção/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Janus Quinase 2/química , Janus Quinase 2/genética , Camundongos , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Nat Genet ; 46(6): 618-23, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24747640

RESUMO

Down syndrome confers a 20-fold increased risk of B cell acute lymphoblastic leukemia (B-ALL), and polysomy 21 is the most frequent somatic aneuploidy among all B-ALLs. Yet the mechanistic links between chromosome 21 triplication and B-ALL remain undefined. Here we show that germline triplication of only 31 genes orthologous to human chromosome 21q22 confers mouse progenitor B cell self renewal in vitro, maturation defects in vivo and B-ALL with either the BCR-ABL fusion protein or CRLF2 with activated JAK2. Chromosome 21q22 triplication suppresses histone H3 Lys27 trimethylation (H3K27me3) in progenitor B cells and B-ALLs, and 'bivalent' genes with both H3K27me3 and H3K4me3 at their promoters in wild-type progenitor B cells are preferentially overexpressed in triplicated cells. Human B-ALLs with polysomy 21 are distinguished by their overexpression of genes marked with H3K27me3 in multiple cell types. Overexpression of HMGN1, a nucleosome remodeling protein encoded on chromosome 21q22 (refs. 3,4,5), suppresses H3K27me3 and promotes both B cell proliferation in vitro and B-ALL in vivo.


Assuntos
Linfócitos B/citologia , Duplicação Gênica , Proteína HMGN1/genética , Histonas/metabolismo , Lisina/genética , Animais , Transplante de Medula Óssea , Proliferação de Células , Cromossomos Humanos Par 21 , Metilação de DNA , Feminino , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Masculino , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Nucleossomos/metabolismo , Fenótipo , Regiões Promotoras Genéticas
11.
PLoS One ; 7(9): e44664, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22957096

RESUMO

Mice bearing a "humanized" immune system are valuable tools to experimentally manipulate human cells in vivo and facilitate disease models not normally possible in laboratory animals. Here we describe a form of GVHD that develops in NOD/SCID mice reconstituted with human fetal bone marrow, liver and thymus (NS BLT mice). The skin, lungs, gastrointestinal tract and parotid glands are affected with progressive inflammation and sclerosis. Although all mice showed involvement of at least one organ site, the incidence of overt clinical disease was approximately 35% by 22 weeks after reconstitution. The use of hosts lacking the IL2 common gamma chain (NOD/SCID/γc(-/-)) delayed the onset of disease, but ultimately did not affect incidence. Genetic analysis revealed that particular donor HLA class I alleles influenced the risk for the development of GVHD. At a cellular level, GVHD is associated with the infiltration of human CD4+ T cells into the skin and a shift towards Th1 cytokine production. GVHD also induced a mixed M1/M2 polarization phenotype in a dermal murine CD11b+, MHC class II+ macrophage population. The presence of xenogenic GVHD in BLT mice both presents a major obstacle in the use of humanized mice and an opportunity to conduct preclinical studies on GVHD in a humanized model.


Assuntos
Medula Óssea/patologia , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/imunologia , Fígado/patologia , Timo/patologia , Animais , Linfócitos T CD4-Positivos/citologia , Citocinas/metabolismo , Modelos Animais de Doenças , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Interleucina-2/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Risco , Pele/metabolismo , Baço/citologia
12.
Sci Transl Med ; 4(143): 143ra98, 2012 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-22814851

RESUMO

The development of mouse/human chimeras through the engraftment of human immune cells and tissues into immunodeficient mice, including the recently described humanized BLT (bone marrow, liver, thymus) mouse model, holds great promise to facilitate the in vivo study of human immune responses. However, little data exist regarding the extent to which cellular immune responses in humanized mice accurately reflect those seen in humans. We infected humanized BLT mice with HIV-1 as a model pathogen and characterized HIV-1-specific immune responses and viral evolution during the acute phase of infection. HIV-1-specific CD8(+) T cell responses in these mice were found to closely resemble those in humans in terms of their specificity, kinetics, and immunodominance. Viral sequence evolution also revealed rapid and highly reproducible escape from these responses, mirroring the adaptations to host immune pressures observed during natural HIV-1 infection. Moreover, mice expressing the protective HLA-B*57 allele exhibited enhanced control of viral replication and restricted the same CD8(+) T cell responses to conserved regions of HIV-1 Gag that are critical to its control of HIV-1 in humans. These data reveal that the humanized BLT mouse model appears to accurately recapitulate human pathogen-specific cellular immunity and the fundamental immunological mechanisms required to control a model human pathogen, aspects critical to the use of a small-animal model for human pathogens.


Assuntos
Linfócitos T CD8-Positivos/imunologia , HIV-1/imunologia , Animais , Infecções por HIV/imunologia , Antígenos HLA-B/metabolismo , Humanos , Imunidade Celular/imunologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa