Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Lasers Med Sci ; 37(3): 1375-1388, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34669081

RESUMO

The purpose of this study is to compare the effect of photobiomodulation therapy (PBMT) and cryotherapy (CRT) on muscle recovery outcomes. These searches were performed in PubMed, PEDro, CENTRAL, and VHL (which includes the Lilacs, Medline, and SciELO database) from inception to June 2021. We included randomized clinical trials involved healthy human volunteers (> 18 years) underwent an intervention of PBMT and CRT, when used in both isolated form post-exercise. Standardized mean differences (SMD) or mean difference (MD) with 95% confidence interval were calculated and pooled in a meta-analysis for synthesis. The risk of bias and quality of evidence were assessed through Cochrane risk-of-bias tool and GRADE system. Four articles (66 participants) with a high to low risk of bias were included. The certainty of evidence was classified as moderate to very low. PBMT was estimated to improve the muscle strength (SMD = 1.73, CI 95% 1.33 to 2.13, I2 = 27%, p < 0.00001), reduce delayed onset muscle soreness (MD: - 25.69%, CI 95% - 34.42 to - 16.97, I2 = 89%, p < 0.00001), and lower the concentration of biomarkers of muscle damage (SMD = - 1.48, CI 95% - 1.93 to - 1.03, I2 = 76%, p < 0,00,001) when compared with CRT. There was no difference in oxidative stress and inflammatory levels. Based on our findings, the use of PBMT in muscle recovery after high-intensity exercise appears to be beneficial, provides a clinically important effect, and seems to be the best option when compared to CRT.


Assuntos
Crioterapia , Terapia com Luz de Baixa Intensidade , Exercício Físico/fisiologia , Humanos , Força Muscular , Músculos
2.
Lasers Med Sci ; 34(2): 255-262, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29992491

RESUMO

Physical exercise generates several benefits in a short time in patients with diabetes mellitus. However, it can increase the chances of muscle damage, a serious problem for diabetic patients. Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used to treat these injuries, despite the serious adverse effects. In this way, photobiomodulation therapy (PBMT) with low-level laser therapy (LLLT) and/or light emitting diode therapy (LEDT) can be used as an alternative in this case. However, its efficacy in tissue repair of trauma injuries in diabetes mellitus until now is unknown, as well as the combination between PBMT and NSAIDs. The objective of the present study was to evaluate the effects of NSAIDs and PBMT applied alone or combined on functional and biochemical aspects, in an experimental model of muscle injury through controlled trauma in diabetic rats. Muscle injury was induced by means of a single trauma to the animals' anterior tibialis muscle. After 1 h, the rats were treated with PBMT (830 nm; continuous mode, with a power output of 100 mW; 3.57 W/cm2; 3 J; 107.1 J/cm2, 30 s), diclofenac sodium for topical use (1 g), or combination of them. Our results demonstrated that PBMT + diclofenac, and PBMT alone reduced the gene expression of cyclooxygenase-2 (COX-2) at all assessed times as compared to the injury and diclofenac groups (p < 0.05 and p < 0.01 respectively). The diclofenac alone showed reduced levels of COX-2 only in relation to the injury group (p < 0.05). Prostaglandin E2 levels in blood plasma demonstrated similar results to COX2. In addition, we observed that PBMT + diclofenac and PBMT alone showed significant improvement compared with injury and diclofenac groups in functional analysis at all time points. The results indicate that PBMT alone or in combination with diclofenac reduces levels of inflammatory markers and improves gait of diabetic rats in the acute phase of muscle injury.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Experimental/radioterapia , Diclofenaco/administração & dosagem , Diclofenaco/uso terapêutico , Terapia com Luz de Baixa Intensidade , Músculo Esquelético/lesões , Músculo Esquelético/fisiopatologia , Administração Tópica , Animais , Terapia Combinada , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/genética , Dinoprostona/sangue , Regulação da Expressão Gênica , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/efeitos da radiação , Ratos Wistar
3.
Lasers Med Sci ; 33(4): 719-727, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29185134

RESUMO

Photobiomodulation therapy (PBMT) employing low-level laser therapy (LLLT) and/or light emitting diode therapy (LEDT) has emerged as an electrophysical intervention that could be associated with aerobic training to enhance beneficial effects of aerobic exercise. However, the best moment to perform irradiation with PBMT in aerobic training has not been elucidated. The aim of this study was to assess the effects of PBMT applied before and/or after each training session and to evaluate outcomes of the endurance-training program associated with PBMT. Seventy-seven healthy volunteers completed the treadmill-training protocol performed for 12 weeks, with 3 sessions per week. PBMT was performed before and/or after each training session (17 sites on each lower limb, using a cluster of 12 diodes: 4 × 905 nm super-pulsed laser diodes, 4 × 875 nm infrared LEDs, and 4 × 640 nm red LEDs, dose of 30 J per site). Volunteers were randomized in four groups according to the treatment they would receive before and after each training session: PBMT before + PBMT after, PBMT before + placebo after, placebo before + PBMT after, and placebo before + placebo after. Assessments were performed before the start of the protocol and after 4, 8, and 12 weeks of training. Primary outcome was time until exhaustion; secondary outcome measures were oxygen uptake and body fat. PBMT applied before and after aerobic exercise training sessions (PBMT before + PBMT after group) significantly increased (p < 0.05) the percentage of change of time until exhaustion and oxygen uptake compared to the group treated with placebo before and after aerobic exercise training sessions (placebo before + placebo after group) at 4th, 8th, and 12th week. PBMT applied before and after aerobic exercise training sessions (PBMT before + PBMT after group) also significantly improved (p < 0.05) the percentage of change of body fat compared to the group treated with placebo before and after aerobic exercise training sessions (placebo before + placebo after group) at 8th and 12th week. PBMT applied before and after sessions of aerobic training during 12 weeks can increase the time-to-exhaustion and oxygen uptake and also decrease the body fat in healthy volunteers when compared to placebo irradiation before and after exercise sessions. Our outcomes show that PBMT applied before and after endurance-training exercise sessions lead to improvement of endurance three times faster than exercise only.


Assuntos
Teste de Esforço , Terapia com Luz de Baixa Intensidade/métodos , Resistência Física , Tecido Adiposo , Adulto , Método Duplo-Cego , Feminino , Humanos , Lasers Semicondutores , Masculino , Fadiga Muscular/efeitos da radiação , Músculo Esquelético/efeitos da radiação , Consumo de Oxigênio , Placebos
4.
Lasers Med Sci ; 33(9): 1933-1940, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29909435

RESUMO

When conservative treatments fail, hip osteoarthritis (OA), a chronic degenerative disease characterized by cartilage wear, progressive joint deformity, and loss of function, can result in the need for a total hip arthroplasty (THA). Surgical procedures induced tissue trauma and incite an immune response. Photobiomodulation therapy (PBMt) using low-level laser therapy (LLLT) and/or light-emitting diode therapy (LEDT) has proven effective in tissue repair by modulating the inflammatory process and promoting pain relief. Therefore, the aim of this study was to analyze the immediate effect of PBMt on inflammation and pain of patients undergoing total hip arthroplasty. The study consisted of 18 post-surgical hip arthroplasty patients divided into two groups (n = 9 each) placebo and active PBMt who received one of the treatments in a period from 8 to 12 h following THA surgery. PBMt (active or placebo) was applied using a device consisting of nine diodes (one super-pulsed laser of 905 nm, four infrared LEDs of 875 nm, and four red LEDs 640 nm, 40.3 J per point) applied to 5 points along the incision. Visual analog scale (VAS) and blood samples for analysis of the levels of the cytokines TNF-α, IL-6, and IL-8 were recorded before and after PBMt application. The values for the visual analog scale as well as those in the analysis of TNF-α and IL-8 serum levels decreased in the active PBMt group compared to placebo-control group (p < 0.05). No decrease was observed for IL-6 levels. We conclude that PBMt is effective in decreasing pain intensity and post-surgery inflammation in patients receiving total hip arthroplasty.


Assuntos
Dor Aguda/radioterapia , Artroplastia de Quadril/efeitos adversos , Inflamação/radioterapia , Terapia com Luz de Baixa Intensidade , Idoso , Feminino , Humanos , Interleucina-6/metabolismo , Masculino , Medição da Dor , Placebos , Fator de Necrose Tumoral alfa/metabolismo
5.
Lasers Med Sci ; 33(4): 755-764, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29209866

RESUMO

This study aimed to analyze the protective effects of photobiomodulation therapy (PBMT) with combination of low-level laser therapy (LLLT) and light emitting diode therapy (LEDT) on skeletal muscle tissue to delay dystrophy progression in mdx mice (DMD mdx ). To this aim, mice were randomly divided into five different experimental groups: wild type (WT), placebo-control (DMD mdx ), PBMT with doses of 1 J (DMD mdx ), 3 J (DMD mdx ), and 10 J (DMD mdx ). PBMT was performed employing a cluster probe with 9 diodes (1 x 905nm super-pulsed laser diode; 4 x 875nm infrared LEDs; and 4 x 640nm red LEDs, manufactured by Multi Radiance Medical®, Solon - OH, USA), 3 times a week for 14 weeks. PBMT was applied on a single point (tibialis anterior muscle-bilaterally). We analyzed functional performance, muscle morphology, and gene and protein expression of dystrophin. PBMT with a 10 J dose significantly improved (p < 0.001) functional performance compared to all other experimental groups. Muscle morphology was improved by all PBMT doses, with better outcomes with the 3 and 10 J doses. Gene expression of dystrophin was significantly increased with 3 J (p < 0.01) and 10 J (p < 0.01) doses when compared to placebo-control group. Regarding protein expression of dystrophin, 3 J (p < 0.001) and 10 J (p < 0.05) doses also significantly showed increase compared to placebo-control group. We conclude that PBMT can mainly preserve muscle morphology and improve muscular function of mdx mice through modulation of gene and protein expression of dystrophin. Furthermore, since PBMT is a non-pharmacological treatment which does not present side effects and is easy to handle, it can be seen as a promising tool for treating Duchenne's muscular dystrophy.


Assuntos
Distrofina/metabolismo , Terapia com Luz de Baixa Intensidade/métodos , Músculo Esquelético/fisiopatologia , Músculo Esquelético/efeitos da radiação , Distrofia Muscular de Duchenne/fisiopatologia , Distrofia Muscular de Duchenne/radioterapia , Animais , Relação Dose-Resposta à Radiação , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Placebos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Lasers Med Sci ; 32(1): 101-108, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27726040

RESUMO

Osteoarthritis (OA) triggers increased levels of inflammatory markers, including prostaglandin (PG) E2 and proinflammatory cytokines. The elevation of cytokine levels is closely associated with increased articular tissue degeneration. Thus, the use of combination therapies may presumably be able to enhance the effects on the modulation of inflammatory markers. The present study aimed to evaluate and compare the effects of photobiomodulation therapy (PBMT), physical exercise, and topical nonsteroidal anti-inflammatory drug (NSAID) use on the inflammatory process after they were applied either alone or in different combinations. OA was induced by intra-articular papain injection in the knee of rats. After 21 days, the animals began treatment with a topical NSAID and/or with physical exercise and/or PBMT. Treatments were performed three times a week for eight consecutive weeks, totaling 24 therapy sessions. Analysis of real-time polymerase chain reaction (RT-PCR) gene expression; interleukin (IL)-1ß, IL-6, and tumor necrosis factor alpha (TNF-α) protein expression; and PGE2 levels by enzyme-linked immunosorbent assay (ELISA) was conducted. Our results showed that PBMT alone and Exerc + PBMT significantly reduced IL-1ß gene expression (p < 0.05) while no treatment changed both IL-6 and TNF-α gene expression. Treatment with NSAID alone, PBMT alone, Exerc + PBMT, and NSAID + PBMT reduced IL-1ß protein expression (p < 0.05). All therapies significantly reduced IL-6 and TNF-α protein expression (p < 0.05) compared with the OA group. Similarly, all therapies, except Exerc, reduced the levels of PGE2 (p < 0.05) compared with the OA group. The results from the present study indicate that treatment with PBMT is more effective in modulating the inflammatory process underlying OA when compared with the other therapies tested.


Assuntos
Inflamação/patologia , Terapia com Luz de Baixa Intensidade , Osteoartrite/patologia , Osteoartrite/terapia , Condicionamento Físico Animal , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Terapia Combinada , Dinoprostona/sangue , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Articulação do Joelho/metabolismo , Masculino , Osteoartrite/sangue , Osteoartrite/genética , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
7.
Lasers Med Sci ; 32(8): 1879-1887, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28795275

RESUMO

Muscle injuries trigger an inflammatory process, releasing important biochemical markers for tissue regeneration. The use of non-steroidal anti-inflammatory drugs (NSAIDs) is the treatment of choice to promote pain relief due to muscle injury. NSAIDs exhibit several adverse effects and their efficacy is questionable. Photobiomodulation therapy (PBMT) has been demonstrated to effectively modulate inflammation induced from musculoskeletal disorders and may be used as an alternative to NSAIDs. Here, we assessed and compared the effects of different doses of PBMT and topical NSAIDs on biochemical parameters during an acute inflammatory process triggered by a controlled model of contusion-induced musculoskeletal injury in rats. Muscle injury was induced by trauma to the anterior tibial muscle of rats. After 1 h, rats were treated with PBMT (830 nm, continuous mode, 100 mW of power, 35.71 W/cm2; 1, 3, and 9 J; 10, 30, and 90 s) or diclofenac sodium (1 g). Our results demonstrated that PBMT, 1 J (35.7 J/cm2), 3 J (107.1 J/cm2), and 9 J (321.4 J/cm2) reduced the expression of tumor necrosis factor alpha (TNF-α) and cyclooxygenase-2 (COX-2) genes at all assessed times as compared to the injury and diclofenac groups (p < 0.05). The diclofenac group showed reduced levels of COX-2 only in relation to the injury group (p < 0.05). COX-2 protein expression remained unchanged with all therapies except with PBMT at a 3-J dose at 12 h (p < 0.05 compared to the injury group). In addition, PBMT (1, 3, and 9 J) effectively reduced levels of cytokines TNF-α, interleukin (IL)-1ß, and IL-6 at all assessed times as compared to the injury and diclofenac groups (p < 0.05). Thus, PBMT at a 3-J dose was more effective than other doses of PBMT and topical NSAIDs in the modulation of the inflammatory process caused by muscle contusion injuries.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Contusões/tratamento farmacológico , Contusões/radioterapia , Terapia com Luz de Baixa Intensidade/métodos , Músculo Esquelético/lesões , Administração Tópica , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Biomarcadores/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Diclofenaco/farmacologia , Diclofenaco/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/efeitos da radiação , Ratos Wistar , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
8.
Lasers Med Sci ; 32(9): 2111-2120, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28983756

RESUMO

Musculoskeletal injuries are very frequent and are responsible for causing pain and impairment of muscle function, as well as significant functional limitations. In the acute phase, the most prescribed treatment is with non-steroidal anti-inflammatory drugs (NSAIDs), despite their questionable effectiveness. However, the use of photobiomodulation therapy (PBMT) in musculoskeletal disorders has been increasing in the last few years, and this therapy appears to be an interesting alternative to the traditional drugs. The objective of the present study was to evaluate and compare the effects of PBMT, with different application doses, and topical NSAIDs, under morphological and functional parameters, during an acute inflammatory process triggered by a controlled model of musculoskeletal injury induced via contusion in rats. Muscle injury was induced by means of a single trauma to the animals' anterior tibialis muscle. After 1 h, the rats were treated with PBMT (830 nm; continuous mode, with a power output of 100 mW; 3.57 W/cm2; 1 J-35.7 J/cm2, 3 J-107.1 J/cm2, and 9 J-321.4 J/cm2; 10, 30, and 90 s) or diclofenac sodium for topical use (1 g). Morphological analysis (histology) and functional analysis (muscle work) were performed, 6, 12, and 24 h after induction of the injury. PBMT, with all doses tested, improved morphological changes caused by trauma; however, the 9 J (321.4 J/cm2) dose was the most effective in organizing muscle fibers and cell nuclei. On the other hand, the use of diclofenac sodium produced only a slight improvement in morphological changes. Moreover, we observed a statistically significant increase of muscle work in the PBMT 3 J (107.1 J/cm2) group in relation to the injury group and the diclofenac group (p < 0.05). The results of the present study indicate that PBMT, with a dose of 3 J (107.1 J/cm2), is more effective than the other doses of PBMT tested and NSAIDs for topical use as a means to improve morphological and functional alterations due to muscle injury from contusion.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/farmacologia , Contusões/complicações , Terapia com Luz de Baixa Intensidade/métodos , Músculo Esquelético/lesões , Músculo Esquelético/patologia , Administração Tópica , Animais , Diclofenaco/farmacologia , Masculino , Músculo Esquelético/fisiopatologia , Músculo Esquelético/efeitos da radiação , Ratos Wistar
9.
Lasers Med Sci ; 31(9): 1925-1933, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27624781

RESUMO

Cryotherapy for post-exercise recovery remains widely used despite the lack of quality evidence. Photobiomodulation therapy (PBMT) studies (with both low-level laser therapy and light-emitting diode therapy) have demonstrated positive scientific evidence to suggest its use. The study aims to evaluate PBMT and cryotherapy as a single or combined treatment on skeletal muscle recovery after eccentric contractions of knee extensors. Fifty healthy male volunteers were recruited and randomized into five groups (PBMT, cryotherapy, cryotherapy + PBMT, PMBT + cryotherapy, or placebo) for a randomized, double-blinded, placebo-controlled trial that evaluated exercise performance (maximum voluntary contraction (MVC)), delayed onset muscle soreness (DOMS), and muscle damage (creatine kinase (CK)). Assessments were performed at baseline; immediately after; and at 1, 24, 48, 72, and 96 h. Comparator treatments was performed 3 min after exercise and repeated at 24, 48, and 72 h. PBMT was applied employing a cordless, portable GameDay™ device (combination of 905 nm super-pulsed laser and 875- and 640-nm light-emitting diodes (LEDs); manufactured by Multi Radiance Medical™, Solon - OH, USA), and cryotherapy by flexible rubber ice packs. PBMT alone was optimal for post-exercise recovery with improved MVC, decreased DOMS, and CK activity (p < 0.05) from 24 to 96 h compared to placebo, cryotherapy, and cryotherapy + PBMT. In the PBMT + cryotherapy group, the effect of PBMT was decreased (p > 0.05) but demonstrated significant improvement in MVC, decreased DOMS, and CK activity (p < 0.05). Cryotherapy as single treatment and cryotherapy + PBMT were similar to placebo (p > 0.05). We conclude that PBMT used as single treatment is the best modality for enhancement of post-exercise restitution, leading to complete recovery to baseline levels from 24 h after high-intensity eccentric contractions.


Assuntos
Crioterapia/métodos , Terapia com Luz de Baixa Intensidade/métodos , Músculo Esquelético/fisiologia , Adolescente , Adulto , Creatina Quinase , Método Duplo-Cego , Exercício Físico/fisiologia , Humanos , Articulação do Joelho , Lasers , Masculino , Adulto Jovem
10.
Lasers Med Sci ; 30(5): 1575-81, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25987340

RESUMO

From the very first reports describing the method of action of phototherapy, the effects have been considered to be the result of photochemical and photophysical interactions between the absorbed photons and tissue and not related to secondary changes in tissue or skin temperature. However, thermal effects have been recently reported in dark pigmented skin when irradiated with single wavelengths of 810 and 904 nm of low-level laser therapy (LLLT) devices even with doses that do not exceed those recommended by the World Association of Laser Therapy (WALT). The aim of this study was to evaluate the thermal impact during the concurrent use of pulsed red and infrared LEDs and super-pulsed lasers when applied to light, medium, and dark pigmented human skin with doses typically seen in clinical practice. The study evaluated the skin temperature of 42 healthy volunteers (males and females 18 years or older, who presented different pigmentations, stratified according to Von Luschan's chromatic scale) via the use of a thermographic camera. Active irradiation was performed with using the multi-diode phototherapy cluster containing four 905-nm super-pulsed laser diodes (frequency set to 250 Hz), four 875-nm infrared-emitting diodes, and four 640-nm LEDs (manufactured by Multi Radiance Medical™, Solon, OH, USA). Each of the four doses were tested on each subject: placebo, 0 J (60 s); 10 J (76 s); 30 J (228 s); and 50 J (380 s). Data were collected during the last 5 s of each dose of irradiation and continued for 1 min after the end of each irradiation. No significant skin temperature increases were observed among the different skin color groups (p > 0.05), age groups (p > 0.05), or gender groups (p > 0.05). Our results indicate that the concurrent use of super-pulsed lasers and pulsed red and infrared LEDs can be utilized in patients with all types of skin pigmentation without concern over safety or excessive tissue heating. Additionally, the doses and device utilized in present study have demonstrated positive outcomes in prior clinical trials. Therefore, it can be concluded that the effects seen by the concurrent use of multiple wavelengths and light sources were the result of desirable photobiomodulation effect and not related to thermal influence.


Assuntos
Lasers Semicondutores/uso terapêutico , Terapia com Luz de Baixa Intensidade , Pigmentação da Pele , Temperatura Cutânea/efeitos da radiação , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
11.
Lasers Med Sci ; 30(1): 59-66, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24957189

RESUMO

Modulation of cytochrome c oxidase activity has been pointed as a possible key mechanism for low-level laser therapy (LLLT) in unhealthy biological tissues. But recent studies by our research group with LLLT in healthy muscles before exercise found delayed skeletal muscle fatigue development and improved biochemical status in muscle tissue. Therefore, the aim of this study was to evaluate effects of different LLLT doses and wavelengths in cytochrome c oxidase activity in intact skeletal muscle. In this animal experiment, we irradiated the tibialis anterior muscle of rats with three different LLLT doses (1, 3, and 10 J) and wavelengths (660, 830, and 905 nm) with 50 mW power output. After irradiation, the analyses of cytochrome c oxidase expression by immunohistochemistry were analyzed at 5, 10, 30 min and at 1, 2, 12, and 24 h. Our results show that LLLT increased (p < 0.05) cytochrome c oxidase expression mainly with the following wavelengths and doses: 660 nm with 1 J, 830 nm with 3 J, and 905 nm with 1 J at all time points. We conclude that LLLT can increase cytochrome c oxidase activity in intact skeletal muscle and that it contributes to our understanding of how LLLT can enhance performance and protect skeletal muscles against fatigue development and tissue damage. Our findings also lead us to think that the combined use of different wavelengths at the same time can enhance LLLT effects in skeletal muscle performance and other conditions, and it can represent a therapeutic advantage in clinical settings.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Terapia com Luz de Baixa Intensidade , Músculo Esquelético/enzimologia , Músculo Esquelético/efeitos da radiação , Animais , Relação Dose-Resposta à Radiação , Imuno-Histoquímica , Masculino , Fibras Musculares Esqueléticas/enzimologia , Fibras Musculares Esqueléticas/efeitos da radiação , Ratos Wistar
12.
Lasers Med Sci ; 29(6): 1967-76, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24942380

RESUMO

Recent studies with phototherapy have shown positive results in enhancement of performance and improvement of recovery when applied before exercise. However, several factors still remain unknown such as therapeutic windows, optimal treatment parameters, and effects of combination of different light sources (laser and LEDs). The aim of this study was to evaluate the effects of phototherapy with the combination of different light sources on skeletal muscle performance and post-exercise recovery, and to establish the optimal energy dose. A randomized, double-blinded, placebo-controlled trial with participation of 40 male healthy untrained volunteers was performed. A single phototherapy intervention was performed immediately after pre-exercise (baseline) maximum voluntary contraction (MVC) with a cluster of 12 diodes (4 of 905 nm lasers-0.3125 mW each, 4 of 875 nm LEDs-17.5 mW each, and 4 of 670 nm LEDs-15 mW each- manufactured by Multi Radiance Medical™) and dose of 10, 30, and 50 J or placebo in six sites of quadriceps. MVC, delayed onset muscle soreness (DOMS), and creatine kinase (CK) activity were analyzed. Assessments were performed before, 1 min, 1, 24, 48, 72, and 96 h after eccentric exercise protocol employed to induce fatigue. Phototherapy increased (p < 0.05) MVC was compared to placebo from immediately after to 96 h after exercise with 10 or 30 J doses (better results with 30 J dose). DOMS was significantly decreased compared to placebo (p < 0.05) with 30 J dose from 24 to 96 h after exercise, and with 50 J dose from immediately after to 96 h after exercise. CK activity was significantly decreased (p < 0.05) compared to placebo with all phototherapy doses from 1 to 96 h after exercise (except for 50 J dose at 96 h). Pre-exercise phototherapy with combination of low-level laser and LEDs, mainly with 30 J dose, significantly increases performance, decreases DOMS, and improves biochemical marker related to skeletal muscle damage.


Assuntos
Exercício Físico/fisiologia , Terapia com Luz de Baixa Intensidade/métodos , Fadiga Muscular/efeitos da radiação , Músculo Esquelético/fisiologia , Adulto , Biomarcadores , Método Duplo-Cego , Humanos , Lasers , Masculino , Contração Muscular , Fadiga Muscular/fisiologia , Músculo Quadríceps/efeitos da radiação , Fatores de Tempo , Adulto Jovem
13.
Lasers Med Sci ; 29(2): 653-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23812849

RESUMO

Currently, treatment of muscle injuries represents a challenge in clinical practice. In acute phase, the most employed therapies are cryotherapy and nonsteroidal anti-inflammatory drugs. In the last years, low-level laser therapy (LLLT) has becoming a promising therapeutic agent; however, its effects are not fully known. The aim of this study was to analyze the effects of sodium diclofenac (topical application), cryotherapy, and LLLT on pro-inflammatory cytokine levels after a controlled model of muscle injury. For such, we performed a single trauma in tibialis anterior muscle of rats. After 1 h, animals were treated with sodium diclofenac (11.6 mg/g of solution), cryotherapy (20 min), or LLLT (904 nm; superpulsed; 700 Hz; 60 mW mean output power; 1.67 W/cm(2); 1, 3, 6 or 9 J; 17, 50, 100 or 150 s). Assessment of interleukin-1ß and interleukin-6 (IL-1ß and IL-6) and tumor necrosis factor-alpha (TNF-α) levels was performed at 6 h after trauma employing enzyme-linked immunosorbent assay method. LLLT with 1 J dose significantly decreased (p < 0.05) IL-1ß, IL-6, and TNF-α levels compared to non-treated injured group as well as diclofenac and cryotherapy groups. On the other hand, treatment with diclofenac and cryotherapy does not decrease pro-inflammatory cytokine levels compared to the non-treated injured group. Therefore, we can conclude that 904 nm LLLT with 1 J dose has better effects than topical application of diclofenac or cryotherapy in acute inflammatory phase after muscle trauma.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Crioterapia/métodos , Citocinas/metabolismo , Diclofenaco/farmacologia , Inflamação/metabolismo , Terapia com Luz de Baixa Intensidade , Músculo Esquelético/lesões , Administração Tópica , Animais , Diclofenaco/administração & dosagem , Inflamação/prevenção & controle , Inflamação/terapia , Interleucina-6/metabolismo , Masculino , Músculo Esquelético/fisiopatologia , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
14.
Lasers Med Sci ; 29(5): 1617-26, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24651950

RESUMO

This study aimed to evaluate the effects of low-level laser therapy (LLLT) immediately before tetanic contractions in skeletal muscle fatigue development and possible tissue damage. Male Wistar rats were divided into two control groups and nine active LLLT groups receiving one of three different laser doses (1, 3, and 10 J) with three different wavelengths (660, 830, and 905 nm) before six tetanic contractions induced by electrical stimulation. Skeletal muscle fatigue development was defined by the percentage (%) of the initial force of each contraction and time until 50 % decay of initial force, while total work was calculated for all six contractions combined. Blood and muscle samples were taken immediately after the sixth contraction. Several LLLT doses showed some positive effects on peak force and time to decay for one or more contractions, but in terms of total work, only 3 J/660 nm and 1 J/905 nm wavelengths prevented significantly (p < 0.05) the development of skeletal muscle fatigue. All doses with wavelengths of 905 nm but only the dose of 1 J with 660 nm wavelength decreased creatine kinase (CK) activity (p < 0.05). Qualitative assessment of morphology revealed lesser tissue damage in most LLLT-treated groups, with doses of 1-3 J/660 nm and 1, 3, and 10 J/905 nm providing the best results. Optimal doses of LLLT significantly delayed the development skeletal muscle performance and protected skeletal muscle tissue against damage. Our findings also demonstrate that optimal doses are partly wavelength specific and, consequently, must be differentiated to obtain optimal effects on development of skeletal muscle fatigue and tissue preservation. Our findings also lead us to think that the combined use of wavelengths at the same time can represent a therapeutic advantage in clinical settings.


Assuntos
Terapia com Luz de Baixa Intensidade/métodos , Contração Muscular/efeitos da radiação , Fadiga Muscular/efeitos da radiação , Músculo Esquelético/patologia , Músculo Esquelético/efeitos da radiação , Tetania/fisiopatologia , Tetania/terapia , Animais , Fenômenos Biomecânicos/efeitos da radiação , Creatina Quinase/metabolismo , Relação Dose-Resposta à Radiação , Estimulação Elétrica , Masculino , Músculo Esquelético/fisiopatologia , Ratos Wistar
15.
Biomedicines ; 12(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38790953

RESUMO

(1) Background: We investigated the detrimental and protective effects of short-, medium, and long-term treatment with different doses of photobiomodulation therapy combined with static magnetic field (PBMT-sMF) during the aging process. (2) Methods: Rats were treated for 15, 30, and 60 weeks with 1, 3, 10, and 30 J of PBMT-sMF or a placebo control. In addition, eight young rats were not subjected to any procedure or treatment and were euthanized at six weeks old. Skin, muscle, bone, kidney, liver, and blood samples were analyzed. (3) Results: No differences between the groups in the morphology of the skin, muscle, and bone was observed. Glutamic pyruvic transaminase levels were increased in the placebo group after 30 and 60 weeks. Glutamic oxaloacetic transaminase levels were also increased in the placebo group after 30 weeks. An increase in creatinine in the PBMT-sMF 3, 10, and 30 J groups compared with that in the young control group was observed. No significant difference in urea levels between the groups was noted. Vascular endothelial growth factor increased in the PBMT-sMF 10 and 30 J groups after 15 weeks of treatment and in the PBMT-sMF 3 J after 60 weeks. Finally, vascular endothelial growth factor decreased in the PBMT-sMF 30 J group after 30 weeks of treatment. (4) Conclusions: PBMT-sMF did not have detrimental effects on the skin, muscle, bone, kidney, or liver after short-, medium-, and long-term treatments in aging rats. In addition, PBMT-sMF may have protective effects on the muscle tissue in aging rats after short- and long-term treatment.

16.
Muscle Nerve ; 46(6): 908-13, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23042107

RESUMO

INTRODUCTION: HMG-CoA reductase inhibitors are the most frequently prescribed drugs for treatment of lipid imbalance, but they have side effects, such as myopathy. Our aim was to assess the effect of simvastatin on the inflammatory process induced by skeletal muscle injury. METHODS: Rats were divided into experimental groups [control group, simvastatin (20 mg/kg) group, group treated with simvastatin (20 mg/kg) and subjected to injury, and group subjected to injury only]. Histological analysis and analyses of creatine kinase activity and C-reactive protein were performed. RESULTS: Animals treated with simvastatin exhibited significantly greater morphological and structural skeletal muscle damage in comparison to the control group and injured animals without treatment. CONCLUSIONS: Although simvastatin has a small anti-inflammatory effect in the early stage after a muscle strain injury, the overall picture is negative, as simvastatin increases the extent of damage to muscle morphology. Further studies are needed.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Músculo Esquelético/patologia , Doenças Musculares/tratamento farmacológico , Doenças Musculares/etiologia , Sinvastatina/uso terapêutico , Estresse Mecânico , Análise de Variância , Animais , Proteína C-Reativa/metabolismo , Creatina Quinase/sangue , Modelos Animais de Doenças , Masculino , Músculo Esquelético/efeitos dos fármacos , Doenças Musculares/sangue , Ratos , Ratos Wistar
17.
Lasers Med Sci ; 27(1): 231-6, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21739259

RESUMO

The aim of this work was to evaluate the effects of low-level laser therapy (LLLT) on exercise performance, oxidative stress, and muscle status in humans. A randomized double-blind placebo-controlled crossover trial was performed with 22 untrained male volunteers. LLLT (810 nm, 200 mW, 30 J in each site, 30 s of irradiation in each site) using a multi-diode cluster (with five spots - 6 J from each spot) at 12 sites of each lower limb (six in quadriceps, four in hamstrings, and two in gastrocnemius) was performed 5 min before a standardized progressive-intensity running protocol on a motor-drive treadmill until exhaustion. We analyzed exercise performance (VO(2 max), time to exhaustion, aerobic threshold and anaerobic threshold), levels of oxidative damage to lipids and proteins, the activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), and the markers of muscle damage creatine kinase (CK) and lactate dehydrogenase (LDH). Compared to placebo, active LLLT significantly increased exercise performance (VO(2 max) p = 0.01; time to exhaustion, p = 0.04) without changing the aerobic and anaerobic thresholds. LLLT also decreased post-exercise lipid (p = 0.0001) and protein (p = 0.0230) damages, as well as the activities of SOD (p = 0.0034), CK (p = 0.0001) and LDH (p = 0.0001) enzymes. LLLT application was not able to modulate CAT activity. The use of LLLT before progressive-intensity running exercise increases exercise performance, decreases exercise-induced oxidative stress and muscle damage, suggesting that the modulation of the redox system by LLLT could be related to the delay in skeletal muscle fatigue observed after the use of LLLT.


Assuntos
Terapia com Luz de Baixa Intensidade/métodos , Músculo Esquelético/fisiologia , Músculo Esquelético/efeitos da radiação , Corrida/fisiologia , Adulto , Catalase/sangue , Creatina Quinase Forma MM/metabolismo , Estudos Cross-Over , Método Duplo-Cego , Exercício Físico/fisiologia , Teste de Esforço , Humanos , L-Lactato Desidrogenase/metabolismo , Masculino , Estresse Oxidativo , Superóxido Dismutase/sangue , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Adulto Jovem
18.
Lasers Med Sci ; 27(2): 453-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21814736

RESUMO

In animal and clinical trials low-level laser therapy (LLLT) using red, infrared and mixed wavelengths has been shown to delay the development of skeletal muscle fatigue. However, the parameters employed in these studies do not allow a conclusion as to which wavelength range is better in delaying the development of skeletal muscle fatigue. With this perspective in mind, we compared the effects of red and infrared LLLT on skeletal muscle fatigue. A randomized double-blind placebo-controlled crossover trial was performed in ten healthy male volunteers. They were treated with active red LLLT, active infrared LLLT (660 or 830 nm, 50 mW, 17.85 W/cm(2), 100 s irradiation per point, 5 J, 1,785 J/cm(2) at each point irradiated, total 20 J irradiated per muscle) or an identical placebo LLLT at four points of the biceps brachii muscle for 3 min before exercise (voluntary isometric elbow flexion for 60 s). The mean peak force was significantly greater (p < 0.05) following red (12.14%) and infrared LLLT (14.49%) than following placebo LLLT, and the mean average force was also significantly greater (p < 0.05) following red (13.09%) and infrared LLLT (13.24%) than following placebo LLLT. There were no significant differences in mean average force or mean peak force between red and infrared LLLT. We conclude that both red than infrared LLLT are effective in delaying the development skeletal muscle fatigue and in enhancement of skeletal muscle performance. Further studies are needed to identify the specific mechanisms through which each wavelength acts.


Assuntos
Raios Infravermelhos/uso terapêutico , Terapia com Luz de Baixa Intensidade/métodos , Fadiga Muscular/efeitos da radiação , Músculo Esquelético/fisiopatologia , Adulto , Estudos Cross-Over , Método Duplo-Cego , Exercício Físico/fisiologia , Humanos , Masculino , Músculo Esquelético/efeitos da radiação , Adulto Jovem
19.
Life (Basel) ; 12(2)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35207474

RESUMO

BACKGROUND: Gait deficit is a major complaint in patients after stroke, restricting certain activities of daily living. Photobiomodulation therapy combined with a static magnetic field (PBMT-SMF) has been studied for several diseases, and the two therapies are beneficia. However, their combination has not yet been evaluated in stroke. Therefore, for PBMT-SMF to be used more often and become an adjunctive tool in the rehabilitation of stroke survivors at physical therapy rehabilitation centers and clinics, some important aspects need to be clarified. PURPOSE: This study aimed to test different doses of PBMT-SMF, to identify the ideal dose to cause immediate effects on the spatiotemporal and kinematic variables of gait in post-stroke patients. METHODS: A randomized, triple-blinded, placebo-controlled crossover pilot study was performed. A total of 10 individuals with hemiparesis within 6 months to 5 years since the occurrence of stroke, aged 45-60 years, were included in the study. Participants were randomly assigned and treated with a single PBMT-SMF dose (sham, 10 J, 30 J, or 50 J) on a single application, with one dose per stage at 7-day intervals between stages. PBMT-SMF was applied with a cluster of 12 diodes (4 of 905 nm laser, 4 of 875 nm LEDs, and 4 of 640 nm LEDs, SMF of 35 mT) at 17 sites on both lower limbs after baseline evaluation: plantar flexors (2), knee extensors (9), and flexors (6). The primary outcome was self-selected walking speed, and the secondary outcomes were kinematic parameters. Gait analysis was performed using SMART-D 140® and SMART-D INTEGRATED WORKSTATION®. The outcomes were measured at the end of each stage after the single application of each PBMT-SMF dose tested. RESULTS: No significant differences (p > 0.05) in spatiotemporal variables were observed between the different doses, compared with the baseline evaluation. However, differences (p < 0.05) were observed in the kinematic variable of the hip in the paretic and non-paretic limbs, specifically in the minimum flexion/extension angulation during the support phase (HMST-MIN) in doses 10 J, 30 J, and 50 J. CONCLUSIONS: A single application of PBMT-SMF at doses of 10 J, 30 J, and 50 J per site of the lower limbs did not demonstrate positive effects on the spatiotemporal variables, but it promoted immediate effects in the kinematic variables of the hip (maximum and minimum flexion/extension angulation during the support phase) in the paretic and non-paretic limbs in post-stroke people.

20.
Oxid Med Cell Longev ; 2022: 9968428, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910832

RESUMO

The ergogenic effects of photobiomodulation therapy combined with a static magnetic field (PBMT-sMF) on exercises with characteristics similar to those of CrossFit® are unknown. This study was aimed at investigating the effects of PBMT-sMF applied at different times on recovery and physical performance in CrossFit® athletes by analyzing functional aspects, muscle damage, inflammatory processes, and oxidative stress. This was a prospectively registered, triple-blinded, placebo-controlled, crossover trial. CrossFit® athletes were recruited and assigned to receive one of the four possible interventions. Each intervention included protocols before and after the exercise (referred to as the workout of the day (WOD)). The four possibilities of intervention were as follows: placebo before and after WOD (placebo), PBMT-sMF before and placebo after WOD (PBMT-sMF before), placebo before and PBMT-sMF after WOD (PBMT-sMF after), and PBMT-sMF before and after WOD (PBMT-sMF before and after). The order of possibilities for the interventions was randomized. The primary outcome was the functional test performance. The secondary outcomes were the subjective perception of exertion, muscle damage, inflammation, and oxidative stress. The outcomes were measured before the WOD; immediately after the intervention; and 1, 24, and 48 hours after the WOD. Statistical analysis was performed using repeated measures ANOVA followed by the Bonferroni post hoc test to examine the differences between the interventions at each time point. Twelve participants were randomized and analyzed for each sequence. PBMT-sMF enhanced the performance on functional tests (calculated as a percentage of change) when applied before or after WOD in the assessment performed immediately post-WOD and at 24 and 48 hours later (p < 0.05) compared to placebo and PBMT-sMF before and after WOD. In terms of the secondary outcomes, PBMT-sMF applied before or after WOD significantly decreased the creatine kinase, catalase, and superoxide dismutase activities and interleukin-6, thiobarbituric acid, and carbonylated protein levels (all p < 0.05) compared to the other possibilities of intervention. In addition, PBMT-sMF applied before and after WOD decreased creatine kinase activity at 24 hours and IL-6 levels at 24 and 48 hours compared to placebo (p < 0.05). None of the participants reported any adverse events. PBMT-sMF enhanced the performance of functional tests, decreased the levels of biochemical markers of muscle damage and inflammation, decreased oxidative stress, and increased antioxidant activity in CrossFit® athletes when applied before or after WOD.


Assuntos
Terapia com Luz de Baixa Intensidade , Campos Magnéticos , Desempenho Físico Funcional , Atletas , Creatina Quinase , Estudos Cross-Over , Humanos , Inflamação , Terapia com Luz de Baixa Intensidade/métodos , Fadiga Muscular , Músculo Esquelético/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa