RESUMO
Congenital heart disease (CHD) is the most prevalent birth defect, affecting nearly 1% of live births; the incidence of CHD is up to tenfold higher in human fetuses. A genetic contribution is strongly suggested by the association of CHD with chromosome abnormalities and high recurrence risk. Here we report findings from a recessive forward genetic screen in fetal mice, showing that cilia and cilia-transduced cell signalling have important roles in the pathogenesis of CHD. The cilium is an evolutionarily conserved organelle projecting from the cell surface with essential roles in diverse cellular processes. Using echocardiography, we ultrasound scanned 87,355 chemically mutagenized C57BL/6J fetal mice and recovered 218 CHD mouse models. Whole-exome sequencing identified 91 recessive CHD mutations in 61 genes. This included 34 cilia-related genes, 16 genes involved in cilia-transduced cell signalling, and 10 genes regulating vesicular trafficking, a pathway important for ciliogenesis and cell signalling. Surprisingly, many CHD genes encoded interacting proteins, suggesting that an interactome protein network may provide a larger genomic context for CHD pathogenesis. These findings provide novel insights into the potential Mendelian genetic contribution to CHD in the fetal population, a segment of the human population not well studied. We note that the pathways identified show overlap with CHD candidate genes recovered in CHD patients, suggesting that they may have relevance to the more complex genetics of CHD overall. These CHD mouse models and >8,000 incidental mutations have been sperm archived, creating a rich public resource for human disease modelling.
Assuntos
Cílios/patologia , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Animais , Cílios/diagnóstico por imagem , Cílios/genética , Cílios/fisiologia , Análise Mutacional de DNA , Eletrocardiografia , Exoma/genética , Genes Recessivos , Testes Genéticos , Cardiopatias Congênitas/diagnóstico por imagem , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Transdução de Sinais , UltrassonografiaRESUMO
BACKGROUND: Statins are generally well-tolerated and serious side effects are infrequent, but some patients experience adverse events and reduce their statin dose or discontinue treatment altogether. Alirocumab is a highly specific, fully human monoclonal antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9), which can produce substantial and sustained reductions of low-density lipoprotein cholesterol (LDL-C). METHODS: The randomized, double-blind, placebo-controlled, parallel-group, phase 3 ODYSSEY NIPPON study will explore alirocumab 150 mg every 4 weeks (Q4W) in 163 Japanese patients with hypercholesterolemia who are on the lowest-strength dose of atorvastatin (5 mg/day) or are receiving a non-statin lipid-lowering therapy (LLT) (fenofibrate, bezafibrate, ezetimibe, or diet therapy alone). Hypercholesterolemia is defined as LDL-C ≥ 100 mg/dL (2.6 mmol/L) in patients with heterozygous familial hypercholesterolemia or non-familial hypercholesterolemia with a history of documented coronary heart disease, or ≥120 mg/dL (3.1 mmol/L) in patients with non-familial hypercholesterolemia classified as primary prevention category III (i.e. high-risk patients). During the 12-week double-blind treatment period, patients will be randomized (1:1:1) to receive alirocumab subcutaneously (SC) 150 mg Q4W alternating with placebo for alirocumab Q4W, or alirocumab 150 mg SC every 2 weeks (Q2W), or SC placebo Q2W. The primary efficacy endpoint is the percentage change in calculated LDL-C from baseline to week 12. The long-term safety and tolerability of alirocumab will also be investigated. DISCUSSION: The ODYSSEY NIPPON study will provide insights into the efficacy and safety of alirocumab 150 mg Q4W or 150 mg Q2W among Japanese patients with hypercholesterolemia who are on the lowest-strength dose of atorvastatin, or are receiving a non-statin LLT (including diet therapy alone). TRIAL REGISTRATION: ClinicalTrials.gov number: NCT02584504.
Assuntos
Anticorpos Monoclonais/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hipercolesterolemia/tratamento farmacológico , Adulto , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais Humanizados , Atorvastatina/efeitos adversos , Atorvastatina/uso terapêutico , LDL-Colesterol/sangue , Método Duplo-Cego , Feminino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Hipercolesterolemia/sangue , Hipercolesterolemia/metabolismo , Masculino , Inibidores de PCSK9 , Adulto JovemRESUMO
Human microvascular pericytes (CD146(+)/34(-)/45(-)/56(-)) contain multipotent precursors and repair/regenerate defective tissues, notably skeletal muscle. However, their ability to repair the ischemic heart remains unknown. We investigated the therapeutic potential of human pericytes, purified from skeletal muscle, for treating ischemic heart disease and mediating associated repair mechanisms in mice. Echocardiography revealed that pericyte transplantation attenuated left ventricular dilatation and significantly improved cardiac contractility, superior to CD56+ myogenic progenitor transplantation, in acutely infarcted mouse hearts. Pericyte treatment substantially reduced myocardial fibrosis and significantly diminished infiltration of host inflammatory cells at the infarct site. Hypoxic pericyte-conditioned medium suppressed murine fibroblast proliferation and inhibited macrophage proliferation in vitro. High expression by pericytes of immunoregulatory molecules, including interleukin-6, leukemia inhibitory factor, cyclooxygenase-2, and heme oxygenase-1, was sustained under hypoxia, except for monocyte chemotactic protein-1. Host angiogenesis was significantly increased. Pericytes supported microvascular structures in vivo and formed capillary-like networks with/without endothelial cells in three-dimensional cocultures. Under hypoxia, pericytes dramatically increased expression of vascular endothelial growth factor-A, platelet-derived growth factor-ß, transforming growth factor-ß1 and corresponding receptors while expression of basic fibroblast growth factor, hepatocyte growth factor, epidermal growth factor, and angiopoietin-1 was repressed. The capacity of pericytes to differentiate into and/or fuse with cardiac cells was revealed by green fluorescence protein labeling, although to a minor extent. In conclusion, intramyocardial transplantation of purified human pericytes promotes functional and structural recovery, attributable to multiple mechanisms involving paracrine effects and cellular interactions.
Assuntos
Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Miocárdio/patologia , Pericitos/transplante , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Técnicas de Cultura de Células , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Fibrose/prevenção & controle , Expressão Gênica , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/genética , Miocárdio/metabolismo , Neovascularização Fisiológica , Pericitos/fisiologia , Proteínas Proto-Oncogênicas c-sis/genética , Proteínas Proto-Oncogênicas c-sis/metabolismo , Regeneração/fisiologia , Transplante Heterólogo , Ultrassonografia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Direct intracardiac cell injection for heart repair is hindered by numerous limitations including: cell death, poor spreading of the injected cells, arrhythmia, needle injury, etc. Tissue-engineered cell sheet implantation has the potential to overcome some of these limitations. We evaluated whether the transplantation of a muscle-derived stem cell (MDSC) sheet could improve the regenerative capacity of MDSCs in a chronic model of myocardial infarction. MDSC sheet-implanted mice displayed a reduction in left ventricle (LV) dilation and sustained LV contraction compared with the other groups. The MDSC sheet formed aligned myotubes and produced a significant increase in capillary density and a reduction of myocardial fibrosis compared with the other groups. Hearts transplanted with the MDSC sheets did not display any significant arrhythmias and the donor MDSC survival rate was higher than the direct myocardial MDSC injection group. MDSC sheet implantation yielded better functional recovery of chronic infarcted myocardium without any significant arrhythmic events compared with direct MDSC injection, suggesting this cell sheet delivery system could significantly improve the myocardial regenerative potential of the MDSCs.
Assuntos
Arritmias Cardíacas/prevenção & controle , Células Musculares/citologia , Infarto do Miocárdio/fisiopatologia , Transplante de Células-Tronco , Células-Tronco/citologia , Engenharia Tecidual , Animais , Arritmias Cardíacas/fisiopatologia , Capilares/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Mioblastos/citologia , Mioblastos/metabolismo , Mioblastos/transplante , Infarto do Miocárdio/terapia , Miocárdio/citologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Função Ventricular EsquerdaRESUMO
Deficiencies of subunits of the transcriptional regulatory complex Mediator generally result in embryonic lethality, precluding study of its physiological function. Here we describe a missense mutation in Med30 causing progressive cardiomyopathy in homozygous mice that, although viable during lactation, show precipitous lethality 2-3 wk after weaning. Expression profiling reveals pleiotropic changes in transcription of cardiac genes required for oxidative phosphorylation and mitochondrial integrity. Weaning mice to a ketogenic diet extends viability to 8.5 wk. Thus, we establish a mechanistic connection between Mediator and induction of a metabolic program for oxidative phosphorylation and fatty acid oxidation, in which lethal cardiomyopathy is mitigated by dietary intervention.
Assuntos
Cardiomiopatias/dietoterapia , Dieta Cetogênica , Complexo Mediador/genética , Miopatias Mitocondriais/dietoterapia , Mutação de Sentido Incorreto , Sequência de Aminoácidos , Animais , Sequência de Bases , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Eletroforese em Gel de Poliacrilamida , Feminino , Expressão Gênica , Genes Letais , Estimativa de Kaplan-Meier , Masculino , Complexo Mediador/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Miopatias Mitocondriais/genética , Miopatias Mitocondriais/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , DesmameRESUMO
Mouse model is ideal for investigating the genetic and developmental etiology of congenital heart disease. However, cardiovascular phenotyping for the precise diagnosis of structural heart defects in mice remain challenging. With rapid advances in imaging techniques, there are now high throughput phenotyping tools available for the diagnosis of structural heart defects. In this review, we discuss the efficacy of four different imaging modalities for congenital heart disease diagnosis in fetal/neonatal mice, including noninvasive fetal echocardiography, micro-computed tomography (micro-CT), micro-magnetic resonance imaging (micro-MRI), and episcopic fluorescence image capture (EFIC) histopathology. The experience we have gained in the use of these imaging modalities in a large-scale mouse mutagenesis screen have validated their efficacy for congenital heart defect diagnosis in the tiny hearts of fetal and newborn mice. These cutting edge phenotyping tools will be invaluable for furthering our understanding of the developmental etiology of congenital heart disease.
Assuntos
Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/diagnóstico , Processamento de Imagem Assistida por Computador/métodos , Animais , Animais Recém-Nascidos , Sistema Cardiovascular/diagnóstico por imagem , Modelos Animais de Doenças , Ecocardiografia/métodos , Feto/diagnóstico por imagem , Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Camundongos , Fenótipo , Tomografia Computadorizada por Raios X/métodosRESUMO
Identification of cells that are endowed with maximum potency could be critical for the clinical success of cell-based therapies. We investigated whether cells with an enhanced efficacy for cardiac cell therapy could be enriched from adult human skeletal muscle on the basis of their adhesion properties to tissue culture flasks following tissue dissociation. Cells that adhered slowly displayed greater myogenic purity and more readily differentiated into myotubes in vitro than rapidly adhering cells (RACs). The slowly adhering cell (SAC) population also survived better than the RAC population in kinetic in vitro assays that simulate conditions of oxidative and inflammatory stress. When evaluated for the treatment of a myocardial infarction (MI), intramyocardial injection of the SACs more effectively improved echocardiographic indexes of left ventricular (LV) remodeling and contractility than the transplantation of the RACs. Immunohistological analysis revealed that hearts injected with SACs displayed a reduction in myocardial fibrosis and an increase in infarct vascularization, donor cell proliferation, and endogenous cardiomyocyte survival and proliferation in comparison with the RAC-treated hearts. In conclusion, these results suggest that adult human skeletal muscle-derived cells are inherently heterogeneous with regard to their efficacy for enhancing cardiac function after cardiac implantation, with SACs outperforming RACs.
Assuntos
Fibras Musculares Esqueléticas/transplante , Isquemia Miocárdica/terapia , Estresse Fisiológico , Adolescente , Idoso , Animais , Apoptose/genética , Adesão Celular , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular/genética , Cicatriz/patologia , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Isquemia Miocárdica/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Neovascularização Fisiológica , Estresse OxidativoRESUMO
BACKGROUND: Placement of an elastic biodegradable patch onto a subacute myocardial infarct (MI) provides temporary elastic support that may act to effectively alter adverse left ventricular (LV) remodeling processes. METHODS: Two weeks after permanent left coronary ligation in Lewis rats, the infarcted anterior wall was covered with polyester urethane urea (MI + PEUU; n = 15) or expanded polytetrafluoroethylene (MI + ePTFE; n = 15) patches, or had no implantation (MI + sham; n = 12). Eight weeks after surgery, cardiac function and histology were assessed. RESULTS: The ventricular wall in the MI + ePTFE and MI + sham groups was composed of fibrous tissue, whereas PEUU implantation induced α-smooth muscle actin-positive muscle bundles coexpressing sarcomeric α-actinin and cardiac-specific troponin-T. This pattern of colocalization was also found in developing embryonic myocardium. Cardiac transcription factors Nkx-2.5 and GATA-4 were strongly expressed in the muscle bundles. In the MI + sham group, end-diastolic LV cavity area (EDA) increased and the percentage of fractional area change (%FAC) decreased. For ePTFE patched animals, both EDA and %FAC decreased. In contrast, with MI + PEUU patching, %FAC increased and EDA was maintained. With dobutamine-stress echocardiography, MI + PEUU patched LVs possessed contractile reserve significantly larger than the MI + sham group. CONCLUSIONS: MI + PEUU patch implantation onto subacute infarcted myocardium induced muscle cellularization with characteristics of early developmental cardiomyocytes as well as providing a functional reserve.
Assuntos
Materiais Biocompatíveis/administração & dosagem , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Miocárdio/metabolismo , Miocárdio/patologia , Actinas/metabolismo , Animais , Animais Recém-Nascidos , Conexina 43/metabolismo , Ecocardiografia , Elasticidade , Feminino , Feto , Fibrose , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Coração/embriologia , Ventrículos do Coração/patologia , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica , Microscopia Eletrônica , Politetrafluoretileno , Poliuretanos , RNA Mensageiro/metabolismo , Ratos , Regeneração , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Troponina T/metabolismo , Remodelação VentricularRESUMO
BACKGROUND: Surgical reconstruction of congenital heart defects is often limited by the nonresorbable material used to approximate normal anatomy. In contrast, biologic scaffold materials composed of resorbable non-cross-linked extracellular matrix (ECM) have been used for tissue reconstruction of multiple organs and are replaced by host tissue. Preparation of whole organ ECM by decellularization through vascular perfusion can maintain much of the native three-dimensional (3D) structure, strength, and tissue-specific composition. A 3D cardiac ECM (C-ECM) biologic scaffold material would logically have structural and functional advantages over materials such as Dacron™ for myocardial repair, but the in vivo remodeling characteristics of C-ECM have not been investigated to date. METHODS AND RESULTS: A porcine C-ECM patch or Dacron patch was used to reconstruct a full-thickness right ventricular outflow tract (RVOT) defect in a rat model with end points of structural remodeling function at 16 weeks. The Dacron patch was encapsulated by dense fibrous tissue and showed little cellular infiltration. Echocardiographic analysis showed that the right ventricle of the hearts patched with Dacron were dilated at 16 weeks compared to presurgery baseline values. The C-ECM patch remodeled into dense, cellular connective tissue with scattered small islands of cardiomyocytes. The hearts patched with C-ECM showed no difference in the size or function of the ventricles as compared to baseline values at both 4 and 16 weeks. CONCLUSIONS: The C-ECM patch was associated with better functional and histomorphological outcomes compared to the Dacron patch in this rat model of RVOT reconstruction.
Assuntos
Matriz Extracelular/química , Ventrículos do Coração/citologia , Ventrículos do Coração/cirurgia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Ecocardiografia , Feminino , Cardiopatias Congênitas/patologia , Cardiopatias Congênitas/cirurgia , Ventrículos do Coração/patologia , Polietilenotereftalatos/química , Ratos , Ratos Endogâmicos Lew , SuínosRESUMO
AIMS: Hypoxia is known to influence cardiovascular (CV) function, in part, through adenosine receptor activation. We have shown in a mouse model that during primary cardiac morphogenesis, acute maternal hypoxia negatively affects fetal heart rate, and recurrent maternal caffeine exposure reduces fetal cardiac output (CO) and downregulates fetal adenosine A(2A) receptor gene expression. In the present study, we investigated whether maternal caffeine dosing exacerbates the fetal CV response to acute maternal hypoxia during the primary morphogenesis period. MATERIAL AND METHODS: Gestational-day-11.5 pregnant mice were exposed to hypoxia (45 s duration followed by 10 min of recovery and repeated 3 times) while simultaneously monitoring maternal and fetal CO using high-resolution echocardiography. RESULTS: Following maternal hypoxia exposure, maternal CO transiently decreased and then returned to pre-hypoxia baseline values. In contrast to a uniform maternal cardiac response to each exposure to hypoxia, the fetal CO recovery time to the baseline decreased, and CO rebounded above baseline following the second and third episodes of maternal hypoxia. Maternal caffeine treatment inhibited the fetal CO recovery to maternal hypoxia by lengthening the time to CO recovery and eliminating the CO rebound post-recovery. Selective treatment with an adenosine A(2A) receptor antagonist, but not an adenosine A(1) receptor antagonist, reproduced the altered fetal CO response to maternal hypoxia created by caffeine exposure. CONCLUSIONS: Results suggest an additive negative effect of maternal caffeine on the fetal CV response to acute maternal hypoxia, potentially mediated via adenosine A(2A) receptor inhibition during primary cardiovascular morphogenesis.
Assuntos
Cafeína/efeitos adversos , Coração Fetal/efeitos dos fármacos , Hipóxia , Complicações na Gravidez , Antagonistas de Receptores Purinérgicos P1/efeitos adversos , Animais , Feminino , Frequência Cardíaca Fetal/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Masculino , Camundongos , Organogênese , Gravidez , Volume Sistólico/efeitos dos fármacosRESUMO
In hearts of higher invertebrates as well as vertebrates, the work performed by the ventricle is a function of both rate and contractility. Decapod crustaceans experience a hypoxia-induced bradycardia that is thought to result in an overall reduction in cardiac work; however, this hypothesis has not yet been tested and is the primary purpose of this study. In the grass shrimp Palaemonetes pugio, cardiac pressure and area data were obtained simultaneously, and in vivo, under normoxic (20.2 kPa O(2)) and hypoxic (6.8 or 2.2 kPa O(2)) conditions and integrated to generate pressure-area (P-A) loops. The area enclosed by the P-A loop provides a measure of stroke work and, when multiplied by the heart rate, provides an estimate of both cardiac work and myocardial O(2) consumption. Changes in intra-cardiac pressure (dp/dt) are correlated to the isovolemic contraction phase and provide an indication of stroke work. At both levels of hypoxic exposure, intra-cardiac pressure, dp/dt, stroke work and cardiac work fell significantly. The significant decrease in intra-cardiac pressure provides the primary mechanism for the decrease in stroke work, and, when coupled with the hypoxia-induced bradycardia, it contributes to an overall fall in cardiac work. Compared with normoxic P-A loops, hypoxic P-A loops (at both levels of hypoxia) become curvilinear, indicating a fall in peripheral resistance (which might account for the reduction in intra-cardiac pressure), which would reduce both stroke work and cardiac work and ultimately would serve to reduce myocardial O(2) consumption. This is the most direct evidence to date indicating that the hypoxia-induced bradycardia observed in many decapod crustaceans reduces cardiac work and is therefore energetically favorable during acute exposure to conditions of low oxygen.
Assuntos
Coração/fisiopatologia , Palaemonidae/fisiologia , Poaceae , Anaerobiose , Animais , Circulação Sanguínea/fisiologia , Pressão , Sístole/fisiologia , Função Ventricular/fisiologiaRESUMO
Although cellular transplantation has been shown to promote improvements in cardiac function following injury, poor cell survival following transplantation continues to limit the efficacy of this therapy. We have previously observed that transplantation of muscle-derived stem cells (MDSCs) improves cardiac function in an acute murine model of myocardial infarction to a greater extent than myoblasts. This improved regenerative capacity of MDSCs is linked to their increased level of antioxidants such as glutathione (GSH) and superoxide dismutase. In the current study, we demonstrated the pivotal role of antioxidant levels on MDSCs survival and cardiac functional recovery by either reducing the antioxidant levels with diethyl maleate or increasing antioxidant levels with N-acetylcysteine (NAC). Both the anti- and pro-oxidant treatments dramatically influenced the survival of the MDSCs in vitro. When NAC-treated MDSCs were transplanted into infarcted myocardium, we observed significantly improved cardiac function, decreased scar tissue formation, and increased numbers of CD31(+) endothelial cell structures, compared to the injection of untreated and diethyl maleate-treated cells. These results indicate that elevating the levels of antioxidants in MDSCs with NAC can significantly influence their tissue regeneration capacity.
Assuntos
Antioxidantes/metabolismo , Terapia Baseada em Transplante de Células e Tecidos/métodos , Músculo Esquelético/citologia , Células-Tronco/metabolismo , Acetilcisteína/farmacologia , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Masculino , Maleatos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Infarto do Miocárdio/terapia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Assessment of structural birth defects (SBDs) in animal models usually entails conducting detailed necropsy for anatomical defects followed by histological analysis for tissue defects. Recent advances in new imaging technologies have provided the means for rapid phenotyping of SBDs, such as using ultra-high frequency ultrasound biomicroscopy, optical coherence tomography, micro-CT, and micro-MRI. These imaging modalities allow the detailed assessment of organ/tissue structure, and with ultrasound biomicroscopy, structure and function of the cardiovascular system also can be assessed noninvasively, allowing the longitudinal tracking of the fetus in utero. In this review, we briefly discuss the application of these state-of-the-art imaging technologies for phenotyping of SBDs in rodent embryos and fetuses, showing how these imaging modalities may be used for the detection of a wide variety of SBDs.
Assuntos
Sistema Cardiovascular/anatomia & histologia , Anormalidades Congênitas/diagnóstico , Diagnóstico por Imagem/métodos , Embrião de Mamíferos/anormalidades , Modelos Animais , Animais , Imageamento por Ressonância Magnética , Camundongos , Microscopia Acústica , Tomografia de Coerência ÓpticaRESUMO
The goal of this review is to provide a broad overview of the biomechanical maturation and regulation of vertebrate cardiovascular (CV) morphogenesis and the evidence for mechanistic relationships between function and form relevant to the origins of congenital heart disease (CHD). The embryonic heart has been investigated for over a century, initially focusing on the chick embryo due to the opportunity to isolate and investigate myocardial electromechanical maturation, the ability to directly instrument and measure normal cardiac function, intervene to alter ventricular loading conditions, and then investigate changes in functional and structural maturation to deduce mechanism. The paradigm of "Develop and validate quantitative techniques, describe normal, perturb the system, describe abnormal, then deduce mechanisms" was taught to many young investigators by Dr. Edward B. Clark and then validated by a rapidly expanding number of teams dedicated to investigate CV morphogenesis, structure-function relationships, and pathogenic mechanisms of CHD. Pioneering studies using the chick embryo model rapidly expanded into a broad range of model systems, particularly the mouse and zebrafish, to investigate the interdependent genetic and biomechanical regulation of CV morphogenesis. Several central morphogenic themes have emerged. First, CV morphogenesis is inherently dependent upon the biomechanical forces that influence cell and tissue growth and remodeling. Second, embryonic CV systems dynamically adapt to changes in biomechanical loading conditions similar to mature systems. Third, biomechanical loading conditions dynamically impact and are regulated by genetic morphogenic systems. Fourth, advanced imaging techniques coupled with computational modeling provide novel insights to validate regulatory mechanisms. Finally, insights regarding the genetic and biomechanical regulation of CV morphogenesis and adaptation are relevant to current regenerative strategies for patients with CHD.
RESUMO
Acyl-CoA dehydrogenase 10 (Acad10)-deficient mice develop impaired glucose tolerance, peripheral insulin resistance, and abnormal weight gain. In addition, they exhibit biochemical features of deficiencies of fatty acid oxidation, such as accumulation of metabolites consistent with abnormal mitochondrial energy metabolism and fasting induced rhabdomyolysis. ACAD10 has significant expression in mouse brain, unlike other acyl-CoA dehydrogenases (ACADs) involved in fatty acid oxidation. The presence of ACAD10 in human tissues was determined using immunohistochemical staining. To characterize the effect of ACAD10 deficiency on the brain, micro-MRI and neurobehavioral evaluations were performed. Acad10-deficient mouse behavior was examined using open field testing and DigiGait analysis for changes in general activity as well as indices of gait, respectively. ACAD10 protein was shown to colocalize to mitochondria and peroxisomes in lung, muscle, kidney, and pancreas human tissue. Acad10-deficient mice demonstrated subtle behavioral abnormalities, which included reduced activity and increased time in the arena perimeter in the open field test. Mutant animals exhibited brake and propulsion metrics similar to those of control animals, which indicates normal balance, stability of gait, and the absence of significant motor impairment. The lack of evidence for motor impairment combined with avoidance of the center of an open field arena and reduced vertical and horizontal exploration are consistent with a phenotype characterized by elevated anxiety. These results implicate ACAD10 function in normal mouse behavior, which suggests a novel role for ACAD10 in brain metabolism.
Assuntos
Acil-CoA Desidrogenase/genética , Ansiedade/genética , Encéfalo/enzimologia , Metabolismo Energético/genética , Mitocôndrias/enzimologia , Acil-CoA Desidrogenase/deficiência , Acil-CoA Desidrogenase/metabolismo , Animais , Ansiedade/enzimologia , Ansiedade/fisiopatologia , Comportamento Animal , Encéfalo/diagnóstico por imagem , Carnitina/análogos & derivados , Carnitina/metabolismo , Marcha/fisiologia , Humanos , Rim/enzimologia , Fígado/enzimologia , Pulmão/enzimologia , Imageamento por Ressonância Magnética , Aprendizagem em Labirinto , Camundongos , Camundongos Knockout , Músculo Esquelético/enzimologia , Pâncreas/enzimologia , Peroxissomos/enzimologiaRESUMO
The availability of an autologous transplantable auxiliary liver would dramatically affect the treatment of liver disease. Assembly and function in vivo of a bioengineered human liver derived from induced pluripotent stem cells (iPSCs) has not been previously described. By improving methods for liver decellularization, recellularization, and differentiation of different liver cellular lineages of human iPSCs in an organ-like environment, we generated functional engineered human mini livers and performed transplantation in a rat model. Whereas previous studies recellularized liver scaffolds largely with rodent hepatocytes, we repopulated not only the parenchyma with human iPSC-hepatocytes but also the vascular system with human iPS-endothelial cells, and the bile duct network with human iPSC-biliary epithelial cells. The regenerated human iPSC-derived mini liver containing multiple cell types was tested in vivo and remained functional for 4 days after auxiliary liver transplantation in immunocompromised, engineered (IL2rg-/-) rats.
Assuntos
Hepatócitos/transplante , Engenharia Tecidual , Ativinas/genética , Ativinas/metabolismo , Animais , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Diferenciação Celular , Células Cultivadas , Reprogramação Celular , Feto/citologia , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Hospedeiro Imunocomprometido , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Alicerces Teciduais/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Stem cells contained in the amniotic membrane may be useful for cellular repair of the damaged heart. Previously, we showed that amnion-derived cells (ADCs) express embryonic stem cell surface markers and pluripotent stem cell-specific transcription factor genes. These ADCs also possess the potential for mesoderm (cardiac) lineage differentiation. In the present study we investigated whether untreated naive ADC transplantation into the injured left ventricular (LV) myocardium is beneficial as a cell-based cardiac repair strategy in a rat model. ADCs were isolated from Lewis rat embryonic day 14 amniotic membranes. FACS analysis revealed that freshly isolated ADCs contained stage-specific embryonic antigen-1 (SSEA-1), Oct-4-positive cells, and mesenchymal stromal cells, while hematopoietic stem cell marker positive cells were absent. Reverse transcription-PCR revealed that naive ADCs expressed cardiac and vascular specific genes. We injected freshly isolated ADCs (2 x 10(6) cells suspended in PBS, ADC group) into acutely infarcted LV myocardium produced by proximal left coronary ligation. PBS was injected in postinfarction controls (PBS group). Cardiac function was assessed at 2 and 6 weeks after injection. ADC treatment attenuated LV dilatation and sustained LV contractile function at 2 and 6 weeks in comparison to PBS controls (p < 0.05, ANOVA). LV peak systolic pressure and maximum dP/dt of ADC-treated heart were higher and LV end-diastolic pressure and negative dP/dt were lower than in PBS controls (p < 0.05). Histological assessment revealed that infarcted myocardium of the ADC-treated group had less fibrosis, thicker ventricular walls, and increased capillary density (p < 0.05). The fate of injected ADCs was confirmed using ADCs derived from EGFP(+) transgenic rats. Immunohistochemistry at 6 weeks revealed that EGFP(+) cells colocalized with von Willebrand factor, alpha-smooth muscle actin, or cardiac troponin-I. Our results suggest that naive ADCs are a potential cell source for cellular cardiomyoplasty.
Assuntos
Âmnio/citologia , Infarto do Miocárdio/terapia , Miocárdio/patologia , Transplante de Células-Tronco , Função Ventricular Esquerda , Animais , Antígenos de Diferenciação/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/patologia , Ratos , Ratos Endogâmicos LewRESUMO
Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by SMN1 gene deletion/mutation. The drug nusinersen modifies SMN2 mRNA splicing, increasing the production of the full-length SMN protein. Recent studies have demonstrated the beneficial effects of nusinersen in patients with SMA, particularly when treated in early infancy. Because nusinersen treatment can alter disease trajectory, there is a strong rationale for newborn screening. In the current study, we validated the accuracy of a new system for detecting SMN1 deletion (Japanese patent application No. 2017-196967, PCT/JP2018/37732) using dried blood spots (DBS) from 50 patients with genetically confirmed SMA and 50 controls. Our system consists of two steps: (1) targeted pre-amplification of SMN genes by direct polymerase chain reaction (PCR) and (2) detection of SMN1 deletion by real-time modified competitive oligonucleotide priming-PCR (mCOP-PCR) using the pre-amplified products. Compared with PCR analysis results of freshly collected blood samples, our system exhibited a sensitivity of 1.00 (95% confidence interval [CI] 0.96-1.00) and a specificity of 1.00 (95% CI 0.96-1.00). We also conducted a prospective SMA screening study using DBS from 4157 Japanese newborns. All DBS tested negative, and there were no screening failures. Our results indicate that the new system can be reliably used in SMA newborn screening.
RESUMO
Damage control laparotomy is commonly applied to prevent compartment syndrome following trauma but is associated with new risks to the tissue, including infection. To address the need for biomaterials to improve abdominal laparotomy management, we fabricated an elastic, fibrous composite sheet with two distinct submicrometer fiber populations: biodegradable poly(ester urethane) urea (PEUU) and poly(lactide-co-glycolide) (PLGA), where the PLGA was loaded with the antibiotic tetracycline hydrochloride (PLGA-tet). A two-stream electrospinning setup was developed to create a uniform blend of PEUU and PLGA-tet fibers. Composite sheets were flexible with breaking strains exceeding 200%, tensile strengths of 5-7 MPa, and high suture retention capacity. The blending of PEUU fibers markedly reduced the shrinkage ratio observed for PLGA-tet sheets in buffer from 50% to 15%, while imparting elastomeric properties to the composites. Antibacterial activity was maintained for composite sheets following incubation in buffer for 7 days at 37 degrees C. In vivo studies demonstrated prevention of abscess formation in a contaminated rat abdominal wall model with the implanted material. These results demonstrate the benefits derivable from a two-stream electrospinning approach wherein mechanical and controlled-release properties are contributed by independent fiber populations and the applicability of this composite material to abdominal wall closure.
Assuntos
Abdome/cirurgia , Antibacterianos/administração & dosagem , Sistemas de Liberação de Medicamentos , Implantes de Medicamento/química , Eletroquímica/métodos , Ácido Láctico/química , Poliésteres/química , Ácido Poliglicólico/química , Poliuretanos/química , Tetraciclina/administração & dosagem , Aderências Teciduais/prevenção & controle , Uretana/química , Abdome/microbiologia , Abdome/patologia , Animais , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Feminino , Nanotecnologia/métodos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros/química , Complicações Pós-Operatórias/prevenção & controle , Ratos , Ratos Endogâmicos Lew , Ratos Sprague-Dawley , Aderências Teciduais/etiologiaRESUMO
This study focuses on the dynamic flow through the fetal aortic arch driven by the concurrent action of right and left ventricles. We created a parametric pulsatile computational fluid dynamics (CFD) model of the fetal aortic junction with physiologic vessel geometries. To gain a better biophysical understanding, an in vitro experimental fetal flow loop for flow visualization was constructed for identical CFD conditions. CFD and in vitro experimental results were comparable. Swirling flow during the acceleration phase of the cardiac cycle and unidirectional flow following mid-deceleration phase were observed in pulmonary arteries (PA), head-neck vessels, and descending aorta. Right-to-left (oxygenated) blood flowed through the ductus arteriosus (DA) posterior relative to the antegrade left ventricular outflow tract (LVOT) stream and resembled jet flow. LVOT and right ventricular outflow tract flow mixing had not completed until approximately 3.5 descending aorta diameters downstream of the DA insertion into the aortic arch. Normal arch model flow patterns were then compared to flow patterns of four common congenital heart malformations that include aortic arch anomalies. Weak oscillatory reversing flow through the DA junction was observed only for the Tetralogy of Fallot configuration. PA and hypoplastic left heart syndrome configurations demonstrated complex, abnormal flow patterns in the PAs and head-neck vessels. Aortic coarctation resulted in large-scale recirculating flow in the aortic arch proximal to the DA. Intravascular flow patterns spatially correlated with abnormal vascular structures consistent with the paradigm that abnormal intravascular flow patterns associated with congenital heart disease influence vascular growth and function.