Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
RNA ; 30(7): 795-806, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38538052

RESUMO

3' end processing of most eukaryotic precursor-mRNAs (pre-mRNAs) is a crucial cotranscriptional process that generally involves the cleavage and polyadenylation of the precursor transcripts. Within the human 3' end processing machinery, the four-subunit mammalian polyadenylation specificity factor (mPSF) recognizes the polyadenylation signal (PAS) in the pre-mRNA and recruits the poly(A) polymerase α (PAPOA) to it. To shed light on the molecular mechanisms of PAPOA recruitment to mPSF, we used a combination of cryogenic-electron microscopy (cryo-EM) single-particle analysis, computational structure prediction, and in vitro biochemistry to reveal an intricate interaction network. A short linear motif in the mPSF subunit FIP1 interacts with the structured core of human PAPOA, with a binding mode that is evolutionarily conserved from yeast to human. In higher eukaryotes, however, PAPOA contains a conserved C-terminal motif that can interact intramolecularly with the same residues of the PAPOA structured core used to bind FIP1. Interestingly, using biochemical assay and cryo-EM structural analysis, we found that the PAPOA C-terminal motif can also directly interact with mPSF at the subunit CPSF160. These results show that PAPOA recruitment to mPSF is mediated by two distinct intermolecular connections and further suggest the presence of mutually exclusive interactions in the regulation of 3' end processing.


Assuntos
Microscopia Crioeletrônica , Polinucleotídeo Adenililtransferase , Fatores de Poliadenilação e Clivagem de mRNA , Humanos , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/química , Fatores de Poliadenilação e Clivagem de mRNA/genética , Polinucleotídeo Adenililtransferase/metabolismo , Polinucleotídeo Adenililtransferase/genética , Polinucleotídeo Adenililtransferase/química , Ligação Proteica , Poliadenilação , Modelos Moleculares , Precursores de RNA/metabolismo , Precursores de RNA/genética , Precursores de RNA/química , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Fator de Especificidade de Clivagem e Poliadenilação/genética , Fator de Especificidade de Clivagem e Poliadenilação/química
2.
FEBS J ; 287(12): 2486-2503, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31785178

RESUMO

It is now accepted that reactive oxygen species (ROS) are not only dangerous oxidative agents but also chemical mediators of the redox cell signaling and innate immune response. A central role in ROS-controlled production is played by the NADPH oxidases (NOXs), a group of seven membrane-bound enzymes (NOX1-5 and DUOX1-2) whose unique function is to produce ROS. Here, we describe the regulation of NOX5, a widespread family member present in cyanobacteria, protists, plants, fungi, and the animal kingdom. We show that the calmodulin-like regulatory EF-domain of NOX5 is partially unfolded and detached from the rest of the protein in the absence of calcium. In the presence of calcium, the C-terminal lobe of the EF-domain acquires an ordered and more compact structure that enables its binding to the enzyme dehydrogenase (DH) domain. Our spectroscopic and mutagenesis studies further identified a set of conserved aspartate residues in the DH domain that are essential for NOX5 activation. Altogether, our work shows that calcium induces an unfolded-to-folded transition of the EF-domain that promotes direct interaction with a conserved regulatory region, resulting in NOX5 activation.


Assuntos
Cálcio/metabolismo , Cianobactérias/enzimologia , NADPH Oxidase 5/metabolismo , Cristalografia por Raios X , Humanos , Modelos Moleculares , NADPH Oxidase 5/química , NADPH Oxidase 5/genética , Conformação Proteica , Espécies Reativas de Oxigênio/metabolismo
3.
Nat Commun ; 10(1): 4513, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31586073

RESUMO

The midbody is an organelle assembled at the intercellular bridge between the two daughter cells at the end of mitosis. It controls the final separation of the daughter cells and has been involved in cell fate, polarity, tissue organization, and cilium and lumen formation. Here, we report the characterization of the intricate midbody protein-protein interaction network (interactome), which identifies many previously unknown interactions and provides an extremely valuable resource for dissecting the multiple roles of the midbody. Initial analysis of this interactome revealed that PP1ß-MYPT1 phosphatase regulates microtubule dynamics in late cytokinesis and de-phosphorylates the kinesin component MKLP1/KIF23 of the centralspindlin complex. This de-phosphorylation antagonizes Aurora B kinase to modify the functions and interactions of centralspindlin in late cytokinesis. Our findings expand the repertoire of PP1 functions during mitosis and indicate that spatiotemporal changes in the distribution of kinases and counteracting phosphatases finely tune the activity of cytokinesis proteins.


Assuntos
Citocinese/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Mapas de Interação de Proteínas/fisiologia , Proteína Fosfatase 1/metabolismo , Aurora Quinase B/metabolismo , Sítios de Ligação/genética , Células HeLa , Humanos , Microscopia Intravital , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Mitose/fisiologia , Mutagênese Sítio-Dirigida , Fosforilação/fisiologia , Proteína Fosfatase 1/genética , RNA Interferente Pequeno/metabolismo , Fuso Acromático/metabolismo , Imagem com Lapso de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa