Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892038

RESUMO

The effects of the enzyme N-acetylgalactosamine-4-sulfatase (Arylsulfatase B, ARSB), which removes the 4-sulfate group at the non-reducing end of chondroitin 4-sulfate, on the expression of PD-L1 were determined, and the underlying mechanism of PD-L1 expression was elucidated. Initial experiments in human melanoma cells (A375) showed that PD-L1 expression increased from 357 ± 31 to 796 ± 50 pg/mg protein (p < 10-11) when ARSB was silenced in A375 cells. In subcutaneous B16F10 murine melanomas, PD-L1 declined from 1227 ± 189 to 583 ± 110 pg/mg protein (p = 1.67 × 10-7), a decline of 52%, following treatment with exogenous, bioactive recombinant ARSB. This decline occurred in association with reduced tumor growth and prolongation of survival, as previously reported. The mechanism of regulation of PD-L1 expression by ARSB is attributed to ARSB-mediated alteration in chondroitin 4-sulfation, leading to changes in free galectin-3, c-Jun nuclear localization, HDAC3 expression, and effects of acetyl-H3 on the PD-L1 promoter. These findings indicate that changes in ARSB contribute to the expression of PD-L1 in melanoma and can thereby affect the immune checkpoint response. Exogenous ARSB acted on melanoma cells and normal melanocytes through the IGF2 receptor. The decline in PD-L1 expression by exogenous ARSB may contribute to the impact of ARSB on melanoma progression.


Assuntos
Antígeno B7-H1 , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Histona Desacetilases , Melanoma Experimental , Melanoma , N-Acetilgalactosamina-4-Sulfatase , Animais , Humanos , Camundongos , N-Acetilgalactosamina-4-Sulfatase/metabolismo , N-Acetilgalactosamina-4-Sulfatase/genética , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Linhagem Celular Tumoral , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Melanoma Experimental/genética , Melanoma/metabolismo , Melanoma/genética , Melanoma/patologia , Galectina 3/metabolismo , Galectina 3/genética , Regiões Promotoras Genéticas , Proteínas Sanguíneas , Galectinas
2.
Pathobiology ; 89(2): 81-91, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34788765

RESUMO

INTRODUCTION: The potential role of accumulation of chondroitin sulfates (CSs) in the pathobiology of COVID-19 has not been examined. Accumulation may occur by increased synthesis or by decline in activity of the enzyme arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase) which requires oxygen for activity. METHODS: Immunostaining of lung tissue from 28 patients who died due to COVID-19 infection was performed for CS, ARSB, and carbohydrate sulfotransferase (CHST)15. Measurements of mRNA expression of CHST15 and CHST11, sulfotransferase activity, and total sulfated glycosaminoglycans (GAGs) were determined in human vascular smooth muscle cells following angiotensin (Ang) II treatment. RESULTS: CS immunostaining showed increase in intensity and distribution, and immunostaining of ARSB was diminished in COVID-19 compared to normal lung tissue. CHST15 immunostaining was prominent in vascular smooth muscle cells associated with diffuse alveolar damage due to COVID-19 or other causes. Expression of CHST15 and CHST11 which are required for synthesis of CSE and chondroitin 4-sulfate, total sulfated GAGs, and sulfotransferase activity was significantly increased following AngII exposure in vascular smooth muscle cells. Expression of Interleukin-6 (IL-6), a mediator of cytokine storm in COVID-19, was inversely associated with ARSB expression. DISCUSSION/CONCLUSION: Decline in ARSB and resulting increases in CS may contribute to the pathobiology of COVID-19, as IL-6 does. Increased expression of CHSTs following activation of Ang-converting enzyme 2 may lead to buildup of CSs.


Assuntos
COVID-19 , N-Acetilgalactosamina-4-Sulfatase , Insuficiência Respiratória , Sulfatos de Condroitina/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Glicoproteínas de Membrana , N-Acetilgalactosamina-4-Sulfatase/genética , N-Acetilgalactosamina-4-Sulfatase/metabolismo , Sulfotransferases
3.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36361933

RESUMO

The enzyme N-acetylgalactosamine-4-sulfatase (Arylsulfatase B; ARSB) was originally identified as a lysosomal enzyme which was deficient in Mucopolysaccharidosis VI (MPS VI; Maroteaux-Lamy Syndrome). The newly directed attention to the impact of ARSB in human pathobiology indicates a broader, more pervasive effect, encompassing roles as a tumor suppressor, transcriptional mediator, redox switch, and regulator of intracellular and extracellular-cell signaling. By controlling the degradation of chondroitin 4-sulfate and dermatan sulfate by removal or failure to remove the 4-sulfate residue at the non-reducing end of the sulfated glycosaminoglycan chain, ARSB modifies the binding or release of critical molecules into the cell milieu. These molecules, such as galectin-3 and SHP-2, in turn, influence crucial cellular processes and events which determine cell fate. Identification of ARSB at the cell membrane and in the nucleus expands perception of the potential impact of decline in ARSB activity. The regulation of availability of sulfate from chondroitin 4-sulfate and dermatan sulfate may also affect sulfate assimilation and production of vital molecules, including glutathione and cysteine. Increased attention to ARSB in mammalian cells may help to integrate and deepen our understanding of diverse biological phenomenon and to approach human diseases with new insights.


Assuntos
Mucopolissacaridose VI , N-Acetilgalactosamina-4-Sulfatase , Humanos , Sulfatos de Condroitina/metabolismo , Dermatan Sulfato , Mucopolissacaridose VI/genética , Mucopolissacaridose VI/metabolismo , N-Acetilgalactosamina-4-Sulfatase/genética , N-Acetilgalactosamina-4-Sulfatase/metabolismo , Sulfatos
4.
J Biol Chem ; 293(28): 11076-11087, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29794138

RESUMO

Epidermal growth factor receptor (EGFR) has a crucial role in cell differentiation and proliferation and cancer, and its expression appears to be up-regulated when arylsulfatase B (ARSB or GalNAc-4-sulfatase) is reduced. ARSB removes 4-sulfate groups from the nonreducing end of dermatan sulfate and chondroitin 4-sulfate (C4S), and its decreased expression has previously been reported to inhibit the activity of the ubiquitous protein-tyrosine phosphatase, nonreceptor type 11 (SHP2 or PTPN11). However, the mechanism by which decline in ARSB leads to decline in SHP2 activity is unclear. Here, we show that SHP2 binds preferentially C4S, rather than chondroitin 6-sulfate, and confirm that SHP2 activity declines when ARSB is silenced. The reduction in ARSB activity, and the resultant increase in C4S, increased the expression of EGFR (Her1/ErbB1) in human prostate stem and epithelial cells. The increased expression of EGFR occurred after 1) the decline in SHP2 activity, 2) enhanced c-Jun N-terminal kinase (JNK) activity, 3) increased nuclear DNA binding by c-Jun and c-Fos, and 4) EGFR promoter activation. In response to exogenous EGF, there was increased bromodeoxyuridine incorporation, consistent with enhanced cell proliferation. These findings indicated that ARSB and chondroitin 4-sulfation affect the activation of an important dual phosphorylation threonine-tyrosine kinase and the mRNA expression of a critical tyrosine kinase receptor in prostate cells. Restoration of ARSB activity with the associated reduction in C4S may provide a new therapeutic approach for managing malignancies in which EGFR-mediated tyrosine kinase signaling pathways are active.


Assuntos
Células Epiteliais/metabolismo , MAP Quinase Quinase 4/metabolismo , N-Acetilgalactosamina-4-Sulfatase/metabolismo , Próstata/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Células-Tronco/metabolismo , Sulfatos de Condroitina/metabolismo , Células Epiteliais/citologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , MAP Quinase Quinase 4/genética , Masculino , N-Acetilgalactosamina-4-Sulfatase/genética , Fosforilação , Próstata/citologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Transdução de Sinais , Células-Tronco/citologia
5.
Prostate ; 79(7): 689-700, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30801800

RESUMO

BACKGROUND: In tissue microarrays, immunostaining of the enzyme arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase) was less in recurrent prostate cancers and in cancers with higher Gleason scores. In cultured prostate stem cells, decline in ARSB increased Wnt signaling through effects on Dickkopf Wnt Signaling Pathway Inhibitor (DKK)3. The effects of androgen exposure on ARSB and the impact of decline in ARSB on Wnt signaling in prostate tissue were unknown. METHODS: Epithelial and stromal tissues from malignant and normal human prostate were obtained by laser capture microdissection. mRNA expression of ARSB, galactose-6-sulfate-sulfatase (GALNS) and Wnt-signaling targets was determined by QPCR. Non-malignant human epithelial and stromal prostate cells were grown in tissue culture, including two-cell layer cultures. ARSB was silenced by specific siRNA, and epithelial cells were treated with stromal spent media following treatment with IWP-2, an inhibitor of Wnt secretion, and by exogenous recombinant human Wnt3A. Promoter methylation was detected using specific DKK3 and ARSB promoter primers. The effects of DHT and of ARSB overexpression on DKK expression were determined. Cell proliferation was assessed by BrdU incorporation. RESULTS: Normal stroma showed higher expression of vimentin, ARSB, and Wnt3A than epithelium. Normal epithelium had higher expression of E-cadherin, galactose 6-sulfate-sulfatase (GALNS), and DKK3 than stroma. In malignant epithelium, expression of ARSB and DKK3 declined, and expression of GALNS and Wnt signaling targets increased. In cultured prostate epithelial cells, Wnt-mediated signaling was greatest when ARSB was silenced and cells were exposed to exogenous Wnt3A. Exposure to 5α-dihydrotestosterone (DHT) increased ARSB and DKK3 promoter rmethylation, and effects of DHT on DKK3 expression were reversed when ARSB was overexpressed. CONCLUSIONS: Androgen-induced declines in ARSB and DKK3 may contribute to prostate carcinogenesis by sustained activation of Wnt signaling in prostate epithelium in response to stromal Wnt3A.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Androgênios/farmacologia , Di-Hidrotestosterona/farmacologia , N-Acetilgalactosamina-4-Sulfatase/biossíntese , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Proteína Wnt3A/biossíntese , Androgênios/administração & dosagem , Linhagem Celular , Di-Hidrotestosterona/administração & dosagem , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Humanos , Microdissecção e Captura a Laser , Masculino , Recidiva Local de Neoplasia/metabolismo , Próstata/efeitos dos fármacos , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/fisiologia
6.
Mol Genet Metab ; 124(2): 168-175, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29703589

RESUMO

BACKGROUND: GPNMB was increased in a CF gene array and in Arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase)-null mice, consistent with previous reports that ARSB is reduced in cystic fibrosis (CF). Implications of GPNMB increase in CF are unknown. METHODS: GPNMB levels were determined in serum and circulating leukocytes from CF patients and healthy controls. GPNMB binding with ß-1 integrin and measurements of phospho-ERK1/2 and MMP-9 in CFTR-uncorrected, CFTR-corrected, and normal human bronchial epithelial cells (BEC) were determined, following ARSB and GPNMB knockdown, and treatment with RGD peptide, and ERK phosphorylation inhibitor. RESULTS: GPNMB was markedly increased in CF patients compared to controls (p < 0.0001, unpaired t-test, two-tailed). Silencing GPNMB, treatment with excess RGD peptide, and treatment with ERK phosphorylation inhibitor blocked ARSB silencing-induced increases in MMP-9 in the normal BEC. CONCLUSIONS: Findings suggest that decline in ARSB activity caused by decline in CFTR function leads to increased GPNMB, which may contribute to organ dysfunction in CF by increased MMP-9 expression.


Assuntos
Biomarcadores/metabolismo , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Metaloproteinase 9 da Matriz/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , N-Acetilgalactosamina-4-Sulfatase/metabolismo , Adolescente , Adulto , Brônquios/citologia , Brônquios/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Criança , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Humanos , Masculino , Fosforilação , Adulto Jovem
7.
J Biol Chem ; 290(17): 10764-74, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25784556

RESUMO

Inflammation induced by exposure to the common food additive carrageenan leads to insulin resistance by increase in Ser(P)(307)-insulin receptor substrate 1 (IRS1) and subsequent decline in the insulin-stimulated increase in Ser(P)(473)-AKT. Inhibition of carrageenan-induced inflammation reversed the increase in Ser(P)(307)-IRS1 but did not completely reverse the carrageenan-induced decline in Ser(P)(473)-AKT. To identify the additional mechanism responsible for the decrease in Ser(P)(473)-AKT, studies were performed in human HepG2 cells and in C57BL/6J mice. Following carrageenan, expression of GRB10 (growth factor receptor-bound 10 protein), an adaptor protein that binds to the insulin receptor and inhibits insulin signaling, increased significantly. GRB10 silencing blocked the carrageenan-induced reduction of the insulin-stimulated increase in Tyr(P)-IRS1 and partially reversed the decline in Ser(P)(473)-AKT. The combination of GRB10 silencing with BCL10 silencing and the reactive oxygen species inhibitor Tempol completely reversed the decline in Ser(P)(473)-AKT. After carrageenan, GRB10 promoter activity was enhanced because of activation by GATA2. A direct correlation between Ser(P)(473)-AKT and Ser(P)(401)-GATA2 was evident, and inhibition of AKT phosphorylation by the PI3K inhibitor LY294002 blocked Ser(401)-GATA2 phosphorylation and the increase in GRB10 expression. Studies indicated that carrageenan inhibited insulin signaling by two mechanisms: through the inflammation-mediated increase in Ser(P)(307)-IRS1, a negative regulator of insulin signaling, and through a transcriptional mechanism leading to increase in GRB10 expression and GRB10-inhibition of Tyr(P)-IRS1, a positive regulator of insulin signaling. These mechanisms converge to inhibit the insulin-induced increase in Ser(P)(473)-AKT. They provide internal feedback, mediated by Ser(P)(473)-AKT, Ser(P)(401)-GATA2, and nuclear GATA2, which links the opposing effects of serine and tyrosine phosphorylations of IRS1 and can modulate insulin responsiveness.


Assuntos
Carragenina/toxicidade , Proteína Adaptadora GRB10/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Insulina/metabolismo , Animais , Fator de Transcrição GATA2/metabolismo , Proteína Adaptadora GRB10/química , Proteína Adaptadora GRB10/genética , Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Proteínas Substratos do Receptor de Insulina/química , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Estatísticos , Fosforilação , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , Serina/química , Transdução de Sinais , Tirosina/química
8.
Biochim Biophys Acta ; 1849(3): 342-52, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25511584

RESUMO

In this report, the gene regulatory mechanism by which decline in arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase) reduces CHST11 (chondroitin-4-sulfotransferase; C4ST) mRNA expression in human colonic epithelial cells and in colonic epithelium of ARSB-deficient mice is presented. ARSB controls the degradation of chondroitin 4-sulfate (C4S) by removing the 4-sulfate group at the non-reducing end of the C4S chain, but has not previously been shown to affect C4S biosynthesis. The decline in CHST11 expression following ARSB reduction is attributable to effects of ARSB on bone morphogenetic protein (BMP)4, since BMP4 expression and secretion declined when ARSB was silenced. Inhibition of BMP4 by neutralizing antibody also reduced CHST11 expression. When C4S was more sulfated due to decline in ARSB, more BMP4 was sequestered by C4S in the cell membrane, and CHST11 expression declined. Exogenous recombinant BMP4, acting through a phospho-Smad3 binding site in the CHST11 promoter, increased the mRNA expression of CHST11. In contrast to the decline in BMP4 that followed decline in ARSB, Wnt9A mRNA expression was previously shown to increase when ARSB was silenced and C4S was more highly sulfated. Galectin-3 bound less to the more highly sulfated C4S, leading to increased nuclear translocation and enhanced galectin-3 interaction with Sp1 in the Wnt9A promoter. Silencing Wnt9A increased the expression of CHST11 in the colonic epithelial cells, and chromatin immunoprecipitation assay demonstrated enhancing effects of Wnt9A siRNA and exogenous BMP4 on the CHST11 promoter through the pSmad3 binding site. These findings suggest that cellular processes mediated by differential effects of Wnt9A and BMP4 can result from opposing effects on CHST11 expression.


Assuntos
Proteína Morfogenética Óssea 4/genética , N-Acetilgalactosamina-4-Sulfatase/genética , Sulfotransferases/biossíntese , Proteínas Wnt/genética , Animais , Proteína Morfogenética Óssea 4/biossíntese , Linhagem Celular , Sulfatos de Condroitina/metabolismo , Células Epiteliais/metabolismo , Galectina 3/genética , Regulação Enzimológica da Expressão Gênica , Humanos , Camundongos , N-Acetilgalactosamina-4-Sulfatase/biossíntese , Regiões Promotoras Genéticas , Sulfotransferases/genética , Proteínas Wnt/antagonistas & inibidores
9.
Pulm Pharmacol Ther ; 36: 22-30, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26656789

RESUMO

BACKGROUND: The enzyme Arylsulfatase B (ARSB; N-acetylgalactosamine 4-sulfatase), is required for degradation of sulfated glycosaminoglycans (GAGs) which accumulate in cystic fibrosis. ARSB is reduced in cystic fibrosis cells and increases when defective CFTR is repaired by insertion of the normal gene. This study was undertaken to determine if modification of CFTR by small molecule correctors or potentiators could also increase ARSB and reduce the accumulation of chondroitin 4-sulfate (C4S). METHODS: CF bronchial epithelial cells homozygous for the F508 deletion (ACD#14071) and normal human bronchial epithelial cells (BEC) were grown and differentiated following an established protocol. Cells were treated with either VRT-532, a CFTR potentiator, or VRT-534, a CFTR corrector, or vehicle control. The impact on ARSB activity, protein and mRNA expression, C4S and total sulfated glycosaminoglycan content, Interleukin-8 and Interleukin-6 secretion, and neutrophil chemotaxis was determined by specific assays. RESULTS: The CFTR potentiator, but not the corrector, increased ARSB activity and expression to the level in the normal bronchial epithelial cells (BEC). Concomitantly, total sulfated glycosaminoglycans and C4S declined, secreted IL-8 increased, secreted IL-6 declined, and neutrophil chemotaxis to the spent media obtained from the potentiator-treated CF cells increased. CONCLUSION: The CFTR potentiator increased ARSB activity and expression and associated effects. This suggests that a critical interaction between CFTR and ARSB is related to CFTR function in regulation of a ligand-gated anion channel at the cell membrane, rather than to CFTR processing and intracellular trafficking.


Assuntos
Brônquios/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Fibrose Cística/enzimologia , Células Epiteliais/efeitos dos fármacos , N-Acetilgalactosamina-4-Sulfatase/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Linhagem Celular , Quimiotaxia de Leucócito/efeitos dos fármacos , Sulfatos de Condroitina/metabolismo , Cresóis/farmacologia , Glicosaminoglicanos/metabolismo , Humanos , Interleucina-6/biossíntese , Interleucina-8/biossíntese , Pirazóis/farmacologia , Mucosa Respiratória/citologia
10.
J Biol Chem ; 289(25): 17564-75, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24778176

RESUMO

In cultured human colonic epithelial cells and mouse colonic tissue, exposure to the common food additive carrageenan leads to inflammation, activation of Wnt signaling, increased Wnt9A expression, and decline in the activity of the enzyme arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase). In this study, the novel transcriptional mechanism by which carrageenan and decline in ARSB increase Wnt9A expression in NCM460 and HT-29 human colonic epithelial cells and in mouse colon is presented. Increased expression of Wnt9A has been associated with multiple malignancies, including colon carcinoma, and with ectodermal and mesoendodermal morphogenesis. When ARSB activity was reduced by siRNA or by exposure to carrageenan (1 µg/ml for 24 h), degradation of chondroitin 4-sulfate (C4S) was inhibited, leading to accumulation of more highly sulfated C4S, which binds less galectin-3, a ß-galactoside-binding protein. Nuclear galectin-3 increased and mediated increased binding of Sp1 to the Sp1 consensus sequence in the Wnt9A promoter, shown by oligonucleotide-binding assay and by chromatin immunoprecipitation assay. When galectin-3 was silenced, the increases in Sp1 binding to the Wnt9A promoter and in Wnt9A expression, which followed carrageenan or ARSB silencing, were inhibited. Mithramycin A, a specific inhibitor of Sp1 oligonucleotide binding, and Sp1 siRNA blocked the carrageenan- and ARSB siRNA-induced increases in Wnt9A expression. These studies reveal how carrageenan exposure can lead to transcriptional events in colonic epithelial cells through decline in arylsulfatase B activity, with subsequent impact on C4S, galectin-3, Sp1, and Wnt9A and can exert significant effects on Wnt-initiated signaling and related vital cell processes.


Assuntos
Sulfatos de Condroitina/metabolismo , Colo/metabolismo , Galectina 3/metabolismo , Regulação da Expressão Gênica/fisiologia , Mucosa Intestinal/metabolismo , N-Acetilgalactosamina-4-Sulfatase/metabolismo , Fator de Transcrição Sp1/metabolismo , Proteínas Wnt/biossíntese , Animais , Proteínas Sanguíneas , Carragenina/farmacologia , Linhagem Celular , Sulfatos de Condroitina/genética , Colo/citologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Galectina 3/genética , Galectinas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mucosa Intestinal/citologia , Masculino , Camundongos , Camundongos Mutantes , N-Acetilgalactosamina-4-Sulfatase/genética , Plicamicina/análogos & derivados , Plicamicina/farmacologia , Regiões Promotoras Genéticas/fisiologia , Fator de Transcrição Sp1/genética , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/fisiologia , Proteínas Wnt/genética
11.
J Neurochem ; 134(4): 728-39, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25943740

RESUMO

In an established rat model of penetrating ballistic-like brain injury (PBBI), arylsulfatase B (ARSB; N-acetylgalactosamine 4-sulfatase) activity was significantly reduced at the ipsilateral site of injury, but unaffected at the contralateral site or in sham controls. In addition, the ARSB substrate chondroitin 4-sulfate (C4S) and total sulfated glycosaminoglycans increased. The mRNA expression of chondroitin 4-sulfotransferase 1 (C4ST1; CHST11) and the sulfotransferase activity rose at the ipsilateral site of injury (PBBI-I), indicating contributions from both increased production and reduced degradation to the accumulation of C4S. In cultured, fetal rat astrocytes, following scratch injury, the ARSB activity declined and the nuclear hypoxia inducible factor-1α increased significantly. In contrast, sulfotransferase activity and chondroitin 4-sulfotransferase expression increased following astrocyte exposure to TGF-ß1, but not following scratch. These different pathways by which C4S increased in the cell preparations were both evident in the response to injury in the PBBI-I model. Hence, findings support effects of injury because of mechanical disruption inhibiting ARSB and to chemical mediation by TGF-ß1 increasing CHST11 expression and sulfotransferase activity. The increase in C4S following traumatic brain injury is because of contributions from impaired degradation and enhanced synthesis of C4S which combine in the pathogenesis of the glial scar. This is the first report of how two mechanisms contribute to the increase in chondroitin 4-sulfate (C4S) in TBI. Following penetrating ballistic-like brain injury in a rat model and in the scratch model of injury in fetal rat astrocytes, Arylsulfatase B activity declined, leading to accumulation of C4S. TGF-ß1 exposure increased expression of chondroitin 4-sulfotransferase. Hence, the increase in C4S in TBI is attributable to both impaired degradation and enhanced synthesis, combining in the pathogenesis of the glial scar.


Assuntos
Lesões Encefálicas/metabolismo , Sulfatos de Condroitina/biossíntese , N-Acetilgalactosamina-4-Sulfatase/metabolismo , Sulfotransferases/biossíntese , Animais , Lesões Encefálicas/patologia , Células Cultivadas , Feminino , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley
12.
Glia ; 62(2): 259-71, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24311516

RESUMO

In utero ethanol exposure causes fetal alcohol spectrum disorders, associated with reduced brain plasticity; the mechanisms of these effects are not well understood, particularly with respect to glial involvement. Astrocytes release factors that modulate neurite outgrowth. We explored the hypothesis that ethanol inhibits neurite outgrowth by increasing the levels of inhibitory chondroitin sulfate proteoglycans (CSPGs) in astrocytes. Astrocyte treatment with ethanol inhibited the activity of arylsulfatase B (ARSB), the enzyme that removes sulfate groups from chondroitin-4-sulfate (C4S) and triggers the degradation of C4S, increased total sulfated glycosaminoglycans (GAGs), C4S, and neurocan core-protein content and inhibited neurite outgrowth in neurons cocultured with ethanol-treated astrocytes in vitro, effects reversed by treatment with recombinant ARSB. Ethanol also inhibited ARSB activity and increased sulfate GAG and neurocan levels in the developing hippocampus after in vivo ethanol exposure. ARSB silencing increased the levels of sulfated GAGs, C4S, and neurocan in astrocytes and inhibited neurite outgrowth in cocultured neurons, indicating that ARSB activity directly regulates C4S and affects neurocan expression. In summary, this study reports two major findings: ARSB modulates sulfated GAG and neurocan levels in astrocytes and astrocyte-mediated neurite outgrowth in cocultured neurons; and ethanol inhibits the activity of ARSB, increases sulfated GAG, C4S, and neurocan levels, and thereby inhibits astrocyte-mediated neurite outgrowth. An unscheduled increase in CSPGs in the developing brain may lead to altered brain connectivity and to premature decrease in neuronal plasticity and therefore represents a novel mechanism by which ethanol can exert its neurodevelopmental effects.


Assuntos
Astrócitos/efeitos dos fármacos , Proteoglicanas de Sulfatos de Condroitina/efeitos dos fármacos , Sulfatos de Condroitina/metabolismo , Etanol/farmacologia , N-Acetilgalactosamina-4-Sulfatase/farmacologia , Neuritos/efeitos dos fármacos , Animais , Astrócitos/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Células Cultivadas , Glicosaminoglicanos/metabolismo , Neuritos/metabolismo , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley
13.
Nutr Cancer ; 66(1): 117-27, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24328990

RESUMO

Exposure to the common food additive carrageenan was previously associated with increased Wnt9A expression and increased cytoplasmic ß-catenin in human colonic epithelial cells. In this report, exposure of human colonic epithelial cells in culture and of mouse colonic epithelium in vivo to low concentrations of carrageenan is shown to activate the Wnt/ß-catenin signaling pathway, leading to increases in nuclear ß-catenin, T-cell factor/lymphoid enhancer factor activation, and cyclin D1 expression and decline in bone morphogenetic protein-4. These effects are mediated through carrageenan-induced reactive oxygen species (ROS), and inhibited by the ROS scavenger Tempol. Carrageenan exposure and ROS production inhibited thioredoxin reductase activity and increased oxidation of nucleoredoxin, a member of the thioredoxin family of redox proteins. When oxidized, nucleoredoxin co-immunoprecipitation with dishevelled (DVL) declined, enabling DVL to interact with and inhibit the cytoplasmic ß-catenin destruction complex, and facilitating nuclear translocation of ß-catenin. Both nucleoredoxin silencing and carrageenan exposure produced similar declines in thioredoxin reductase activity. In addition to activation of Wnt signaling, carrageenan exposure also increased Wnt9A mRNA expression in the mouse colonic epithelium and the human colonic epithelial cells, thereby potentially permitting ongoing stimulation of the Wnt/ß-catenin pathway. These findings suggest how a common dietary ingredient can contribute to colon carcinogenesis by effects on Wnt signaling and Wnt expression.


Assuntos
Carragenina/farmacologia , Aditivos Alimentares/farmacologia , Proteínas Nucleares/metabolismo , Oxirredutases/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Animais , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Linhagem Celular , Colo/efeitos dos fármacos , Colo/metabolismo , Ciclina D1/genética , Ciclina D1/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Humanos , Imunoprecipitação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Oxirredutases/antagonistas & inibidores , Oxirredutases/genética , Espécies Reativas de Oxigênio , Fatores de Transcrição TCF/genética , Fatores de Transcrição TCF/metabolismo , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Tiorredoxina Dissulfeto Redutase/metabolismo , Proteínas Wnt/genética , beta Catenina/genética
14.
Signal Transduct Target Ther ; 9(1): 39, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355690

RESUMO

Immunostaining in lungs of patients who died with COVID-19 infection showed increased intensity and distribution of chondroitin sulfate and decline in N-acetylgalactostamine-4-sulfatase (Arylsulfatase B; ARSB). To explain these findings, human small airway epithelial cells were exposed to the SARS-CoV-2 spike protein receptor binding domain (SPRBD) and transcriptional mechanisms were investigated. Phospho-p38 MAPK and phospho-SMAD3 increased following exposure to the SPRBD, and their inhibition suppressed the promoter activation of the carbohydrate sulfotransferases CHST15 and CHST11, which contributed to chondroitin sulfate biosynthesis. Decline in ARSB was mediated by phospho-38 MAPK-induced N-terminal Rb phosphorylation and an associated increase in Rb-E2F1 binding and decline in E2F1 binding to the ARSB promoter. The increases in chondroitin sulfotransferases were inhibited when treated with phospho-p38-MAPK inhibitors, SMAD3 (SIS3) inhibitors, as well as antihistamine desloratadine and antibiotic monensin. In the mouse model of carrageenan-induced systemic inflammation, increases in phospho-p38 MAPK and expression of CHST15 and CHST11 and declines in DNA-E2F binding and ARSB expression occurred in the lung, similar to the observed effects in this SPRBD model of COVID-19 infection. Since accumulation of chondroitin sulfates is associated with fibrotic lung conditions and diffuse alveolar damage, increased attention to p38-MAPK inhibition may be beneficial in ameliorating Covid-19 infections.


Assuntos
COVID-19 , N-Acetilgalactosamina-4-Sulfatase , Camundongos , Animais , Humanos , N-Acetilgalactosamina-4-Sulfatase/metabolismo , Sulfatos de Condroitina/farmacologia , Sulfatos de Condroitina/química , Sulfatos de Condroitina/metabolismo , Glicoproteína da Espícula de Coronavírus , Carboidrato Sulfotransferases , Enzima de Conversão de Angiotensina 2 , Proteínas Quinases p38 Ativadas por Mitógeno/genética , SARS-CoV-2/metabolismo
15.
Nutr Diabetes ; 14(1): 28, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755184

RESUMO

Proglucagon mRNA expression and GLP-1 secretion by cultured human L-cells (NCI-H716) were inhibited following exposure to λ-carrageenan, a commonly used additive in processed foods. Carrageenan is composed of sulfated or unsulfated galactose residues linked in alternating alpha-1,3 and beta-1,4 bonds and resembles the endogenous sulfated glycosaminoglycans. However, carrageenan has unusual alpha-1,3-galactosidic bonds, which are not innate to human cells and are implicated in immune responses. Exposure to carrageenan predictably causes inflammation, and carrageenan impairs glucose tolerance and contributes to insulin resistance. When cultured human L-cells were deprived overnight of glucose and serum and then exposed to high glucose, 10% FBS, and λ-carrageenan (1 µg/ml) for 10 minutes, 1 h, and 24 h, mRNA expression of proglucagon and secretion of GLP-1 were significantly reduced, compared to control cells not exposed to carrageenan. mRNA expression of proglucagon by mouse L-cells (STC-1) was also significantly reduced and supports the findings in the human cells. Exposure of co-cultured human intestinal epithelial cells (LS174T) to the spent media of the carrageenan-treated L-cells led to a decline in mRNA expression of GLUT-2 at 24 h. These findings suggest that ingestion of carrageenan-containing processed foods may impair the production of GLP-1, counteract the effect of GLP-1 receptor agonists and induce secondary effects on intestinal epithelial cells.


Assuntos
Carragenina , Células Enteroendócrinas , Aditivos Alimentares , Peptídeo 1 Semelhante ao Glucagon , Proglucagon , Carragenina/farmacologia , Humanos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Aditivos Alimentares/farmacologia , Proglucagon/metabolismo , Células Enteroendócrinas/metabolismo , Células Enteroendócrinas/efeitos dos fármacos , Camundongos , Animais , RNA Mensageiro/metabolismo , Linhagem Celular , Glucose/metabolismo
16.
Biochim Biophys Acta Mol Basis Dis ; 1870(1): 166913, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37813168

RESUMO

In the syngeneic, subcutaneous B16F10 mouse model of malignant melanoma, treatment with exogenous ARSB markedly reduced tumor size and extended survival. In vivo experiments showed that local treatment with exogenous N-acetylgalactosamine-4-sulfatase (Arylsulfatase B; ARSB) led to reduced tumor growth over time (p < 0.0001) and improved the probability of survival up to 21 days (p = 0.0391). Tumor tissue from the treated mice had lower chondroitin 4-sulfate (C4S) content and lower sulfotransferase activity. The free galectin-3 declined, and the SHP2 activity increased, due to altered binding with chondroitin 4-sulfate. These changes induced effects on transcription, which were mediated by Sp1, phospho-ERK1/2, and phospho-p38 MAPK. Reduced mRNA expression of chondroitin sulfate proteoglycan 4 (CSPG4), carbohydrate sulfotransferase 15 (N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase), and matrix metalloproteinases 2 and 9 resulted. Experiments in the human melanoma cell line A375 demonstrated similar responses to exogenous ARSB as in the tumors, and inverse effects followed ARSB siRNA. ARSB, which removes the 4-sulfate group at the non-reducing end of C4S, acts as a tumor suppressor, and treatment with exogenous ARSB impacts on vital cell signaling and reduces the expression of critical genes associated with melanoma progression.


Assuntos
Melanoma , N-Acetilgalactosamina-4-Sulfatase , Neoplasias Cutâneas , Animais , Humanos , Camundongos , Sulfatos de Condroitina/metabolismo , Melanoma/tratamento farmacológico , N-Acetilgalactosamina-4-Sulfatase/genética , N-Acetilgalactosamina-4-Sulfatase/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/tratamento farmacológico , Melanoma Maligno Cutâneo
17.
Biochim Biophys Acta ; 1822(8): 1300-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22579587

RESUMO

Carrageenan, a sulfated polysaccharide that is widely used as a food additive, induces inflammatory responses in animal models and human cells. The carrageenan-induced inflammatory cascades involve toll-like receptor (TLR)4- and B-cell leukemia/lymphoma (BCL)10-dependent activation of NF-κB, leading to increased IL-8 production. Translocations involving BCL10 in the mucosa-associated lymphoid tissue (MALT) lymphomas are associated with constitutive activation of NF-κB. This report presents a mechanism by which carrageenan exposure leads to prolonged activation of both BCL10 and NF-κB in human colonic epithelial cells. Study findings demonstrate that nuclear RelA and RelB bind to an NF-κB binding motif in the BCL10 promoter in human colonic epithelial NCM460 and HT-29 cells. In vitro oligonucleotide binding assay, non-radioactive gel shift assay, and chromatin immunoprecipitation (ChIP) indicate binding of RelA and RelB to the BCL10 promoter. Prolonged inflammation follows activation of the BCL10-NFκB inflammatory loop in response to carrageenan, shown by increased BCL10, RelA, and IL-8 for 36 to 48h and increased RelB for 24h following withdrawal of carrageenan after 12h. In contrast, exposure to dextran sulfate sodium, which does not cause inflammation through TLR4 and BCL10 in the colonic epithelial cells, did not provoke prolonged activation of inflammation. The carrageenan-enhanced BCL10 promoter activity was blocked by caffeic acid phenethyl ester (CAPE) and MB-132 which inhibit NF-κB activation. These results indicate that NF-κB binding to the BCL10 promoter can lead to prolonged activation of the carrageenan-induced inflammatory cascade by a transcriptional mechanism involving an NF-κB-BCL10 loop.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carragenina/farmacologia , Colite/metabolismo , Colo/efeitos dos fármacos , Colo/metabolismo , NF-kappa B/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteína 10 de Linfoma CCL de Células B , Linhagem Celular , Colite/induzido quimicamente , Colite/genética , Colo/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células HT29 , Humanos , Fosforilação , Regiões Promotoras Genéticas , Transdução de Sinais , Fator de Transcrição RelA/metabolismo , Fator de Transcrição RelB/metabolismo , Transfecção
18.
Glycoconj J ; 30(7): 667-76, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23385884

RESUMO

N-acetylgalactosamine-4-sulfatase (Arylsulfatase B; ARSB) is the enzyme that removes sulfate groups from the N-acetylgalactosamine-4-sulfate residue at the non-reducing end of chondroitin-4-sulfate (C4S) and dermatan sulfate (DS). Previous studies demonstrated reduction in cell-bound high molecular weight kininogen in normal rat kidney (NRK) epithelial cells when chondroitin-4-sulfate content was reduced following overexpression of ARSB activity, and chondroitinase ABC produced similar decline in cell-bound kininogen. Reduction in the cell-bound kininogen was associated with increase in secreted bradykinin. In this report, we extend the in vitro findings to in vivo models, and present findings in Dahl salt-sensitive (SS) rats exposed to high (SSH) and low salt (SSL) diets. In the renal tissue of the SSH rats, ARSB activity was significantly less than in the SSL rats, and chondroitin-4-sulfate and total sulfated glycosaminoglycan content were significantly greater. Disaccharide analysis confirmed marked increase in C4S disaccharides in the renal tissue of the SSH rats. In contrast, unsulfated, hyaluronan-derived disaccharides were increased in the rats on the low salt diet. In the SSH rats, with lower ARSB activity and higher C4S levels, cell-bound, high-molecular weight kininogen was greater and urinary bradykinin was lower. ARSB activity in renal tissue and NRK cells declined when exogenous chloride concentration was increased in vitro. The impact of high chloride exposure in vivo on ARSB, chondroitin-4-sulfation, and C4S-kininogen binding provides a mechanism that links dietary salt intake with bradykinin secretion and may be a factor in blood pressure regulation.


Assuntos
Bradicinina/urina , Glicosaminoglicanos/metabolismo , Cininogênios/metabolismo , N-Acetilgalactosamina-4-Sulfatase/metabolismo , Sódio na Dieta/farmacologia , Animais , Linhagem Celular , Cloretos/metabolismo , Sulfatos de Condroitina/metabolismo , Dieta Hipossódica , Dissacarídeos/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Células Epiteliais/metabolismo , Ácido Hialurônico/metabolismo , Rim/citologia , Rim/efeitos dos fármacos , Rim/metabolismo , N-Acetilgalactosamina-4-Sulfatase/genética , Ratos , Ratos Endogâmicos Dahl , Sulfatos/urina
19.
Mediators Inflamm ; 2013: 397642, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23766559

RESUMO

The common food additive carrageenan is a known activator of inflammation in mammalian tissues and stimulates both the canonical and noncanonical pathways of NF-κB activation. Exposure to low concentrations of carrageenan (10 µ g/mL in the water supply) has produced glucose intolerance, insulin resistance, and impaired insulin signaling in C57BL/6 mice. B-cell leukemia/lymphoma 10 (Bcl10) is a mediator of inflammatory signals from Toll-like receptor (TLR) 4 in myeloid and epithelial cells. Since the TLR4 signaling pathway is activated in diabetes and by carrageenan, we addressed systemic and intestinal inflammatory responses following carrageenan exposure in Bcl10 wild type, heterozygous, and null mice. Fecal calprotectin and circulating keratinocyte chemokine (KC), nuclear RelA and RelB, phospho(Thr559)-NF-κB-inducing kinase (NIK), and phospho(Ser36)-IκBα in the colonic epithelial cells were significantly less (P < 0.001) in the carrageenan-treated Bcl10 null mice than in controls. IL-10-deficient mice exposed to carrageenan in a germ-free environment showed an increase in activation of the canonical pathway of NF-κB (RelA) activation, but without increase in RelB or phospho-Bcl10, and exogenous IL-10 inhibited only the canonical pathway of NF- κ B activation in cultured colonic cells. These findings demonstrate a Bcl10 requirement for maximum development of carrageenan-induced inflammation and lack of complete suppression by IL-10 of carrageenan-induced inflammation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carragenina/toxicidade , Colo/efeitos dos fármacos , Colo/imunologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Interleucina-10/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteína 10 de Linfoma CCL de Células B , Linhagem Celular , Quimiocina CCL2/sangue , Colo/metabolismo , Colo/patologia , Citocinas/sangue , Ensaio de Imunoadsorção Enzimática , Técnicas In Vitro , Inflamação/genética , Interleucina-10/deficiência , Interleucina-6/sangue , Interleucina-8/sangue , Complexo Antígeno L1 Leucocitário/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , NF-kappa B/sangue , Fosforilação
20.
bioRxiv ; 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37066366

RESUMO

Introduction: Chondroitin sulfate and chondroitin sulfate proteoglycans have been associated with Alzheimer's Disease (AD), and the impact of modified chondroitin sulfates is being investigated in several animal and cell-based models of AD. Published reports have shown the role of accumulation of chondroitin 4-sulfate and decline in Arylsulfatase B (ARSB; B-acetylgalactosamine-4-sulfatase) in other pathology, including nerve injury, traumatic brain injury, and spinal cord injury. However, the impact of ARSB deficiency on AD pathobiology has not been reported, although changes in ARSB were associated with AD in two prior reports. The enzyme ARSB removes 4-sulfate groups from the non-reducing end of chondroitin 4-sulfate and dermatan sulfate and is required for their degradation. When ARSB activity declines, these sulfated glycosaminoglycans accumulate, as in the inherited disorder Mucopolysaccharidosis VI. Methods: Reports about chondroitin sulfate, chondroitin sulfate proteoglycans and chondroitin sulfatases in Alzheimer's Disease were reviewed. Measurements of SAA2, iNOS, lipid peroxidation, chondroitin sulfate proteoglycan 4, and other parameters were performed in cortex and hippocampus from ARSB-null mice and controls by QRT-PCR, ELISA, and other standard assays. Results: SAA2 mRNA expression and protein, CSPG4 mRNA, chondroitin 4-sulfate and i-NOS were increased significantly in ARSB-null mice. Measures of lipid peroxidation and redox state were significantly modified. Discussion: Findings indicate that decline in ARSB leads to changes in expression of parameters associated with AD in the hippocampus and cortex of the ARSB-deficient mouse. Conclusions: Further investigation of the impact of decline in ARSB on the development of AD may provide a new approach to prevent and treat AD.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa