Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 25(7): 1238-1249, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36808192

RESUMO

Dimethylsulfoniopropionate (DMSP) is a marine organosulfur compound with important roles in stress protection, marine biogeochemical cycling, chemical signalling and atmospheric chemistry. Diverse marine microorganisms catabolize DMSP via DMSP lyases to generate the climate-cooling gas and info-chemical dimethyl sulphide. Abundant marine heterotrophs of the Roseobacter group (MRG) are well known for their ability to catabolize DMSP via diverse DMSP lyases. Here, a new DMSP lyase DddU within the MRG strain Amylibacter cionae H-12 and other related bacteria was identified. DddU is a cupin superfamily DMSP lyase like DddL, DddQ, DddW, DddK and DddY, but shares <15% amino acid sequence identity with these enzymes. Moreover, DddU proteins forms a distinct clade from these other cupin-containing DMSP lyases. Structural prediction and mutational analyses suggested that a conserved tyrosine residue is the key catalytic amino acid residue in DddU. Bioinformatic analysis indicated that the dddU gene, mainly from Alphaproteobacteria, is widely distributed in the Atlantic, Pacific, Indian and polar oceans. For reference, dddU is less abundant than dddP, dddQ and dddK, but much more frequent than dddW, dddY and dddL in marine environments. This study broadens our knowledge on the diversity of DMSP lyases, and enhances our understanding of marine DMSP biotransformation.


Assuntos
Liases de Carbono-Enxofre , Compostos de Sulfônio , Sequência de Aminoácidos , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Oceanos e Mares , Compostos de Sulfônio/metabolismo , Sulfetos/metabolismo
2.
Environ Microbiol ; 23(11): 7073-7092, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34693622

RESUMO

The osmolyte dimethylsulfoniopropionate (DMSP) is produced in petagram amounts by marine microorganisms. Estuaries provide natural gradients in salinity and nutrients, factors known to regulate DMSP production; yet there have been no molecular studies of DMSP production and cycling across these gradients. Here, we study the abundance, distribution and transcription of key DMSP synthesis (e.g. dsyB and mmtN) and catabolic (e.g. dddP and dmdA) genes along the salinity gradient of the Changjiang Estuary. DMSP levels did not correlate with Chl a across the salinity gradient. In contrast, DMSP concentration, abundance of bacterial DMSP producers and their dsyB and mmtN transcripts were lowest in the freshwater samples and increased abruptly with salinity in the transitional and seawater samples. Metagenomics analysis suggests bacterial DMSP-producers were more abundant than their algal equivalents and were more prominent in summer than winter samples. Bacterial DMSP catabolic genes and their transcripts followed the same trend of being greatly enhanced in transitional and seawater samples with higher DMSP levels than freshwater samples. DMSP cleavage was likely the dominant catabolic pathway, with DMSP lyase genes being ~4.3-fold more abundant than the demethylase gene dmdA. This is an exemplar study for future research on microbial DMSP cycling in estuary environments.


Assuntos
Estuários , Compostos de Sulfônio , Filogenia , Água do Mar/microbiologia , Compostos de Sulfônio/metabolismo
3.
Environ Sci Technol ; 55(24): 16538-16551, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34882392

RESUMO

Prymnesium parvum is a toxin-producing microalga, which causes harmful algal blooms globally, frequently leading to massive fish kills that have adverse ecological and economic implications for natural waterways and aquaculture alike. The dramatic effects observed on fish are thought to be due to algal polyether toxins, known as the prymnesins, but their lack of environmental detection has resulted in an uncertainty about the true ichthyotoxic agents. Using qPCR, we found elevated levels of P. parvum and its lytic virus, PpDNAV-BW1, in a fish-killing bloom on the Norfolk Broads, United Kingdom, in March 2015. We also detected, for the first time, the B-type prymnesin toxins in Broads waterway samples and gill tissue isolated from a dead fish taken from the study site. Furthermore, Norfolk Broads P. parvum isolates unambiguously produced B-type toxins in laboratory-grown cultures. A 2 year longitudinal study of the Broads study site showed P. parvum blooms to be correlated with increased temperature and that PpDNAV plays a significant role in P. parvum bloom demise. Finally, we used a field trial to show that treatment with low doses of hydrogen peroxide represents an effective strategy to mitigate blooms of P. parvum in enclosed water bodies.


Assuntos
Haptófitas , Animais , Peixes , Proliferação Nociva de Algas , Estudos Longitudinais , Reino Unido
4.
Mol Microbiol ; 111(4): 1057-1073, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30677184

RESUMO

The vast majority of oceanic dimethylsulfoniopropionate (DMSP) is thought to be catabolized by bacteria via the DMSP demethylation pathway. This pathway contains four enzymes termed DmdA, DmdB, DmdC and DmdD/AcuH, which together catabolize DMSP to acetylaldehyde and methanethiol as carbon and sulfur sources respectively. While molecular mechanisms for DmdA and DmdD have been proposed, little is known of the catalytic mechanisms of DmdB and DmdC, which are central to this pathway. Here, we undertake physiological, structural and biochemical analyses to elucidate the catalytic mechanisms of DmdB and DmdC. DmdB, a 3-methylmercaptopropionate (MMPA)-coenzyme A (CoA) ligase, undergoes two sequential conformational changes to catalyze the ligation of MMPA and CoA. DmdC, a MMPA-CoA dehydrogenase, catalyzes the dehydrogenation of MMPA-CoA to generate MTA-CoA with Glu435 as the catalytic base. Sequence alignment suggests that the proposed catalytic mechanisms of DmdB and DmdC are likely widely adopted by bacteria using the DMSP demethylation pathway. Analysis of the substrate affinities of involved enzymes indicates that Roseobacters kinetically regulate the DMSP demethylation pathway to ensure DMSP functioning and catabolism in their cells. Altogether, this study sheds novel lights on the catalytic and regulative mechanisms of bacterial DMSP demethylation, leading to a better understanding of bacterial DMSP catabolism.


Assuntos
Proteínas de Bactérias/metabolismo , Desmetilação , Propionatos/metabolismo , Roseobacter/enzimologia , Compostos de Sulfônio/metabolismo , Coenzima A/metabolismo , Coenzima A Ligases/metabolismo , Cinética , Oceanos e Mares , Oxirredutases/metabolismo , Roseobacter/genética , Enxofre/metabolismo
5.
Microb Ecol ; 80(2): 350-365, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32335713

RESUMO

Microbial production and catabolism of dimethylsulfoniopropionate (DMSP), generating the climatically active gases dimethyl sulfide (DMS) and methanethiol (MeSH), have key roles in global carbon and sulfur cycling, chemotaxis, and atmospheric chemistry. Microorganisms in the sea surface microlayer (SML), the interface between seawater and atmosphere, likely play an important role in the generation of DMS and MeSH and their exchange to the atmosphere, but little is known about these SML microorganisms. Here, we investigated the differences between bacterial community structure and the distribution and transcription profiles of the key bacterial DMSP synthesis (dsyB and mmtN) and catabolic (dmdA and dddP) genes in East China Sea SML and subsurface seawater (SSW) samples. Per equivalent volume, bacteria were far more abundant (~ 7.5-fold) in SML than SSW, as were those genera predicted to produce DMSP. Indeed, dsyB (~ 7-fold) and mmtN (~ 4-fold), robust reporters for bacterial DMSP production, were also far more abundant in SML than SSW. In addition, the SML had higher dsyB transcripts (~ 3-fold) than SSW samples, which may contribute to the significantly higher DMSP level observed in SML compared with SSW. Furthermore, the abundance of bacteria with dmdA and their transcription were higher in SML than SSW samples. Bacteria with dddP and transcripts were also prominent, but less than dmdA and presented at similar levels in both layers. These data indicate that the SML might be an important hotspot for bacterial DMSP production as well as generating the climatically active gases DMS and MeSH, a portion of which are likely transferred to the atmosphere.


Assuntos
Bactérias/isolamento & purificação , Microbiota/fisiologia , Água do Mar/microbiologia , Compostos de Sulfônio/metabolismo , Bactérias/classificação , Fenômenos Fisiológicos Bacterianos , China
6.
Appl Environ Microbiol ; 85(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30770407

RESUMO

The osmolyte dimethylsulfoniopropionate (DMSP) is produced in petagram quantities in marine environments and has important roles in global sulfur and carbon cycling. Many marine microorganisms catabolize DMSP via DMSP lyases, generating the climate-active gas dimethyl sulfide (DMS). DMS oxidation products participate in forming cloud condensation nuclei and, thus, may influence weather and climate. SAR11 bacteria are the most abundant marine heterotrophic bacteria; many of them contain the DMSP lyase DddK, and their dddK transcripts are relatively abundant in seawater. In a recently described catalytic mechanism for DddK, Tyr64 is predicted to act as the catalytic base initiating the ß-elimination reaction of DMSP. Tyr64 was proposed to be deprotonated by coordination to the metal cofactor or its neighboring His96. To further probe this mechanism, we purified and characterized the DddK protein from Pelagibacter ubique strain HTCC1062 and determined the crystal structures of wild-type DddK and its Y64A and Y122A mutants (bearing a change of Y to A at position 64 or 122, respectively), where the Y122A mutant is complexed with DMSP. The structural and mutational analyses largely support the catalytic role of Tyr64, but not the method of its deprotonation. Our data indicate that an active water molecule in the active site of DddK plays an important role in the deprotonation of Tyr64 and that this is far more likely than coordination to the metal or His96. Sequence alignment and phylogenetic analysis suggest that the proposed catalytic mechanism of DddK has universal significance. Our results provide new mechanistic insights into DddK and enrich our understanding of DMS generation by SAR11 bacteria.IMPORTANCE The climate-active gas dimethyl sulfide (DMS) plays an important role in global sulfur cycling and atmospheric chemistry. DMS is mainly produced through the bacterial cleavage of marine dimethylsulfoniopropionate (DMSP). When released into the atmosphere from the oceans, DMS can be photochemically oxidized into DMSO or sulfate aerosols, which form cloud condensation nuclei that influence the reflectivity of clouds and, thereby, global temperature. SAR11 bacteria are the most abundant marine heterotrophic bacteria, and many of them contain DMSP lyase DddK to cleave DMSP, generating DMS. In this study, based on structural analyses and mutational assays, we revealed the catalytic mechanism of DddK, which has universal significance in SAR11 bacteria. This study provides new insights into the catalytic mechanism of DddK, leading to a better understanding of how SAR11 bacteria generate DMS.


Assuntos
Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/metabolismo , Domínio Catalítico , Compostos de Sulfônio/química , Compostos de Sulfônio/metabolismo , Água/química , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Sequência de Aminoácidos , Bactérias/genética , Bactérias/metabolismo , Liases de Carbono-Enxofre/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Oceanos e Mares , Filogenia , Mutação Puntual , Conformação Proteica , Água do Mar/microbiologia , Alinhamento de Sequência , Sulfetos , Enxofre/metabolismo
7.
Mol Microbiol ; 105(5): 674-688, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28598523

RESUMO

Dimethylsulfoniopropionate (DMSP) cleavage, yielding dimethyl sulfide (DMS) and acrylate, provides vital carbon sources to marine bacteria, is a key component of the global sulfur cycle and effects atmospheric chemistry and potentially climate. Acrylate and its metabolite acryloyl-CoA are toxic if allowed to accumulate within cells. Thus, organisms cleaving DMSP require effective systems for both the utilization and detoxification of acrylate. Here, we examine the mechanism of acrylate utilization and detoxification in Roseobacters. We propose propionate-CoA ligase (PrpE) and acryloyl-CoA reductase (AcuI) as the key enzymes involved and through structural and mutagenesis analyses, provide explanations of their catalytic mechanisms. In most cases, DMSP lyases and DMSP demethylases (DmdAs) have low substrate affinities, but AcuIs have very high substrate affinities, suggesting that an effective detoxification system for acylate catabolism exists in DMSP-catabolizing Roseobacters. This study provides insight on acrylate metabolism and detoxification and a possible explanation for the high Km values that have been noted for some DMSP lyases. Since acrylate/acryloyl-CoA is probably produced by other metabolism, and AcuI and PrpE are conserved in many organisms across all domains of life, the detoxification system is likely relevant to many metabolic processes and environments beyond DMSP catabolism.


Assuntos
Acrilatos/metabolismo , Compostos de Sulfônio/metabolismo , Acil Coenzima A/metabolismo , Sequência de Aminoácidos , Liases de Carbono-Enxofre/metabolismo , Inativação Metabólica , Oxirredutases , Rhodobacteraceae/metabolismo , Roseobacter/metabolismo , Sulfetos/metabolismo , Enxofre
8.
Biochemistry ; 56(23): 2873-2885, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28511016

RESUMO

Enormous amounts of the organic osmolyte dimethylsulfoniopropionate (DMSP) are produced in marine environments where bacterial DMSP lyases cleave it, yielding acrylate and the climate-active gas dimethyl sulfide (DMS). SAR11 bacteria are the most abundant clade of heterotrophic bacteria in the oceans and play a key role in DMSP catabolism. An important environmental factor affecting DMS generation via DMSP lyases is the availability of metal ions because they are essential cofactors for many of these enzymes. Here we examine the structure and activity of DddK in the presence of various metal ions. We have established that DddK containing a double-stranded ß-helical motif utilizes various divalent metal ions as cofactors for catalytic activity. However, nickel, an abundant metal ion in marine environments, adopts a distorted octahedral coordination environment and conferred the highest DMSP lyase activity. Crystal structures of cofactor-bound DddK reveal key metal ion binding and catalytic residues and provide the first rationalization for varying activities with different metal ions. The structures of DddK along with site-directed mutagenesis and ultraviolet-visible studies are consistent with Tyr 64 acting as a base to initiate the ß-elimination reaction of DMSP. Our biochemical and structural studies provide a detailed understanding of DMS generation by one of the ocean's most prolific bacteria.


Assuntos
Alphaproteobacteria/enzimologia , Organismos Aquáticos/enzimologia , Proteínas de Bactérias/metabolismo , Liases de Carbono-Enxofre/metabolismo , Modelos Moleculares , Compostos de Sulfônio/metabolismo , Acrilatos/metabolismo , Alphaproteobacteria/crescimento & desenvolvimento , Sequência de Aminoácidos , Organismos Aquáticos/crescimento & desenvolvimento , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/genética , Domínio Catalítico , Sequência Conservada , Cristalografia por Raios X , Mutagênese Sítio-Dirigida , Mutação , Níquel/química , Oceanos e Mares , Conformação Proteica , Conformação Proteica em Folha beta , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Sulfetos/metabolismo , Compostos de Sulfônio/química , Tirosina/química
9.
Mar Life Sci Technol ; 6(1): 168-181, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38433963

RESUMO

Hadal trenches are characterized by enhanced and infrequent high-rate episodic sedimentation events that likely introduce not only labile organic carbon and key nutrients but also new microbes that significantly alter the subseafloor microbiosphere. Currently, the role of high-rate episodic sedimentation in controlling the composition of the hadal subseafloor microbiosphere is unknown. Here, analyses of carbon isotope composition in a ~ 750 cm long sediment core from the Challenger Deep revealed noncontinuous deposition, with anomalous 14C ages likely caused by seismically driven mass transport and the funneling effect of trench geomorphology. Microbial community composition and diverse enzyme activities in the upper ~ 27 cm differed from those at lower depths, probably due to sudden sediment deposition and differences in redox condition and organic matter availability. At lower depths, microbial population numbers, and composition remained relatively constant, except at some discrete depths with altered enzyme activity and microbial phyla abundance, possibly due to additional sudden sedimentation events of different magnitude. Evidence is provided of a unique role for high-rate episodic sedimentation events in controlling the subsurface microbiosphere in Earth's deepest ocean floor and highlight the need to perform thorough analysis over a large depth range to characterize hadal benthic populations. Such depositional processes are likely crucial in shaping deep-water geochemical environments and thereby the deep subseafloor biosphere. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-023-00212-y.

10.
Nat Microbiol ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862603

RESUMO

Dimethylsulfoniopropionate (DMSP) is an abundant marine organosulfur compound with roles in stress protection, chemotaxis, nutrient and sulfur cycling and climate regulation. Here we report the discovery of a bifunctional DMSP biosynthesis enzyme, DsyGD, in the transamination pathway of the rhizobacterium Gynuella sunshinyii and some filamentous cyanobacteria not previously known to produce DMSP. DsyGD produces DMSP through its N-terminal DsyG methylthiohydroxybutyrate S-methyltransferase and C-terminal DsyD dimethylsulfoniohydroxybutyrate decarboxylase domains. Phylogenetically distinct DsyG-like proteins, termed DSYE, with methylthiohydroxybutyrate S-methyltransferase activity were found in diverse and environmentally abundant algae, comprising a mix of low, high and previously unknown DMSP producers. Algae containing DSYE, particularly bloom-forming Pelagophyceae species, were globally more abundant DMSP producers than those with previously described DMSP synthesis genes. This work greatly increases the number and diversity of predicted DMSP-producing organisms and highlights the importance of Pelagophyceae and other DSYE-containing algae in global DMSP production and sulfur cycling.

11.
Microorganisms ; 12(1)2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38257862

RESUMO

Methanethiol (MeSH) and dimethyl sulfide (DMS) are important volatile organic sulfur compounds involved in atmospheric chemistry and climate regulation. However, little is known about the metabolism of these compounds in the ubiquitous marine vibrios. Here, we investigated MeSH/DMS production and whether these processes were regulated by quorum-sensing (QS) systems in Vibrio harveyi BB120. V. harveyi BB120 exhibited strong MeSH production from methionine (Met) (465 nmol mg total protein-1) and weak DMS production from dimethylsulfoniopropionate (DMSP) cleavage. The homologs of MegL responsible for MeSH production from L-Met widely existed in vibrio genomes. Using BB120 and its nine QS mutants, we found that the MeSH production was regulated by HAI-1, AI-2 and CAI-1 QS pathways, as well as the luxO gene located in the center of this QS cascade. The regulation role of HAI-1 and AI-2 QS systems in MeSH production was further confirmed by applying quorum-quenching enzyme MomL and exogenous autoinducer AI-2. By contrast, the DMS production from DMSP cleavage showed no significant difference between BB120 and its QS mutants. Such QS-regulated MeSH production may help to remove excess Met that can be harmful for vibrio growth. These results emphasize the importance of QS systems and the MeSH production process in vibrios.

12.
Adv Microb Physiol ; 83: 59-116, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37507162

RESUMO

Dimethylsulfoniopropionate (DMSP) is one of the Earth's most abundant organosulfur compounds because many marine algae, bacteria, corals and some plants produce it to high mM intracellular concentrations. In these organisms, DMSP acts an anti-stress molecule with purported roles to protect against salinity, temperature, oxidative stress and hydrostatic pressure, amongst many other reported functions. However, DMSP is best known for being a major precursor of the climate-active gases and signalling molecules dimethylsulfide (DMS), methanethiol (MeSH) and, potentially, methane, through microbial DMSP catabolism. DMSP catabolism has been extensively studied and the microbes, pathways and enzymes involved have largely been elucidated through the application of molecular research over the last 17 years. In contrast, the molecular biology of DMSP synthesis is a much newer field, with the first DMSP synthesis enzymes only being identified in the last 5 years. In this review, we discuss how the elucidation of key DMSP synthesis enzymes has greatly expanded our knowledge of the diversity of DMSP-producing organisms, the pathways used, and what environmental factors regulate production, as well as to inform on the physiological roles of DMSP. Importantly, the identification of key DMSP synthesis enzymes in the major groups of DMSP producers has allowed scientists to study the distribution and predict the importance of different DMSP-producing organisms to global DMSP production in diverse marine and sediment environments. Finally, we highlight key challenges for future molecular research into DMSP synthesis that need addressing to better understand the cycling of this important marine organosulfur compound, and its magnitude in the environment.


Assuntos
Bactérias , Compostos de Sulfônio , Bactérias/genética , Bactérias/metabolismo , Compostos de Sulfônio/metabolismo
13.
Trends Microbiol ; 31(10): 992-994, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37481345

RESUMO

Dimethylsulfoniopropionate (DMSP) is a ubiquitous organosulfur compound with key ecological roles in marine environments. This paper offers a brief insight into the mechanisms, environmental diversity, and importance of DMSP-mediated marine microbial interactions, including algae-microzooplankton interactions, bacteria-microzooplankton interactions, and algae-bacteria interactions. We also highlight current challenges that warrant further investigation.


Assuntos
Compostos de Sulfônio , Interações Microbianas
14.
Microbiome ; 11(1): 175, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550707

RESUMO

BACKGROUND: Hadal trenches (>6000 m) are the deepest oceanic regions on Earth and depocenters for organic materials. However, how these enigmatic microbial ecosystems are fueled is largely unknown, particularly the proportional importance of complex polysaccharides introduced through deposition from the photic surface waters above. In surface waters, Bacteroidetes are keystone taxa for the cycling of various algal-derived polysaccharides and the flux of carbon through the photic zone. However, their role in the hadal microbial loop is almost unknown. RESULTS: Here, culture-dependent and culture-independent methods were used to study the potential of Bacteroidetes to catabolize diverse polysaccharides in Mariana Trench waters. Compared to surface waters, the bathypelagic (1000-4000 m) and hadal (6000-10,500 m) waters harbored distinct Bacteroidetes communities, with Mesoflavibacter being enriched at ≥ 4000 m and Bacteroides and Provotella being enriched at 10,400-10,500 m. Moreover, these deep-sea communities possessed distinct gene pools encoding for carbohydrate active enzymes (CAZymes), suggesting different polysaccharide sources are utilised in these two zones. Compared to surface counterparts, deep-sea Bacteroidetes showed significant enrichment of CAZyme genes frequently organized into polysaccharide utilization loci (PULs) targeting algal/plant cell wall polysaccharides (i.e., hemicellulose and pectin), that were previously considered an ecological trait associated with terrestrial Bacteroidetes only. Using a hadal Mesoflavibacter isolate (MTRN7), functional validation of this unique genetic potential was demonstrated. MTRN7 could utilize pectic arabinans, typically associated with land plants and phototrophic algae, as the carbon source under simulated deep-sea conditions. Interestingly, a PUL we demonstrate is likely horizontally acquired from coastal/land Bacteroidetes was activated during growth on arabinan and experimentally shown to encode enzymes that hydrolyze arabinan at depth. CONCLUSIONS: Our study implies that hadal Bacteroidetes exploit polysaccharides poorly utilized by surface populations via an expanded CAZyme gene pool. We propose that sinking cell wall debris produced in the photic zone can serve as an important carbon source for hadal heterotrophs and play a role in shaping their communities and metabolism. Video Abstract.


Assuntos
Bacteroidetes , Ecossistema , Bacteroidetes/genética , Bacteroidetes/metabolismo , Polissacarídeos/metabolismo , Pectinas/metabolismo
15.
ISME J ; 17(3): 315-325, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36477724

RESUMO

Lipids play a crucial role in maintaining cell integrity and homeostasis with the surrounding environment. Cosmopolitan marine roseobacter clade (MRC) and SAR11 clade bacteria are unique in that, in addition to glycerophospholipids, they also produce an array of amino acid-containing lipids that are conjugated with beta-hydroxy fatty acids through an amide bond. Two of these aminolipids, the ornithine aminolipid (OL) and the glutamine aminolipid (QL), are synthesized using the O-acetyltransferase OlsA. Here, we demonstrate that OL and QL are present in both the inner and outer membranes of the Gram-negative MRC bacterium Ruegeria pomeroyi DSS-3. In an olsA mutant, loss of these aminolipids is compensated by a concurrent increase in glycerophospholipids. The inability to produce aminolipids caused significant changes in the membrane proteome, with the membrane being less permeable and key nutrient transporters being downregulated while proteins involved in the membrane stress response were upregulated. Indeed, the import of 14C-labelled choline and dimethylsulfoniopropionate, as a proxy for the transport of key marine nutrients across membranes, was significantly impaired in the olsA mutant. Moreover, the olsA mutant was significantly less competitive than the wild type (WT) being unable to compete with the WT strain in co-culture. However, the olsA mutant unable to synthesize these aminolipids is less susceptible to phage attachment. Together, these data reveal a critical role for aminolipids in the ecophysiology of this important clade of marine bacteria and a trade-off between growth and avoidance of bacteriophage attachment.


Assuntos
Rhodobacteraceae , Roseobacter , Rhodobacteraceae/genética , Rhodobacteraceae/metabolismo , Roseobacter/genética , Colina/metabolismo , Glicerofosfolipídeos/metabolismo
16.
ISME J ; 17(8): 1184-1193, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37179443

RESUMO

Dimethylsulfide (DMS) is the major biosulfur source emitted to the atmosphere with key roles in global sulfur cycling and potentially climate regulation. The main precursor of DMS is thought to be dimethylsulfoniopropionate. However, hydrogen sulfide (H2S), a widely distributed and abundant volatile in natural environments, can be methylated to DMS. The microorganisms and the enzymes that convert H2S to DMS, and their importance in global sulfur cycling were unknown. Here we demonstrate that the bacterial MddA enzyme, previously known as a methanethiol S-methyltransferase, could methylate inorganic H2S to DMS. We determine key residues involved in MddA catalysis and propose the mechanism for H2S S-methylation. These results enabled subsequent identification of functional MddA enzymes in abundant haloarchaea and a diverse range of algae, thus expanding the significance of MddA mediated H2S methylation to other domains of life. Furthermore, we provide evidence for H2S S-methylation being a detoxification strategy in microorganisms. The mddA gene was abundant in diverse environments including marine sediments, lake sediments, hydrothermal vents and soils. Thus, the significance of MddA-driven methylation of inorganic H2S to global DMS production and sulfur cycling has likely been considerably underestimated.


Assuntos
Sulfeto de Hidrogênio , Metilação , Sulfetos , Enxofre
17.
Chem Sci ; 14(36): 9744-9758, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37736639

RESUMO

RirA is a global iron regulator in diverse Alphaproteobacteria that belongs to the Rrf2 superfamily of transcriptional regulators, which can contain an iron-sulfur (Fe-S) cluster. Under iron-replete conditions, RirA contains a [4Fe-4S] cluster, enabling high-affinity binding to RirA-regulated operator sequences, thereby causing the repression of cellular iron uptake. Under iron deficiency, one of the cluster irons dissociates, generating an unstable [3Fe-4S] form that subsequently degrades to a [2Fe-2S] form and then to apo RirA, resulting in loss of high-affinity DNA-binding. The cluster is coordinated by three conserved cysteine residues and an unknown fourth ligand. Considering the lability of one of the irons and the resulting cluster fragility, we hypothesized that the fourth ligand may not be an amino acid residue. To investigate this, we considered that the introduction of an amino acid residue that could coordinate the cluster might stabilize it. A structural model of RirA, based on the Rrf2 family nitrosative stress response regulator NsrR, highlighted residue 8, an Asn in the RirA sequence, as being appropriately positioned to coordinate the cluster. Substitution of Asn8 with Asp, the equivalent, cluster-coordinating residue of NsrR, or with Cys, resulted in proteins that contained a [4Fe-4S] cluster, with N8D RirA exhibiting spectroscopic properties very similar to NsrR. The variant proteins retained the ability to bind RirA-regulated DNA, and could still act as repressors of RirA-regulated genes in vivo. However, they were significantly more stable than wild-type RirA when exposed to O2 and/or low iron. Importantly, they exhibited reduced capacity to respond to cellular iron levels, even abolished in the case of the N8D version, and thus were no longer iron sensing. This work demonstrates the importance of cluster fragility for the iron-sensing function of RirA, and more broadly, how a single residue substitution can alter cluster coordination and functional properties in the Rrf2 superfamily of regulators.

18.
mBio ; : e0146723, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37948335

RESUMO

Dimethylsulfoniopropionate (DMSP) is one of Earth's most abundant organosulfur molecules, which can be catabolized by marine bacteria to release climate-active gases through the cleavage and/or demethylation pathways. The marine SAR92 clade is an abundant oligotrophic group of Gammaproteobacteria in coastal seawater, but their ability to catabolize DMSP is untested. Three SAR92 clade strains isolated from coastal seawater in this study and the SAR92 representative strain HTCC2207 were all shown to catabolize DMSP as a carbon source. All the SAR92 clade strains exhibited DMSP lyase activity producing dimethylsulfide (DMS) and their genomes encoded a ratified DddD DMSP lyase. In contrast, only HTCC2207 and two isolated strains contained the DMSP demethylase dmdA gene and potentially simultaneously demethylated and cleaved DMSP to produce methanethiol (MeSH) and DMS. In SAR92 clade strains with dddD and dmdA, transcription of these genes was inducible by DMSP substrate. Bioinformatic analysis indicated that SAR92 clade bacteria containing and transcribing DddD and DmdA were widely distributed in global oceans, especially in polar regions. This study highlights the SAR92 clade of oligotrophic bacteria as potentially important catabolizers of DMSP and sources of the climate-active gases MeSH and DMS in marine environments, particularly in polar regions.IMPORTANCECatabolism of dimethylsulfoniopropionate (DMSP) by marine bacteria has important impacts on the global sulfur cycle and climate. However, whether and how members of most oligotrophic bacterial groups participate in DMSP metabolism in marine environments remains largely unknown. In this study, by characterizing culturable strains, we have revealed that bacteria of the SAR92 clade, an abundant oligotrophic group of Gammaproteobacteria in coastal seawater, can catabolize DMSP through the DMSP lyase DddD-mediated cleavage pathway and/or the DMSP demethylase DmdA-mediated demethylation pathway to produce climate-active gases dimethylsulfide and methanethiol. Additionally, we found that SAR92 clade bacteria capable of catabolizing DMSP are widely distributed in global oceans. These results indicate that SAR92 clade bacteria are potentially important DMSP degraders and sources of climate-active gases in marine environments that have been overlooked, contributing to a better understanding of the roles and mechanisms of the oligotrophic bacteria in oceanic DMSP degradation.

19.
ISME J ; 17(4): 579-587, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36707613

RESUMO

Dimethylsulfoniopropionate (DMSP) is a ubiquitous organosulfur compound in marine environments with important functions in both microorganisms and global biogeochemical carbon and sulfur cycling. The SAR11 clade and marine Roseobacter group (MRG) represent two major groups of heterotrophic bacteria in Earth's surface oceans, which can accumulate DMSP to high millimolar intracellular concentrations. However, few studies have investigated how SAR11 and MRG bacteria import DMSP. Here, through comparative genomics analyses, genetic manipulations, and biochemical analyses, we identified an ABC (ATP-binding cassette)-type DMSP-specific transporter, DmpXWV, in Ruegeria pomeroyi DSS-3, a model strain of the MRG. Mutagenesis suggested that DmpXWV is a key transporter responsible for DMSP uptake in strain DSS-3. DmpX, the substrate binding protein of DmpXWV, had high specificity and binding affinity towards DMSP. Furthermore, the DmpX DMSP-binding mechanism was elucidated from structural analysis. DmpX proteins are prevalent in the numerous cosmopolitan marine bacteria outside the SAR11 clade and the MRG, and dmpX transcription was consistently high across Earth's entire global ocean. Therefore, DmpXWV likely enables pelagic marine bacteria to efficiently import DMSP from seawater. This study offers a new understanding of DMSP transport into marine bacteria and provides novel insights into the environmental adaption of marine bacteria.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Compostos de Sulfônio , Transportadores de Cassetes de Ligação de ATP/genética , Água do Mar/microbiologia , Oceanos e Mares , Compostos de Sulfônio/metabolismo
20.
Nat Microbiol ; 8(12): 2326-2337, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38030907

RESUMO

Dimethylsulfoxonium propionate (DMSOP) is a recently identified and abundant marine organosulfur compound with roles in oxidative stress protection, global carbon and sulfur cycling and, as shown here, potentially in osmotolerance. Microbial DMSOP cleavage yields dimethyl sulfoxide, a ubiquitous marine metabolite, and acrylate, but the enzymes responsible, and their environmental importance, were unknown. Here we report DMSOP cleavage mechanisms in diverse heterotrophic bacteria, fungi and phototrophic algae not previously known to have this activity, and highlight the unappreciated importance of this process in marine sediment environments. These diverse organisms, including Roseobacter, SAR11 bacteria and Emiliania huxleyi, utilized their dimethylsulfoniopropionate lyase 'Ddd' or 'Alma' enzymes to cleave DMSOP via similar catalytic mechanisms to those for dimethylsulfoniopropionate. Given the annual teragram predictions for DMSOP production and its prevalence in marine sediments, our results highlight that DMSOP cleavage is likely a globally significant process influencing carbon and sulfur fluxes and ecological interactions.


Assuntos
Propionatos , Roseobacter , Sulfetos/metabolismo , Enxofre/metabolismo , Carbono
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa