Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 94(28): 9987-9992, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35797422

RESUMO

It has been shown that short-chain fatty acids (SCFAs) produced by the gut microbiome are of importance to host tissue health; however, measuring such compounds in biological samples is often limited to using hours to days old fecal and blood plasma samples. Organ-on-a-chip models have been created to simplify the complexity but struggle to reproduce the full biology of the gut specifically. We recently reported a tissue-in-a-chip gut model that incorporates gut explanted tissue into a microfluidic device. The system maintains a biologically relevant oxygen gradient and tissue ex vivo for days at a time, but minimal characterization of biological activity was reported. Herein, we use 1H-NMR to analyze the SCFA content of tissue media effluents from gut explants cultured in the recently developed microfluidic organotypic device (MOD). 1H-NMR can identify key SCFAs in the complex samples with minimal sample preparation. Our findings show that maintaining physiologically relevant oxygen conditions, something often missing from many other culture systems, significantly impacts the SCFA profile. Additionally, we noted the changes in SCFAs with culture time and potential variability between SCFA levels in male and female mouse tissue explants cultured in the MOD system based on 1H-NMR spectral profiles.


Assuntos
Microbioma Gastrointestinal , Dispositivos Lab-On-A-Chip , Animais , Ácidos Graxos Voláteis/análise , Fezes/química , Feminino , Microbioma Gastrointestinal/fisiologia , Masculino , Camundongos , Oxigênio/análise , Espectroscopia de Prótons por Ressonância Magnética
2.
J Neurosci ; 35(37): 12903-16, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26377475

RESUMO

The gonadotropin-releasing hormone (GnRH) is the master regulator of fertility and kisspeptin (KP) is a potent trigger of GnRH secretion from GnRH neurons. KP signals via KISS1R, a Gαq/11-coupled receptor, and mice bearing a global deletion of Kiss1r (Kiss1r(-/-)) or a GnRH neuron-specific deletion of Kiss1r (Kiss1r(d/d)) display hypogonadotropic hypogonadism and infertility. KISS1R also signals via ß-arrestin, and in mice lacking ß-arrestin-1 or -2, KP-triggered GnRH secretion is significantly diminished. Based on these findings, we hypothesized that ablation of Gαq/11 in GnRH neurons would diminish but not completely block KP-triggered GnRH secretion and that Gαq/11-independent GnRH secretion would be sufficient to maintain fertility. To test this, Gnaq (encodes Gαq) was selectively inactivated in the GnRH neurons of global Gna11 (encodes Gα11)-null mice by crossing Gnrh-Cre and Gnaq(fl/fl);Gna11(-/-) mice. Experimental Gnaq(fl/fl);Gna11(-/-);Gnrh-Cre (Gnaq(d/d)) and control Gnaq(fl/fl);Gna11(-/-) (Gnaq(fl/fl)) littermate mice were generated and subjected to reproductive profiling. This process revealed that testicular development and spermatogenesis, preputial separation, and anogenital distance in males and day of vaginal opening and of first estrus in females were significantly less affected in Gnaq(d/d) mice than in previously characterized Kiss1r(-/-) or Kiss1r(d/d) mice. Additionally, Gnaq(d/d) males were subfertile, and although Gnaq(d/d) females did not ovulate spontaneously, they responded efficiently to a single dose of gonadotropins. Finally, KP stimulation triggered a significant increase in gonadotropins and testosterone levels in Gnaq(d/d) mice. We therefore conclude that the milder reproductive phenotypes and maintained responsiveness to KP and gonadotropins reflect Gαq/11-independent GnRH secretion and activation of the neuroendocrine-reproductive axis in Gnaq(d/d) mice. SIGNIFICANCE STATEMENT: The gonadotropin-releasing hormone (GnRH) is the master regulator of fertility. Over the last decade, several studies have established that the KISS1 receptor, KISS1R, is a potent trigger of GnRH secretion and inactivation of KISS1R on the GnRH neuron results in infertility. While KISS1R is best understood as a Gαq/11-coupled receptor, we previously demonstrated that it could couple to and signal via non-Gαq/11-coupled pathways. The present study confirms these findings and, more importantly, while it establishes Gαq/11-coupled signaling as a major conduit of GnRH secretion, it also uncovers a significant role for non-Gαq/11-coupled signaling in potentiating reproductive development and function. This study further suggests that by augmenting signaling via these pathways, GnRH secretion can be enhanced to treat some forms of infertility.


Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP/deficiência , Hormônio Liberador de Gonadotropina/fisiologia , Hipogonadismo/fisiopatologia , Infertilidade Feminina/fisiopatologia , Infertilidade Masculina/fisiopatologia , Animais , Blastocisto/patologia , Desenvolvimento Embrionário , Feminino , Subunidades alfa de Proteínas de Ligação ao GTP/fisiologia , Perfilação da Expressão Gênica , Genitália Feminina/patologia , Genitália Feminina/fisiopatologia , Genitália Masculina/patologia , Genitália Masculina/fisiopatologia , Hormônios Esteroides Gonadais/metabolismo , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Gonadotropinas Hipofisárias/metabolismo , Gonadotropinas Hipofisárias/farmacologia , Hipogonadismo/genética , Hipogonadismo/patologia , Sistema Hipotálamo-Hipofisário/fisiopatologia , Hipotálamo/patologia , Infertilidade Feminina/embriologia , Infertilidade Feminina/genética , Infertilidade Masculina/embriologia , Infertilidade Masculina/genética , Kisspeptinas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Oligopeptídeos/farmacologia , Ovariectomia , Ovulação/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Peptídeos/farmacologia , Fenótipo , Receptores Acoplados a Proteínas G , Receptores de Kisspeptina-1 , Espermatogênese
3.
J Biol Chem ; 290(22): 14045-56, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-25873389

RESUMO

The impact of histone deacetylases (HDACs) in the control of gonadotropin releasing hormone (GnRH) neuronal development is unknown. We identified an increase in many HDACs in GT1-7 (differentiated) compared with NLT (undifferentiated) GnRH neuronal cell lines. Increased HDAC9 mRNA and protein and specific deacetylase activity in GT1-7 cells suggested a functional role. Introduction of HDAC9 in NLT cells protected from serum withdrawal induced apoptosis and impaired basal neuronal cell movement. Conversely, silencing of endogenous HDAC9 in GT1-7 cells increased apoptosis and cell movement. Comparison of WT and mutant HDAC9 constructs demonstrated that the HDAC9 pro-survival effects required combined cytoplasmic and nuclear localization, whereas the effects on cell movement required a cytoplasmic site of action. Co-immunoprecipitation demonstrated a novel interaction of HDAC9 selectively with the Class IIb HDAC6. HDAC6 was also up-regulated at the mRNA and protein levels, and HDAC6 catalytic activity was significantly increased in GT1-7 compared with NLT cells. HDAC9 interacted with HDAC6 through its second catalytic domain. Silencing of HDAC6, HDAC9, or both, in GT1-7 cells augmented apoptosis compared with controls. HDAC6 and -9 had additive effects to promote cell survival via modulating the BAX/BCL2 pathway. Silencing of HDAC6 resulted in an activation of movement of GT1-7 cells with induction in acetylation of α-tubulin. Inhibition of HDAC6 and HDAC9 together resulted in an additive effect to increase cell movement but did not alter the acetylation of αtubulin. Together, these studies identify a novel interaction of Class IIa HDAC9 with Class IIb HDAC6 to modulate cell movement and survival in GnRH neurons.


Assuntos
Regulação da Expressão Gênica , Hormônio Liberador de Gonadotropina/metabolismo , Histona Desacetilases/metabolismo , Neurônios/metabolismo , Proteínas Repressoras/metabolismo , Animais , Apoptose , Domínio Catalítico , Linhagem Celular , Movimento Celular , Núcleo Celular/metabolismo , Sobrevivência Celular , Citoplasma/metabolismo , Inativação Gênica , Desacetilase 6 de Histona , Camundongos , Transfecção , Tubulina (Proteína)/metabolismo
4.
Am J Physiol Gastrointest Liver Physiol ; 310(4): G240-8, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26680736

RESUMO

Organotypic tissue slices provide seminatural, three-dimensional microenvironments for use in ex vivo study of specific organs and have advanced investigative capabilities compared with isolated cell cultures. Several characteristics of the gastrointestinal tract have made in vitro models for studying the intestine challenging, such as maintaining the intricate structure of microvilli, the intrinsic enteric nervous system, Peyer's patches, the microbiome, and the active contraction of gut muscles. In the present study, an organotypic intestinal slice model was developed that allows for functional investigation across regions of the intestine. Intestinal tissue slices were maintained ex vivo for several days in a physiologically relevant environment that preserved normal enterocyte structure, intact and proliferating crypt cells, submucosal organization, and muscle wall composure. Cell death was measured by a membrane-impermeable DNA binding indicator, ethidium homodimer, and less than 5% of cells were labeled in all regions of the villi and crypt epithelia at 24 h ex vivo. This tissue slice model demonstrated intact myenteric and submucosal neuronal plexuses and functional interstitial cells of Cajal to the extent that nonstimulated, segmental contractions occurred for up to 48 h ex vivo. To detect changes in physiological responses, slices were also assessed for segmental contractions in the presence and absence of antibiotic treatment, which resulted in slices with lesser or greater amounts of commensal bacteria, respectively. Segmental contractions were significantly greater in slices without antibiotics and increased native microbiota. This model renders mechanisms of neuroimmune-microbiome interactions in a complex gut environment available to direct observation and controlled perturbation.


Assuntos
Intestinos/imunologia , Intestinos/inervação , Animais , Antibacterianos/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Proliferação de Células/efeitos dos fármacos , Enterócitos/efeitos dos fármacos , Enterócitos/fisiologia , Enterócitos/ultraestrutura , Feminino , Mucosa Intestinal/imunologia , Mucosa Intestinal/inervação , Mucosa Intestinal/microbiologia , Mucosa Intestinal/fisiologia , Intestinos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota , Modelos Biológicos , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Músculo Liso/fisiologia , Nicardipino/farmacologia , Técnicas de Cultura de Órgãos , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/inervação , Nódulos Linfáticos Agregados/microbiologia
5.
Neuroendocrinology ; 103(3-4): 248-58, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26138474

RESUMO

Kisspeptin, a regulator of reproductive function and puberty in mammals, is expressed in the rostral (anteroventral) periventricular nucleus (AVPV) and arcuate nucleus (Arc), and its expression is at least partially regulated by estradiol in rodents. The aim of the present study was to determine contributions of genetic factors and gonadal steroid hormones to the sexual differentiation of kisspeptin-immunoreactive (kisspeptin-ir) cell populations in the AVPV and Arc during postnatal development using agonadal steroidogenic factor 1 (SF-1) knockout (KO) mice. To examine the effects of gonadal hormones on pubertal development of kisspeptin neurons, SF-1 KO mice were treated with estradiol benzoate (EB) from postnatal day (P)25 to P36, and their brains were examined at P36. No sex differences were observed in the SF-1 KO mice during postnatal development and after treatment with EB - which failed to increase the number of kisspeptin-ir cells at P36 to the levels found in wild-type (WT) control females. This suggests that specific time periods of estradiol actions or other factors are needed for sexual differentiation of the pattern of immunoreactive kisspeptin in the AVPV. Kisspeptin immunoreactivity in the Arc was significantly higher in gonadally intact WT and SF-1 KO females than in male mice at P36 during puberty. Further, in WT and SF-1 KO females, but not in males, adult levels were reached at P36. This suggests that maturation of the kisspeptin system in the Arc differs between sexes and is regulated by gonad-independent mechanisms.


Assuntos
Núcleo Arqueado do Hipotálamo , Regulação da Expressão Gênica no Desenvolvimento , Hormônios Esteroides Gonadais/farmacologia , Kisspeptinas/metabolismo , Área Pré-Óptica , Caracteres Sexuais , Fator Esteroidogênico 1/genética , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/crescimento & desenvolvimento , Núcleo Arqueado do Hipotálamo/metabolismo , Castração , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Kisspeptinas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Área Pré-Óptica/efeitos dos fármacos , Área Pré-Óptica/crescimento & desenvolvimento , Área Pré-Óptica/metabolismo , Maturidade Sexual/efeitos dos fármacos , Maturidade Sexual/genética , Fator Esteroidogênico 1/deficiência
6.
Horm Behav ; 66(4): 667-73, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25245159

RESUMO

Sex steroid hormones secreted by gonads influence development and expression of many behaviors including parental behaviors. The capacity to display many behaviors develops under the influence of sex steroid hormones; it begins with gonadal differentiation and lasts through puberty. The timing of gonadectomy may have important and long lasting effects on the organization and activation of neural circuits regulating the expression of different behaviors. The present study investigated the importance of exposure to endogenous gonadal steroid hormones during pubertal period/adolescence on parental behavior in adult mice. Male and female WT mice were gonadectomized either before puberty (25 days of age) or after puberty (60 days of age) and tested for parental behavior with and without estradiol benzoate (EB) replacement in adulthood. Additional groups of mice were gonadectomized at P25 and supplemented with estradiol (females) or testosterone (males) during puberty. Female mice gonadectomized after puberty or gonadectomized before puberty and supplemented with estradiol during puberty, displayed better pup directed parental behaviors in comparison to mice gonadectomized at 25 days of age regardless of treatment with estradiol in adulthood. However, mice treated with EB in adulthood displayed better non-pup directed nest building behavior than when they were tested without EB treatment regardless of sex and time of gonadectomy. To examine whether the sensitivity to sex steroid hormones was altered due to differences in time without gonads prior to the testing, mice were also tested for female sex behavior and there were no differences between mice gonadectomized at P25 or P60, although this could not completely rule out the possibility that parental behavior is more sensitive to prolonged absence of steroid hormones than female sex behavior. These results suggest that the absence of gonads and thereby the absence of appropriate gonadal steroid hormones during puberty/adolescence may have a profound effect on pup directed parental behaviors in adult mice.


Assuntos
Castração , Comportamento Materno , Comportamento Paterno , Maturidade Sexual/fisiologia , Animais , Castração/efeitos adversos , Castração/psicologia , Estradiol/análogos & derivados , Estradiol/farmacologia , Feminino , Hormônios Esteroides Gonadais/metabolismo , Masculino , Comportamento Materno/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Comportamento de Nidação/efeitos dos fármacos , Comportamento Paterno/efeitos dos fármacos , Testosterona/farmacologia
7.
J Neuroendocrinol ; : e13417, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822791

RESUMO

Infections during pregnancy are associated with increased risk for adult neuropsychiatric disease, such as major depressive disorder, schizophrenia, and autism spectrum disorder. In mouse models of maternal immune activation (MIA), different toll-like receptors (TLRs) are stimulated to initiate inflammatory responses in mother and fetus. The goal of this study was to determine sex-dependent aspects of MIA using a TLR7/8 agonist, Resiquimod (RQ), on neurodevelopment. RQ was administered to timed-pregnant mice on embryonic day (E) 12.5. At E15, maternal/fetal plasma cytokines were measured by enzyme-linked immunosorbent assay (ELISA). Maternal cytokines interleukin (IL)-6 and IL-10 were higher while tumor necrosis factor (TNF)-α and IL-17 were lower in pregnant dams exposed to RQ. Fetal cytokines (E15) were altered at the same timepoint with fetal plasma IL-6 and IL-17 greater after RQ compared to vehicle, while IL-10 and TNF-α were higher in male fetuses but not female. Other timed-pregnant dams were allowed to give birth. MIA with RQ did not alter the female to male ratio of offspring born per litter. Body weights were reduced significantly in both sexes at birth, and over the next 5 weeks. Offspring from RQ-injected mothers opened their eyes 5 days later than controls. Similarly, female offspring from RQ-injected mothers exhibited pubertal delay based on vaginal opening 2-3 days later than control females. On the behavioral side, juvenile and adult male and female MIA offspring exhibited less social-like behavior in a social interaction test. Anhedonia-like behavior was greater in MIA adult female mice. This study provides support for sex-dependent influences of fetal antecedents for altered brain development and behavioral outputs that could be indicative of increased susceptibility for adult disorders through immune mechanisms. Future studies are needed to determine neural cellular and molecular mechanisms for such programming effects.

8.
Res Sq ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38659839

RESUMO

Epithelial cells create barriers that protect many different components in the body from their external environment. The gut in particular carries bacteria and other infectious agents. A healthy gut epithelial barrier prevents unwanted substances from accessing the underlying lamina propria while maintaining the ability to digest and absorb nutrients. Increased gut barrier permeability, better known as leaky gut, has been linked to several chronic inflammatory diseases. Yet understanding the cause of leaky gut and developing effective interventions are still elusive due to the lack of tools to maintain tissue's physiological environment while elucidating cellular functions under various stimuli ex vivo. This paper presents a microphysiological system capable of recording real-time barrier permeability of mouse gut tissues in a realistic physiological environment over extended durations. Key components of the microphysiological system include a microfluidic chamber designed to hold the live tissue explant and create a sufficient microphysiological environment to maintain tissue viability; proper media composition that preserves a microbiome and creates necessary oxygen gradients across the barrier; integrated sensor electrodes and supporting electronics for acquiring and calculating transepithelial electrical resistance (TEER); and a scalable system architecture to allow multiple chambers running in parallel for increased throughput. The experimental results demonstrate that the system can maintain tissue viability for up to 72 hours. The results also show that the custom-built and integrated TEER sensors are sufficiently sensitive to distinguish differing levels of barrier permeability when treated with collagenase and low pH media compared to control. Permeability variations in tissue explants from different positions in the intestinal tract were also investigated using TEER revealing their disparities in permeability. Finally, the results also quantitatively determine the effect of the muscle layer on total epithelial resistance.

9.
Neuroimage ; 69: 1-10, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23247186

RESUMO

There is increasing evidence regarding the importance of the hypothalamus for understanding sex differences in relation to neurological, psychiatric, endocrine and sleep disorders. Although different in histology, physiology, connections and function, multiple hypothalamic nuclei subserve non-voluntary functions and are nodal points for the purpose of maintaining homeostasis of the organism. Thus, given the critical importance of hypothalamic nuclei and their key multiple roles in regulating basic functions, it is important to develop the ability to conduct in vivo human studies of anatomic structure, volume, connectivity, and function of hypothalamic regions represented at the level of its nuclei. The goals of the present study were to develop a novel method of semi-automated volumetric parcellation for the human hypothalamus that could be used to investigate clinical conditions using MRI and to demonstrate its applicability. The proposed new method subdivides the hypothalamus into five parcels based on visible anatomic landmarks associated with specific nuclear groupings and was confirmed using two ex vivo hypothalami that were imaged in a 7 T (7 T) scanner and processed histologically. Imaging results were compared with histology from the same brain. Further, the method was applied to 44 healthy adults (26 men; 18 women, comparable on age, handedness, ethnicity, SES) to derive normative volumes and assess sex differences in hypothalamic regions using 1.5 T MRI. Men compared to women had a significantly larger total hypothalamus, relative to cerebrum size, similar for both hemispheres, a difference that was primarily driven by the tuberal region, with the sex effect size being largest in the superior tuberal region and, to a lesser extent, inferior tuberal region. Given the critical role of hypothalamic nuclei in multiple chronic diseases and the importance of sex differences, we argue that the use of the novel methodology presented here will allow for critical investigations of these disorders and further delineation of potential treatments, particularly sex-specific approaches to gene and drug discoveries that involve hypothalamic nuclei.


Assuntos
Mapeamento Encefálico/métodos , Hipotálamo/anatomia & histologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Caracteres Sexuais , Adulto , Feminino , Humanos , Masculino
10.
Front Neurosci ; 17: 1292642, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38130695

RESUMO

Introduction: Maternal adversity during pregnancy influences neurodevelopment in human and model animal offspring. Adversity can result from stressors coming from many different directions ranging from environmental to nutritional and physiological to immune (e.g., infection). Most stressors result in fetal overexposure to glucocorticoids that have been directly linked to long- and short-term negative impacts on neurological health of offspring. Neuropsychiatric diseases postulated to have fetal origins are diverse and include such things cardiovascular disease, obesity, affective disorders, and metabolic and immune disorders. Methods: The experiments in the current study compare 3 stressors: prenatal exposure to dexamethasone (DEX), maternal high fat diet (HFD), and maternal caloric restriction (CR). Offspring of mothers with these treatments were examined prepubertally to evaluate stress responsiveness and stress-related behaviors in in male and female mice. Results: Prenatal exposure to synthetic glucocorticoid, DEX, resulted in decreased neonatal body weights, reduced social interaction behavior, and hypoactive stress response offspring exposed to maternal DEX. Maternal CR resulted in decreased body weights and social interaction behavior in males and females and increased anxiety-like behavior and acute stress response only in males. HFD resulted in altered body weight gain in both sex offspring with decreased anxiety-like behavior in a female-biased manner. Discussion: The idea that glucocorticoid responses to different stressors might serve as a common stimulus across stress paradigms is insufficient, given that different modes of prenatal stress produced differential effects. Opposite nutritional stressors produced similar outcomes for anxiety-like behavior in both sexes, social-like behavior in females, and a hyperactive adrenal stress response in males. One common theme among the three models of maternal stress (DEX, CR, and HFD) was consistent data showing their role in activating the maternal and fetal immune response. By tuning in on the more immediate immunological aspect on the developing fetus (e.g., hormones, cytokines), additional studies may tease out more direct outcomes of maternal stress in rodents and increase their translational value to human studies.

11.
Lab Chip ; 23(18): 4126-4133, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37655621

RESUMO

To protect the body from external pathogens, the intestines have sophisticated epithelial and mucosal barriers. Disruptions to barrier integrity are associated with a variety of disorders such as irritable bowel disease, Crohn's disease, and celiac disease. One critical component of all barriers are collagens in the extracellular matrix. While the importance of the intestinal barrier is established, current models lack the ability to represent the complex biology that occurs at these barriers. For the current study a microfluidic device model was modified to determine the effectiveness of collagen breakdown to cause barrier disruption. Bacterial collagenase was added for 48 h to the luminal channel of a dual flow microfluidic device to examine changes in intestinal barrier integrity. Tissues exhibited dose-dependent alterations in immunoreactive collagen-1 and claudin-1, and coincident disruption of the epithelial monolayer barrier as indicated by goblet cell morphologies. This ex vivo model system offers promise for further studies exploring factors that affect gut barrier integrity and potential downstream consequences that cannot be studied in current models.


Assuntos
Colágeno Tipo I , Microfluídica , Matriz Extracelular , Dispositivos Lab-On-A-Chip , Permeabilidade
12.
Front Neuroendocrinol ; 32(2): 137-45, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21338619

RESUMO

There is little debate that mammalian sexual differentiation starts from the perspective of two primary sexes that correspond to differential sex chromosomes (X versus Y) that lead to individuals with sex typical characteristics. Sex steroid hormones account for most aspects of brain sexual differentiation, however, a growing literature has raised important questions about the role of sex chromosomal genes separate from sex steroid actions. Several important model animals are being used to address these issues and, in particular, they are taking advantage of molecular genetic approaches using different mouse strains. The current review examines the cooperation of genetic and endocrine influences from the perspective of behavioral and morphological hypothalamic sexual differentiation, first in adults and then in development. In the final analysis, there is an ongoing need to account for the influence of hormones in the context of underlying genetic circumstances and null hormone conditions.


Assuntos
Hipotálamo/fisiologia , Cromossomos Sexuais/fisiologia , Diferenciação Sexual/genética , Agressão/fisiologia , Animais , Feminino , Hipotálamo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Núcleos da Linha Média do Tálamo/fisiologia , Área Pré-Óptica/crescimento & desenvolvimento , Fatores de Transcrição SOXB1/fisiologia , Núcleos Septais/fisiologia , Comportamento Sexual Animal/efeitos dos fármacos , Comportamento Sexual Animal/fisiologia , Fator Esteroidogênico 1/deficiência , Fator Esteroidogênico 1/genética
13.
Front Neuroendocrinol ; 32(1): 43-52, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20650288

RESUMO

GnRH neurons follow a carefully orchestrated journey from their birth in the olfactory placode area. Initially, they migrate along with the vomeronasal nerve into the brain at the cribriform plate, then progress caudally to sites within the hypothalamus where they halt and send projections to the median eminence to activate pituitary gonadotropes. Many factors controlling this precise journey have been elucidated by the silencing or over-expression of candidate genes in mouse models. Importantly, a number of these factors may not only play a role in normal physiology of the hypothalamic-pituitary-gonadal axis but also be mis-expressed to cause human disorders of GnRH deficiency, presenting as a failure to undergo normal pubertal development. This review outlines the current cadre of candidates thought to modulate GnRH neuronal migration. The further elucidation and characterization of these factors that impact GnRH neuron development may shed new light on human reproductive disorders and provide potential targets to develop new pro-fertility or contraceptive agents.


Assuntos
Movimento Celular , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Reprodução/fisiologia , Animais , Movimento Celular/fisiologia , Humanos , Camundongos , Modelos Biológicos , Neurogênese/fisiologia , Condutos Olfatórios/crescimento & desenvolvimento , Condutos Olfatórios/metabolismo , Condutos Olfatórios/fisiologia
14.
Anal Chem ; 84(3): 1360-6, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22126747

RESUMO

The spatial and temporal distributions of an extensive number of diffusible molecules drive a variety of complex functions. These molecular distributions often possess length scales on the order of a millimeter or less; therefore, microfluidic devices have become a powerful tool to study the effects of these molecular distributions in both chemical and biological systems. Although there exist a number of studies utilizing microdevices for the creation of molecular gradients, there are few, if any, studies focusing on the measurement of spatial and temporal distributions of molecular species created within the study system itself. Here we present a microfluidic device capable of sampling multiple chemical messengers in a spatiotemporally resolved manner. This device operates through spatial segregation of nanoliter-sized volumes of liquid from a primary sample reservoir into a series of analysis microchannels, where fluid pumping is accomplished via a system of passive microfluidic pumps. Subsequent chemical analysis within each microchannel, achieved via optical or bioanalytical methods, yields quantitative data on the spatial and temporal information for any analytes of interest existing within the sample reservoir. These techniques provide a simple, cost-effective route to measure the spatiotemporal distributions of molecular analytes, where the system can be tailored to study both chemical and biological systems.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Animais , Bovinos , Dimetilpolisiloxanos/química , Corantes Fluorescentes/química , Humanos , Imunoglobulina G/química , Técnicas Analíticas Microfluídicas/métodos , Soro/química , Soroalbumina Bovina/química
15.
Horm Behav ; 61(5): 719-24, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22483977

RESUMO

Female receptivity including the immobile hormone-dependent lordosis posture is essential for successful reproduction in rodents. It is well documented that lordosis is organized during the perinatal period when the actions of androgens decrease the males' ability to display this behavior in adulthood. Conversely the absence of androgens, and the presence of low levels of prepubertal estrogens, preserve circuitry that regulates this behavior in females. The current study set out to determine whether sex chromosomal genes are involved in the differentiation of this behavior. An agonadal mouse model was used to test this hypothesis. The SF-1 gene (Nr5a1) is required for development of gonads and adrenal glands, and knockout mice are consequently not exposed to endogenous gonadal steroids. Thus contributions of sex chromosome genes can be disassociated from the actions of estrogens. Use of this model reveals a direct genetic contribution from sex chromosomes in the display of lordosis and other female-typical sexual behavior patterns. It is likely that the concentrations of gonadal steroids present during normal male development modify the actions of sex chromosome genes on the potential to display female sexual behavior.


Assuntos
Cromossomos Sexuais/genética , Diferenciação Sexual/genética , Comportamento Sexual Animal/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Postura/fisiologia , Receptores de Progesterona/metabolismo , Roedores/genética , Roedores/metabolismo , Roedores/fisiologia , Caracteres Sexuais , Cromossomos Sexuais/fisiologia , Fator Esteroidogênico 1/genética
16.
Biol Psychiatry ; 91(1): 102-117, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34099189

RESUMO

BACKGROUND: Sex differences in incidence and/or presentation of schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BIP) are pervasive. Previous evidence for shared genetic risk and sex differences in brain abnormalities across disorders suggest possible shared sex-dependent genetic risk. METHODS: We conducted the largest to date genome-wide genotype-by-sex (G×S) interaction of risk for these disorders using 85,735 cases (33,403 SCZ, 19,924 BIP, and 32,408 MDD) and 109,946 controls from the PGC (Psychiatric Genomics Consortium) and iPSYCH. RESULTS: Across disorders, genome-wide significant single nucleotide polymorphism-by-sex interaction was detected for a locus encompassing NKAIN2 (rs117780815, p = 3.2 × 10-8), which interacts with sodium/potassium-transporting ATPase (adenosine triphosphatase) enzymes, implicating neuronal excitability. Three additional loci showed evidence (p < 1 × 10-6) for cross-disorder G×S interaction (rs7302529, p = 1.6 × 10-7; rs73033497, p = 8.8 × 10-7; rs7914279, p = 6.4 × 10-7), implicating various functions. Gene-based analyses identified G×S interaction across disorders (p = 8.97 × 10-7) with transcriptional inhibitor SLTM. Most significant in SCZ was a MOCOS gene locus (rs11665282, p = 1.5 × 10-7), implicating vascular endothelial cells. Secondary analysis of the PGC-SCZ dataset detected an interaction (rs13265509, p = 1.1 × 10-7) in a locus containing IDO2, a kynurenine pathway enzyme with immunoregulatory functions implicated in SCZ, BIP, and MDD. Pathway enrichment analysis detected significant G×S interaction of genes regulating vascular endothelial growth factor receptor signaling in MDD (false discovery rate-corrected p < .05). CONCLUSIONS: In the largest genome-wide G×S analysis of mood and psychotic disorders to date, there was substantial genetic overlap between the sexes. However, significant sex-dependent effects were enriched for genes related to neuronal development and immune and vascular functions across and within SCZ, BIP, and MDD at the variant, gene, and pathway levels.


Assuntos
Transtorno Bipolar/genética , Transtorno Depressivo Maior , Transtornos Psicóticos , Esquizofrenia/genética , Caracteres Sexuais , Transtorno Depressivo Maior/genética , Células Endoteliais , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Transtornos Psicóticos/genética , Receptores de Fatores de Crescimento do Endotélio Vascular , Sulfurtransferases
17.
Physiol Rep ; 9(19): e15066, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34605201

RESUMO

The gut wall houses mast cells that are anatomically situated near enteric neuronal fibers. Roles of specific neuropeptides in modulating function of immune components like mast cells in response to challenge with bacterial components are relatively unknown. Investigating such interactions requires models that include diverse cellular elements in native anatomic arrangements. Using an organotypic slice model that maintains gut wall cellular diversity ex vivo, the present study compared responses between tissues derived from male and female mice to examine neural-immune signaling in the gut wall after selected treatments. Ileum slices were treated with pharmacological reagents that block neuronal function (e.g., tetrodotoxin) or vasoactive intestinal peptide (VIP) receptors prior to challenge with lipopolysaccharide (LPS) to assess their influence on anatomic plasticity of VIP fibers and activation of mast cells. Sex differences were observed in the number of mucosal mast cells (c-kit/ACK2 immunoreactive) at baseline, regardless of treatment, with female ileum tissue having 46% more ACK2-IR mast cells than males. After challenge with LPS, male mast cell counts rose to female levels. Furthermore, sex differences were observed in the percentage of ACK2-IR cells within 1 µm of a VIP+ neuronal fiber, and mast cell size, a metric previously tied to activation, with females having larger cells at baseline. Male mast cell sizes reached female levels after LPS challenge. This study suggests sex differences in neural-immune plasticity and in mast cell activation both basally and in response to challenge with LPS. These sex differences could potentially impact functional neuroimmune response to pathogens.


Assuntos
Plasticidade Celular/fisiologia , Íleo/citologia , Mastócitos/citologia , Neurônios/citologia , Caracteres Sexuais , Animais , Feminino , Masculino , Camundongos
18.
Physiol Rep ; 8(3): e14363, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32026594

RESUMO

Innervation of the intestinal mucosa has gained more attention with demonstrations of tuft and enteroendocrine cell innervation. However, the role(s) these fibers play in maintaining the epithelial and mucus barriers are still poorly understood. This study therefore examines the proximity of mouse ileal goblet cells to neuronal fibers, and the regulation of goblet cell production by vasoactive intestinal peptide (VIP). An organotypic intestinal slice model that maintains the cellular diversity of the intestinal wall ex vivo was used. An ex vivo copper-free click-reaction to label glycosaminoglycans was used to identify goblet cells. Pharmacological treatment of slices was used to assess the influence of VIP receptor antagonism on goblet cell production and neuronal fiber proximity. Goblet cells were counted and shown to have at least one peripherin immunoreactive fiber within 3 µm of the cell, 51% of the time. Treatment with a VIP receptor type I and II antagonist (VPACa) resulted in an increase in the percentage of goblet cells with peripherin fibers. Pharmacological treatments altered goblet cell counts in intestinal crypts and villi, with tetrodotoxin and VPACa substantially decreasing goblet cell counts. When cultured with 5-Ethynyl-2'-deoxyuridine (EdU) as an indicator of cell proliferation, colocalization of labeled goblet cells and EdU in ileal crypts was decreased by 77% when treated with VPACa. This study demonstrates a close relationship of intestinal goblet cells to neuronal fibers. By using organotypic slices from mouse ileum, vasoactive intestinal peptide receptor regulation of gut wall goblet cell production was revealed.


Assuntos
Proliferação de Células , Células Caliciformes/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Feminino , Células Caliciformes/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Periferinas/metabolismo , Receptores de Peptídeo Intestinal Vasoativo/antagonistas & inibidores , Receptores de Peptídeo Intestinal Vasoativo/metabolismo , Tetrodotoxina/farmacologia
19.
Gene Expr Patterns ; 9(5): 273-81, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19345287

RESUMO

The tescalcin gene (Tesc) encodes an EF-hand calcium-binding protein that interacts with the sodium/hydrogen exchanger, NHE1. Previous studies indicated that Tesc was expressed in mouse embryonic testis, but not in ovary, during the critical period of testis and ovary determination. In this paper we compared the expression of Tesc in embryonic tissues of chicken and mouse. Tesc expression was sexually dimorphic in the embryonic gonads of both mouse and chicken. Tescalcin (TESC) was detected in both Sertoli cells and germ cells. In the embryonic brain of both mouse and chicken, Tesc was highly expressed in the nasal placode and in fibers extending from the olfactory epithelium to the primordial olfactory bulb. Tesc was expressed in the embryonic heart of both chicken and mouse. In mouse Tesc expression was also detected in embryonic adrenal. These studies indicate very specific expression of Tesc in various tissues in chicken and mouse during embryologic development, and conservation of Tesc expression in both species.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Sequência Conservada/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Glândulas Suprarrenais/embriologia , Glândulas Suprarrenais/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Embrião de Galinha , Galinhas , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Evolução Molecular , Feminino , Imuno-Histoquímica , Hibridização In Situ , Masculino , Camundongos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Fatores Sexuais , Testículo/citologia , Testículo/embriologia , Testículo/metabolismo , Fatores de Tempo
20.
Mol Endocrinol ; 22(6): 1403-15, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18372344

RESUMO

Steroidogenic factor 1 (SF-1) plays key roles in adrenal and gonadal development, expression of pituitary gonadotropins, and development of the ventromedial hypothalamic nucleus (VMH). If kept alive by adrenal transplants, global knockout (KO) mice lacking SF-1 exhibit delayed-onset obesity and decreased locomotor activity. To define specific roles of SF-1 in the VMH, we used the Cre-loxP system to inactivate SF-1 in a central nervous system (CNS)-specific manner. These mice largely recapitulated the VMH structural defect seen in mice lacking SF-1 in all tissues. In multiple behavioral tests, mice with CNS-specific KO of SF-1 had significantly more anxiety-like behavior than wild-type littermates. The CNS-specific SF-1 KO mice had diminished expression or altered distribution in the mediobasal hypothalamus of several genes whose expression has been linked to stress and anxiety-like behavior, including brain-derived neurotrophic factor, the type 2 receptor for CRH (Crhr2), and Ucn 3. Moreover, transfection and EMSAs support a direct role of SF-1 in Crhr2 regulation. These findings reveal important roles of SF-1 in the hypothalamic expression of key regulators of anxiety-like behavior, providing a plausible molecular basis for the behavioral effect of CNS-specific KO of this nuclear receptor.


Assuntos
Ansiedade/genética , Sistema Nervoso Central/metabolismo , Fator Esteroidogênico 1/genética , Animais , Animais Recém-Nascidos , Comportamento Animal/fisiologia , Sítios de Ligação , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células COS , Chlorocebus aethiops , Regulação da Expressão Gênica , Hipotálamo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade de Órgãos/genética , Regiões Promotoras Genéticas , Receptores de Hormônio Liberador da Corticotropina/genética , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Fator Esteroidogênico 1/metabolismo , Fator Esteroidogênico 1/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa