Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 98(3): e0018224, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38411947

RESUMO

Porcine epidemic diarrhea virus (PEDV) results in PED, which is an infectious intestinal disease with the representative features of diarrhea, vomiting, and dehydration. PEDV infects neonatal piglets, causing high mortality rates. Therefore, elucidating the interaction between the virus and host in preventing and controlling PEDV infection is of immense significance. We found a new antiviral function of the host protein, RNA-binding motif protein 14 (RBM14), which can inhibit PEDV replication via the activation of autophagy and interferon (IFN) signal pathways. We found that RBM14 can recruit cargo receptor p62 to degrade PEDV nucleocapsid (N) protein through the RBM14-p62-autophagosome pathway. Furthermore, RBM14 can also improve the antiviral ability of the hosts through interacting with mitochondrial antiviral signaling protein to induce IFN expression. These results highlight the novel mechanism underlying RBM14-induced viral restriction. This mechanism leads to the degradation of viral N protein via the autophagy pathway and upregulates IFN for inhibiting PEDV replication; thus, offering new ways for preventing and controlling PED.IMPORTANCEPorcine epidemic diarrhea virus (PEDV) is a vital reason for diarrhea in neonatal piglets, which causes high morbidity and mortality rates. There is currently no effective vaccine or drug to treat and prevent infection with the PEDV. During virus infection, the host inhibits virus replication through various antiviral factors, and at the same time, the virus antagonizes the host's antiviral reaction through its own encoded protein, thus completing the process of virus replication. Our study has revealed that the expression of RNA-binding motif protein 14 (RBM14) was downregulated in PEDV infection. We found that RBM14 can recruit cargo receptor p62 to degrade PEDV N protein via the RBM14-p62-autophagosome pathway and interacted with mitochondrial antiviral signaling protein and TRAF3 to activate the interferon signal pathway, resulting in the inhibition of PEDV replication.


Assuntos
Infecções por Coronavirus , Interferons , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Autofagia , Linhagem Celular , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/veterinária , Diarreia/veterinária , Interferons/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Vírus da Diarreia Epidêmica Suína/fisiologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/metabolismo , Replicação Viral
2.
J Biol Chem ; 299(8): 104987, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37392846

RESUMO

Porcine epidemic diarrhea virus (PEDV) causes severe morbidity and mortality among newborn piglets. It significantly threatens the porcine industry in China and around the globe. To accelerate the developmental pace of drugs or vaccines against PEDV, a deeper understanding of the interaction between viral proteins and host factors is crucial. The RNA-binding protein, polypyrimidine tract-binding protein 1 (PTBP1), is crucial for controlling RNA metabolism and biological processes. The present work focused on exploring the effect of PTBP1 on PEDV replication. PTBP1 was upregulated during PEDV infection. The PEDV nucleocapsid (N) protein was degraded through the autophagic and proteasomal degradation pathways. Moreover, PTBP1 recruits MARCH8 (an E3 ubiquitin ligase) and NDP52 (a cargo receptor) for N protein catalysis and degradation through selective autophagy. Furthermore, PTBP1 induces the host innate antiviral response via upregulating the expression of MyD88, which then regulates TNF receptor-associated factor 3/ TNF receptor-associated factor 6 expression and induces the phosphorylation of TBK1 and IFN regulatory factor 3. These processes activate the type Ⅰ IFN signaling pathway to antagonize PEDV replication. Collectively, this work illustrates a new mechanism related to PTBP1-induced viral restriction, where PTBP1 degrades the viral N protein and induces type Ⅰ IFN production to suppress PEDV replication.


Assuntos
Infecções por Coronavirus , Interferon Tipo I , Proteína de Ligação a Regiões Ricas em Polipirimidinas , Vírus da Diarreia Epidêmica Suína , Proteólise , Doenças dos Suínos , Replicação Viral , Animais , Linhagem Celular , Chlorocebus aethiops , Infecções por Coronavirus/genética , Infecções por Coronavirus/veterinária , Interferon Tipo I/metabolismo , Vírus da Diarreia Epidêmica Suína/fisiologia , Transdução de Sinais , Suínos , Doenças dos Suínos/genética , Doenças dos Suínos/virologia , Células Vero , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo
3.
Curr Issues Mol Biol ; 46(2): 1047-1063, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38392184

RESUMO

Due to the extensive genetic and antigenic variation in Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), as well as its rapid mutability and evolution, PRRS prevention and control can be challenging. An expeditious and sensitive neutralization assay for PRRSV is presented to monitor neutralizing antibodies (NAbs) in serum during vaccine research. Here, a PRRSV expressing eGFP was successfully rescued with reverse genetics based on the infectious clone HuN4-F112-eGFP which we constructed. The fluorescent protein expressions of the reporter viruses remained stable for at least five passages. Based on this reporter virus, the neutralization assay can be easily used to evaluate the level of NAbs by counting cells with green fluorescence. Compared with the classical CPE assay, the newly developed assay increases sensitivity by one- to four-fold at the early antibody response stage, thus saving 2 days of assay waiting time. By using this assay to unveil the dynamics of neutralizing antibodies against PRRSV, priming immunity through either a single virulent challenge or only vaccination could produce limited NAbs, but re-infection with PRRSV would induce a faster and stronger NAb response. Overall, the novel HuN4-F112-eGFP-based neutralization assay holds the potential to provide a highly efficient platform for evaluating the next generation of PRRS vaccines.

4.
J Virol ; 97(1): e0166022, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36602366

RESUMO

The nonstructural proteins (Nsps) of porcine reproductive and respiratory syndrome virus (PRRSV) play essential roles in virus replication-a multistep process that requires the participation of host factors. It is of great significance for the development of antiviral drugs to characterize the host proteins that interact with PRRSV Nsps and their functions in PRRSV replication. Here, we determined that proteasome subunit ß type 1 (PSMB1) interacted with viral Nsp12 to inhibit PRRSV replication in target and permissive cells. PSMB1 could be downregulated by PRRSV infection through interaction with the transcription factor EBF1. Proteasome and autophagy inhibitor assays showed that PSMB1 was regulated by the autophagic pathway to degrade Nsp12. Cotransfection of PSMB1 and Nsp12 increased the level of intracellular autophagy; both molecules were colocated in lysosomes. We also found that the selective autophagy cargo receptor protein NBR1 and E3 ubiquitin ligase STUB1 interacted with PSMB1 and Nsp12, respectively, in the autophagic degradation of Nsp12. Furthermore, the degradation of Nsp12 by PSMB1 was mainly dependent on the ubiquitination of Nsp12 at lysine site 130. Our results indicate for the first time that PSMB1 is an anti-PRRSV host protein that inhibits the replication of PRRSV by degradation of Nsp12 through the selective autophagy pathway. IMPORTANCE PRRS is a major threat to the global pig industry and urgently requires an effective and sustainable control strategy. PRRSV Nsps have important roles in viral RNA synthesis, proteinase activity, induction of replication-associated membrane rearrangements, replicative endoribonuclease activity, determination of virulence, and regulation of host immune response. Research associated with PRRSV Nsps can provide vital guidance to modify the PRRSV genome through reverse genetics in the development of vaccines and diagnostics. The function of Nsp12, which generally plays essential roles in virus replication, remains unclear. We demonstrated that PSMB1 interacted with and degraded Nsp12 through an autophagic pathway to inhibit PRRSV replication. Our data confirmed a novel antiviral function of PSMB1 and allowed us to elaborate on the roles of Nsp12 in PRRSV pathogenesis. These findings suggest a valid and highly conserved candidate target for the development of novel therapies and more effective vaccines and demonstrate the complex cross talk between selective autophagy and PRRSV infection.


Assuntos
Autofagia , Vírus da Síndrome Respiratória e Reprodutiva Suína , Proteínas não Estruturais Virais , Replicação Viral , Animais , Antivirais , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Suínos , Ubiquitinação , Proteínas não Estruturais Virais/metabolismo , Interações entre Hospedeiro e Microrganismos/imunologia
5.
J Virol ; 97(1): e0161422, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36541804

RESUMO

Porcine epidemic diarrhea (PED) indicates the disease of the acute and highly contagious intestinal infection due to porcine epidemic diarrhea virus (PEDV), with the characteristics of watery diarrhea, vomiting, and dehydration. One of the reasons for diarrhea and death of piglets is PEDV, which leads to 100% mortality in neonatal piglets. Therefore, it is necessary to explore the interaction between virus and host to prevent and control PEDV. This study indicated that the host protein, pre-mRNA processing factor 19 (PRPF19), could be controlled by the signal transducer as well as activator of transcription 1 (STAT1). Thus, PEDV replication could be hindered through selective autophagy. Moreover, PRPF19 was found to recruit the E3 ubiquitin ligase MARCH8 to the N protein for ubiquitination. For the purpose of degradation, the ubiquitin N protein is acknowledged by the cargo receptor NDP52 and transported to autolysosomes, thus inhibiting virus proliferation. To conclude, a unique antiviral mechanism of PRPF19-mediated virus restriction was shown. Moreover, a view of the innate immune response and protein degradation against PEDV replication was provided in this study. IMPORTANCE The highly virulent porcine epidemic diarrhea virus (PEDV) emerged in 2010, and causes high mortality rates in newborn pigs. There are no effective and safe vaccines against the highly virulent PEDV. This virus has caused devastating economic losses in the pork industry worldwide. Studying the relationship between virus and host antiviral factors is important to develop the new antiviral strategies. This study identified the pre-mRNA processing factor 19 (PRPF19) as a novel antiviral protein in PEDV replication and revealed its viral restriction mechanisms for the first time. PRPF19 recruited the E3 ubiquitin ligase MARCH8 to the PEDV N protein for ubiquitination, and the ubiquitin N protein was acknowledged by the cargo receptor NDP52 and transported to autolysosomes for degradation. Our findings provide new insights in host antiviral factors PRPF19 that regulate the selective autophagy protein degradation pathway to inhibit PEDV replication.


Assuntos
Proteínas do Capsídeo , Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Proteínas do Capsídeo/metabolismo , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Vírus da Diarreia Epidêmica Suína/fisiologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas , Replicação Viral/genética , Proteínas Nucleares/metabolismo , Autofagia
6.
J Virol ; 97(11): e0147023, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37882521

RESUMO

IMPORTANCE: As a member of the δ-coronavirus family, porcine deltacoronavirus (PDCoV) is a vital reason for diarrhea in piglets, which can contribute to high morbidity and mortality rates. Initially identified in Hong Kong in 2012, the virus has rapidly spread worldwide. During PDCoV infection, the virus employs evasion mechanisms to evade host surveillance, while the host mounts corresponding responses to impede viral replication. Our research has revealed that PDCoV infection down-regulates the expression of PGAM5 to promote virus replication. In contrast, PGAM5 degrades PDCoV N through autophagy by interacting with the cargo receptor P62 and the E3 ubiquitination ligase STUB1. Additionally, PGAM5 interacts with MyD88 and TRAF3 to activate the IFN signal pathway, resulting in the inhibition of viral replication.


Assuntos
Infecções por Coronavirus , Proteínas do Nucleocapsídeo de Coronavírus , Deltacoronavirus , Interferon Tipo I , Proteínas Mitocondriais , Fosfoproteínas Fosfatases , Proteólise , Doenças dos Suínos , Suínos , Replicação Viral , Animais , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Interferon Tipo I/imunologia , Transdução de Sinais , Suínos/virologia , Doenças dos Suínos/virologia , Ubiquitina-Proteína Ligases/metabolismo , Replicação Viral/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Deltacoronavirus/imunologia , Deltacoronavirus/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Mitocondriais/metabolismo , Regulação para Baixo , Evasão da Resposta Imune , Proteínas de Ligação a RNA/metabolismo
7.
Helicobacter ; 29(1): e13034, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37971157

RESUMO

BACKGROUND: Helicobacter pylori is a Gram-negative, spiral-shaped bacterium that infects approximately 50% of the world's population and has been strongly associated with chronic gastritis, peptic ulcers, gastric mucosa-associated lymphoma, and gastric cancer. The elimination of H. pylori is currently considered one of the most effective strategies for the treatment of gastric-related diseases, so antibiotic therapy is the most commonly used regimen for the treatment of H. pylori infection. Although this therapy has some positive effects, antibiotic resistance has become another clinically prominent problem. Therefore, the development of a safe and efficient vaccine has become an important measure to prevent H. pylori infection. METHODS: PubMed and ClinicalTrials.gov were systematically searched from January 1980 to March 2023 with search terms-H. pylori vaccine, adjuvants, immunization, pathogenesis, and H. pylori eradication in the title and/or abstract of literature. A total of 5182 documents were obtained. Based on the principles of academic reliability, authority, nearly publicated, and excluded the similar documents, finally, 75 documents were selected, organized, and analyzed. RESULTS: Most of the candidate antigens used as H. pylori vaccines in these literatures are whole-cell antigens and virulence antigens such as UreB, VacA, CagA, and HspA, and the main types of vaccines for H. pylori are whole bacteria vaccines, vector vaccines, subunit vaccines, nucleic acid vaccines, epitope vaccines, etc. Some vaccines have shown good immune protection in animal trials; however, few vaccines show good in clinical trials. The only H. pylori vaccine passed phase 3 clinical trial is a recombinant subunit vaccine using Urease subunit B (UreB) as the vaccine antigen, and it shows good prophylactic effects. Meanwhile, the adjuvant system for vaccines against this bacterium has been developed considerably. In addition to the traditional mucosal adjuvants such as cholera toxin (CT) and E. coli heat labile enterotoxin (LT), there are also promising safer and more effective mucosal adjuvants. All these advances made safe and effective H. pylori vaccines come into service as early as possible. CONCLUSIONS: This review briefly summarized the advances of H. pylori vaccines from two aspects, candidates of antigens and adjuvants, to provide references for the development of vaccine against this bacterium. We also present our prospects of exosomal vaccines in H. pylori vaccine research, in the hope of inspiring future researchers.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Animais , Adjuvantes Imunológicos , Antígenos de Bactérias , Vacinas Bacterianas , Escherichia coli , Infecções por Helicobacter/tratamento farmacológico , Reprodutibilidade dos Testes , Urease , Vacinas Sintéticas
8.
Hell J Nucl Med ; 27(2): 149-153, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39097809

RESUMO

OBJECTIVE: Cryptococcus, a genus of fungi, primarily includes Cryptococcus neoformans and Cryptococcus gattii, both known to cause human infections. Skeletal infections are rare, and there have been no reported cases of bone cryptococcal infection in conjunction with differentiated thyroid carcinoma. SUBJECT AND METHODS: A 56-year-old female presented with a one-month history of "cough and throat irritation." Chest CT revealed scattered small nodules in both lungs,suggestive of metastasis.There was minimal inflammation in both lungs, and scattered lymph nodes were observed in the mediastinum and upper pulmonary hilum. RESULTS: The patient was diagnosed with differentiated thyroid carcinoma complicated by cryptococcal infection. Antifungal treatment with itraconazole 200mg/day was initiated, and after 3 months, clinical symptoms disappeared, with a reduction in lung nodules observed in follow-up chest CT. CONCLUSION: When diagnosing distant metastasis in differentiated thyroid carcinoma, a comprehensive analysis combining imaging studies and serum thyroid globulin plays a complementary role, as illustrated in this case of differentiated thyroid carcinoma concurrent with cryptococcal infection.


Assuntos
Criptococose , Neoplasias da Glândula Tireoide , Humanos , Feminino , Pessoa de Meia-Idade , Neoplasias da Glândula Tireoide/complicações , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/patologia , Criptococose/diagnóstico por imagem , Criptococose/complicações , Inflamação/diagnóstico por imagem , Inflamação/complicações , Granuloma/diagnóstico por imagem , Granuloma/complicações , Tomografia Computadorizada por Raios X
9.
J Biol Chem ; 298(8): 102190, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35753351

RESUMO

Porcine epidemic diarrhea virus (PEDV) causes diarrhea and dehydration in pigs and leads to great economic losses in the commercial swine industry. However, the underlying molecular mechanisms of host response to viral infection remain unclear. In the present study, we investigated a novel mechanism by which RALY, a member of the heterogeneous nuclear ribonucleoprotein family, significantly promotes the degradation of the PEDV nucleocapsid (N) protein to inhibit viral replication. Furthermore, we identified an interaction between RALY and the E3 ubiquitin ligase MARCH8 (membrane-associated RING-CH 8), as well as the cargo receptor NDP52 (nuclear dot protein 52 kDa), suggesting that RALY could suppress PEDV replication by degrading the viral N protein through a RALY-MARCH8-NDP52-autophagosome pathway. Collectively, these results suggest a preventive role of RALY against PEDV infection via the autophagy pathway and open up the possibility of inducing RALY in vivo as an effective prophylactic and preventive treatment for PEDV infection.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Autofagia , Chlorocebus aethiops , Infecções por Coronavirus/veterinária , Proteínas do Nucleocapsídeo , Vírus da Diarreia Epidêmica Suína/fisiologia , Ribonucleoproteínas , Suínos , Células Vero , Replicação Viral
10.
J Virol ; 96(22): e0155522, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36317879

RESUMO

Porcine epidemic diarrhea virus (PEDV) is a re-emerging enteric coronavirus currently spreading in several nations and inflicting substantial financial damages on the swine industry. The currently available coronavirus vaccines do not provide adequate protection against the newly emerging viral strains. It is essential to study the relationship between host antiviral factors and the virus and to investigate the mechanisms underlying host immune response against PEDV infection. This study shows that heterogeneous nuclear ribonucleoprotein K (hnRNP K), the host protein determined by the transcription factor KLF15, inhibits the replication of PEDV by degrading the nucleocapsid (N) protein of PEDV in accordance with selective autophagy. hnRNP K was found to be capable of recruiting the E3 ubiquitin ligase, MARCH8, aiming to ubiquitinate N protein. Then, it was found that the ubiquitinated N protein could be delivered into autolysosomes for degradation by the cargo receptor NDP52, thereby inhibiting PEDV proliferation. Moreover, based on the enhanced MyD88 expression, we found that hnRNP K activated the interferon 1 (IFN-1) signaling pathway. Overall, the data obtained revealed a new mechanism of hnRNP K-mediated virus restriction wherein hnRNP K suppressed PEDV replication by degradation of viral N protein using the autophagic degradation pathway and by induction of IFN-1 production based on upregulation of MyD88 expression. IMPORTANCE The spread of the highly virulent PEDV in many countries is still leading to several epidemic and endemic outbreaks. To elucidate effective antiviral mechanisms, it is important to study the relationship between host antiviral factors and the virus and to investigate the mechanisms underlying host immune response against PEDV infection. In the work, we detected hnRNP K as a new host restriction factor which can hinder PEDV replication through degrading the nucleocapsid protein based on E3 ubiquitin ligase MARCH8 and the cargo receptor NDP52. In addition, via the upregulation of MyD88 expression, hnRNP K could also activate the interferon (IFN) signaling pathway. This study describes a previously unknown antiviral function of hnRNP K and offers a new vision toward host antiviral factors that regulate innate immune response as well as a protein degradation pathway against PEDV infection.


Assuntos
Infecções por Coronavirus , Ribonucleoproteínas Nucleares Heterogêneas Grupo K , Interferon Tipo I , Vírus da Diarreia Epidêmica Suína , Replicação Viral , Animais , Antivirais , Chlorocebus aethiops , Infecções por Coronavirus/veterinária , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Interferons , Fator 88 de Diferenciação Mieloide , Proteínas do Nucleocapsídeo/fisiologia , Vírus da Diarreia Epidêmica Suína/fisiologia , Suínos , Doenças dos Suínos/virologia , Ubiquitina-Proteína Ligases , Células Vero , Interferon Tipo I/imunologia
11.
J Virol ; 96(13): e0061822, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35695513

RESUMO

Porcine epidemic diarrhea virus (PEDV) is the globally distributed alphacoronavirus that can cause lethal watery diarrhea in piglets, causing substantial economic damage. However, the current commercial vaccines cannot effectively the existing diseases. Thus, it is of great necessity to identify the host antiviral factors and the mechanism by which the host immune system responds against PEDV infection required to be explored. The current work demonstrated that the host protein, the far upstream element-binding protein 3 (FUBP3), could be controlled by the transcription factor TCFL5, which could suppress PEDV replication through targeting and degrading the nucleocapsid (N) protein of the virus based on selective autophagy. For the ubiquitination of the N protein, FUBP3 was found to recruit the E3 ubiquitin ligase MARCH8/MARCHF8, which was then identified, transported to, and degraded in autolysosomes via NDP52/CALCOCO2 (cargo receptors), resulting in impaired viral proliferation. Additionally, FUBP3 was found to positively regulate type-I interferon (IFN-I) signaling and activate the IFN-I signaling pathway by interacting and increasing the expression of tumor necrosis factor (TNF) receptor-associated factor 3 (TRAF3). Collectively, this study showed a novel mechanism of FUBP3-mediated virus restriction, where FUBP3 was found to degrade the viral N protein and induce IFN-I production, aiming to hinder the replication of PEDV. IMPORTANCE PEDV refers to the alphacoronavirus that is found globally and has re-emerged recently, causing severe financial losses. In PEDV infection, the host activates various host restriction factors to maintain innate antiviral responses to suppress virus replication. Here, FUBP3 was detected as a new host restriction factor. FUBP3 was found to suppress PEDV replication via the degradation of the PEDV-encoded nucleocapsid (N) protein via E3 ubiquitin ligase MARCH8 as well as the cargo receptor NDP52/CALCOCO2. Additionally, FUBP3 upregulated the IFN-I signaling pathway by interacting with and increasing tumor necrosis factor (TNF) receptor-associated factor 3 (TRAF3) expression. This study further demonstrated that another layer of complexity could be added to the selective autophagy and innate immune response against PEDV infection are complicated.


Assuntos
Infecções por Coronavirus , Interferon Tipo I , Proteínas do Nucleocapsídeo , Vírus da Diarreia Epidêmica Suína , Fatores de Transcrição , Animais , Antivirais , Linhagem Celular , Chlorocebus aethiops , Infecções por Coronavirus/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Vírus da Diarreia Epidêmica Suína/fisiologia , Suínos , Fator 3 Associado a Receptor de TNF , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases , Células Vero
12.
J Virol ; 96(10): e0007022, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35499322

RESUMO

In global infection and serious morbidity and mortality, porcine epidemic diarrhea virus (PEDV) has been regarded as a dreadful porcine pathogen, but the existing commercial vaccines are not enough to fully protect against the epidemic strains. Therefore, it is of great necessity to feature the PEDV-host interaction and develop efficient countermeasures against viral infection. As an RNA/DNA protein, the trans-active response DNA binding protein (TARDBP) plays a variety of functions in generating and processing RNA, including transcription, splicing, transport, and mRNA stability, which have been reported to regulate viral replication. The current work aimed to detect whether and how TARDBP influences PEDV replication. Our data demonstrated that PEDV replication was significantly suppressed by TARDBP, regulated by KLF16, which targeted its promoter. We observed that through the proteasomal and autophagic degradation pathway, TARDBP inhibited PEDV replication via the binding as well as degradation of PEDV-encoded nucleocapsid (N) protein. Moreover, we found that TARDBP promoted autophagic degradation of N protein via interacting with MARCHF8, an E3 ubiquitin ligase, as well as NDP52, a cargo receptor. We also showed that TARDBP promoted host antiviral innate immune response by inducing interferon (IFN) expression through the MyD88-TRAF3-IRF3 pathway during PEDV infection. In conclusion, these data revealed a new antiviral role of TARDBP, effectively suppressing PEDV replication through degrading virus N protein via the proteasomal and autophagic degradation pathway and activating type I IFN signaling via upregulating the expression of MyD88. IMPORTANCE PEDV refers to the highly contagious enteric coronavirus that has quickly spread globally and generated substantial financial damage to the global swine industry. During virus infection, the host regulates the innate immunity and autophagy process to inhibit virus infection. However, the virus has evolved plenty of strategies with the purpose of limiting IFN-I production and autophagy processes. Here, we identified that TARDBP expression was downregulated via the transcription factor KLF16 during PEDV infection. TARDBP could inhibit PEDV replication through the combination as well as degradation of PEDV-encoded nucleocapsid (N) protein via proteasomal and autophagic degradation pathways and promoted host antiviral innate immune response by inducing IFN expression through the MyD88-TRAF3-IRF3 pathway. In sum, our data identify a novel antiviral function of TARDBP and provide a better grasp of the innate immune response and protein degradation pathway against PEDV infection.


Assuntos
Infecções por Coronavirus , Proteínas de Ligação a DNA , Interferon Tipo I , Vírus da Diarreia Epidêmica Suína , Replicação Viral , Animais , Infecções por Coronavirus/veterinária , Proteínas de Ligação a DNA/metabolismo , Imunidade Inata , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/fisiologia , RNA/metabolismo , Transdução de Sinais , Suínos , Fator 3 Associado a Receptor de TNF/metabolismo
13.
Vet Res ; 54(1): 106, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968713

RESUMO

African swine fever virus (ASFV) is a highly contagious and deadly virus that leads to high mortality rates in domestic swine populations. Although the envelope protein CD2v of ASFV has been implicated in immunomodulation, the molecular mechanisms underlying CD2v-mediated immunoregulation remain unclear. In this study, we generated a stable CD2v-expressing porcine macrophage (PAM-CD2v) line and investigated the CD2v-dependent transcriptomic landscape using RNA-seq. GO terms enrichment analysis and gene set enrichment analysis revealed that CD2v predominantly affected the organization and assembly process of the extracellular matrix. Wound healing and Transwell assays showed that CD2v inhibited swine macrophage migration. Further investigation revealed a significant decrease in the expression of transcription factor early growth response 1 (EGR1) through inhibiting the activity of extracellular signal-regulated kinase 1 and 2 (ERK1/2). Notably, EGR1 knockout in swine macrophages restricted cell migration, whereas EGR1 overexpression in PAM-CD2v restored the ability of macrophage migration, suggesting that CD2v inhibits swine macrophage motility by downregulating EGR1 expression. Furthermore, we performed chromatin immunoprecipitation and sequencing for EGR1 and the histone mark H3K27 acetylation (H3K27ac), and we found that EGR1 co-localized with the activated histone modification H3K27ac neighboring the transcriptional start sites. Further analysis indicated that EGR1 and H3K27ac co-occupy the promoter regions of cell locomotion-related genes. Finally, by treating various derivatives of swine macrophages with lipopolysaccharides, we showed that depletion of EGR1 decreased the expression of inflammatory cytokines including TNFα, IL1α, IL1ß, IL6, and IL8, which play essential roles in inflammation and host immune response. Collectively, our results provide new insights into the immunomodulatory mechanism of ASFV CD2v.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Doenças dos Suínos , Suínos , Animais , Vírus da Febre Suína Africana/genética , Citocinas/genética , Citocinas/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Virais/metabolismo , Macrófagos , Movimento Celular
14.
Emerg Infect Dis ; 28(7): 1489-1493, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35680129

RESUMO

During 2018-2020, we isolated 32 Eurasian avian-like swine influenza A(H1N1) viruses and their reassortant viruses from pigs in China. Genomic testing identified a novel reassortant H3N1 virus, which emerged in late 2020. Derived from G4 Eurasian H1N1 and H3N2 swine influenza viruses. This virus poses a risk for zoonotic infection.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Animais , Aves , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A , Influenza Humana/epidemiologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Filogenia , Vírus Reordenados/genética , Suínos , Doenças dos Suínos/epidemiologia
15.
J Virol ; 95(19): e0064521, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34287043

RESUMO

Porcine epidemic diarrhea virus (PEDV) is a globally distributed alphacoronavirus that has reemerged lately, resulting in large economic losses. During viral infection, type I interferon (IFN-I) plays a vital role in the antiviral innate immunity. However, PEDV has evolved strategies to limit IFN-I production. To suppress virus replication, the host must activate IFN-stimulated genes and some host restriction factors to circumvent viral replication. This study observed that PEDV infection induced early growth response gene 1 (EGR1) expression in PEDV-permissive cells. EGR1 overexpression remarkably suppressed PEDV replication. In contrast, depletion of EGR1 led to a significant increase in viral replication. EGR1 suppressed PEDV replication by directly binding to the IFN-regulated antiviral (IRAV) promoter and upregulating IRAV expression. A detailed analysis revealed that IRAV interacts and colocalizes with the PEDV nucleocapsid (N) protein, inducing N protein degradation via the E3 ubiquitin ligase MARCH8 to catalyze N protein ubiquitination. Knockdown of endogenous MARCH8 significantly reversed IRAV-mediated N protein degradation. The collective findings demonstrate a new mechanism of EGR1-mediated viral restriction, in which EGR1 upregulates the expression of IRAV to degrade PEDV N protein through MARCH8. IMPORTANCE PEDV is a highly contagious enteric coronavirus that has rapidly emerged worldwide and has caused severe economic losses. No currently available drugs or vaccines can effectively control PEDV. PEDV has evolved many strategies to limit IFN-I production. We identified EGR1 as a novel host restriction factor and demonstrated that EGR1 suppresses PEDV replication by directly binding to the IRAV promoter and upregulating the expression of IRAV, which interacts with and degrades the PEDV N protein via the E3 ubiquitin ligase MARCH8 to catalyze nucleocapsid protein ubiquitination, which adds another layer of complexity to the innate antiviral immunity of this newly identified restriction factor. A better understanding of the innate immune response to PEDV infection will aid the development of novel therapeutic targets and more effective vaccines against virus infection.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/farmacologia , Proteínas do Nucleocapsídeo/metabolismo , Vírus da Diarreia Epidêmica Suína/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/metabolismo , Chlorocebus aethiops , Infecções por Coronavirus , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Interferon Tipo I/metabolismo , Nucleocapsídeo/metabolismo , Vírus da Diarreia Epidêmica Suína/genética , Suínos , Doenças dos Suínos/virologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Células Vero
16.
Arch Virol ; 166(7): 1903-1911, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33900472

RESUMO

Tripartite motif protein 21 (TRIM21) is an E3 ubiquitin ligase and cytosolic antibody receptor of the TRIM family. Previous reports have indicated that TRIM21 plays an important role during viral infection. This study aimed at examining the role of TRIM21 in the replication of porcine epidemic diarrhea virus (PEDV) and showed that TRIM21 inhibits PEDV proliferation by targeting and degrading the nucleocapsid (N) protein through the proteasomal pathway. Furthermore, the endogenous expression of TRIM21 was found to be downregulated by PEDV infection in Vero and LLC-PK1 cells. Overexpression of TRIM21 inhibited PEDV replication, whereas knockdown of TRIM21 increased viral titers and N protein levels. TRIM21 was found to interact and colocalize with the N protein, and the TRIM21-mediated antiviral effect was dependent on its ubiquitin ligase activity, which engages in polyubiquitination and degradation of the N protein in a proteasome-dependent manner. Taken together, these findings provide information about the role of TRIM21 in PEDV proliferation and increase our understanding of host-virus interactions.


Assuntos
Proliferação de Células/fisiologia , Infecções por Coronavirus/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Vírus da Diarreia Epidêmica Suína/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ribonucleoproteínas/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Regulação para Baixo/fisiologia , Células HEK293 , Células HeLa , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Proteólise , Suínos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Células Vero , Replicação Viral/fisiologia
17.
Virol J ; 17(1): 46, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245493

RESUMO

BACKGROUND: Porcine epidemic diarrhea virus (PEDV) infection causes an acute enteric tract infectious disease characterized by vomiting, anorexia, dehydration, weight loss and high mortality in neonatal piglets. During PEDV infection, the spike protein (S) is a major virion structural protein interacting with receptors and inducing neutralizing antibodies. However, the neutralizing B-cell epitopes within PEDV S protein have not been well studied. METHODS: To accurately identify the important immunodominant region of S1, the purified truncated S1 proteins (SA, SB, SC, SD and SE) were used to immunize BALB/c mice to prepare polyclonal antibodies. The antisera titers were determined by indirect ELISA, western blot and IFA after four immunizations to find the important immunodominant region of S1, and then purified the immunodominant region of S1 protein and immunized mice to generate the special antibodies, and then used recombinant peptides to determine the B-cell epitopes of monoclonal antibodies. RESULTS: Five antisera of recombinant proteins of the spike protein region of PEDV were generated and we found that only the polyclonal antibody against part of the S1 region (signed as SE protein, residues 666-789) could recognize the native PEDV. Purified SE protein was used to immunize BALB/c mice and generate mAb 2E10. Pepscan of the SE protein demonstrated that SE16 (722SSTFNSTREL731) is the minimal linear epitope required for reactivity with the mAb 2E10. Further investigation indicated that the epitope SE16 was localized on the surface of PEDV S protein in the 3D structure. CONCLUSIONS: A mAb 2E10 that is specifically bound to PEDV was generated and identified a specific linear B-cell epitope (SE16, 722SSTFNSTREL731) of the mAb. The epitope region of PEDV S1 localized in the different regions in comparison with the earlier identified epitopes. These findings enhance the understanding of the PEDV spike protein structure for vaccine design and provide a potential use for developing diagnostic methods to detect PEDV.


Assuntos
Epitopos de Linfócito B/imunologia , Epitopos Imunodominantes/imunologia , Vírus da Diarreia Epidêmica Suína/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Chlorocebus aethiops , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Vírus da Diarreia Epidêmica Suína/química , Células Vero
18.
J Labelled Comp Radiopharm ; 63(5): 212-221, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32083750

RESUMO

Pyropheophorbide-a (Pyro) is a promising multifunctional molecule for multimodal tumour imaging and photodynamic therapy, but its clinical applications are seriously restricted by the limited tumour accumulation capability. Here, we designed and synthesized a small-molecule probe that achieved specific dual-modal tumour imaging based on Pyro. Briefly, a novel molecule combining Pyro, an RGD dimer peptide (3PRGD2 ) and 64 Cu, was designed and synthesized, and the obtained molecule, 64 Cu-Pyro-3PRGD2 , exhibited high tumour specificity in both positron emission tomography and optical imaging in vivo. c (RGDfk) peptide blocking significantly reduced the efficacy of the probe, which confirmed the integrin αV ß3 targeting of this molecular probe. 64 Cu-Pyro-3PRGD2 had very low accumulation in normal organs and could be rapidly cleared through kidney metabolism, which prevented the potential damage to adjacent normal tissues. Overall, combining tumour targeting, dual-modal imaging, and biosafety, 64 Cu-Pyro-3PRGD2 has the potential for clinical use as a molecular imaging probe for tumour diagnosis.


Assuntos
Radioisótopos de Cobre/química , Integrina alfaVbeta3/metabolismo , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Porfirinas/química , Porfirinas/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Animais , Desenho de Fármacos , Humanos
19.
Angew Chem Int Ed Engl ; 59(7): 2649-2653, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31765075

RESUMO

Crystal phase engineering is a powerful strategy for regulating the performance of electrocatalysts towards many electrocatalytic reactions, while its impact on the nitrogen electroreduction has been largely unexplored. Herein, we demonstrate that structurally ordered body-centered cubic (BCC) PdCu nanoparticles can be adopted as active, selective, and stable electrocatalysts for ammonia synthesis. Specifically, the BCC PdCu exhibits excellent activity with a high NH3 yield of 35.7 µg h-1 mg-1 cat , Faradaic efficiency of 11.5 %, and high selectivity (no N2 H4 is detected) at -0.1 V versus reversible hydrogen electrode, outperforming its counterpart, face-centered cubic (FCC) PdCu, and most reported nitrogen reduction reaction (NRR) electrocatalysts. It also exhibits durable stability for consecutive electrolysis for five cycles. Density functional theory calculation reveals that strong orbital interactions between Pd and neighboring Cu sites in BCC PdCu obtained by structure engineering induces an evident correlation effect for boosting up the Pd 4d electronic activities for efficient NRR catalysis. Our findings open up a new avenue for designing active and stable electrocatalysts towards NRR.

20.
Biochem Biophys Res Commun ; 519(2): 330-336, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31514997

RESUMO

Pseudorabies virus (PRV), the agent of pseudorabies, has raised considerable attention since 2011 due to the outbreak of emerging PRV variants in China. In the present study, we obtained two monoclonal antibodies (mAbs) known as 2E5 and 5C3 against the glycoprotein E (gE) of a PRV variant (JS-2012 strain). The two mAbs reacted with wild PRV but not the vaccine strain (gE-deleted virus). The 2E5 was located in 161RLRRE165, which was conserved in almost of all PRV strains, while 5C3 in 148EMGIGDY154 was different from almost of all genotype I PRV, in which the 149th amino acid is methionine (M) instead of arginine (R). The two epitopes peptides located in the hydrophilic region and reacted with positive sera against genotype II PRV (JS-2012), which suggests they were likely dominant B-cell epitopes. Furthermore, the mutant peptide 148ERGIGDY154 (genotype I) did not react with the mAb 5C3 or positive sera against genotype II PRV (JS-2012). In conclusion, both mAb 2E5 and 5C3 could be used to identify wild PRV strains from vaccine strains, and mAb 5C3 and the epitope peptide of 5C3 might be used for epidemiological investigation to distinguish genotype II from genotype I PRV.


Assuntos
Anticorpos Monoclonais/imunologia , Epitopos de Linfócito B/imunologia , Herpesvirus Suídeo 1/química , Proteínas do Envelope Viral/imunologia , Animais , Linhagem Celular , Chlorocebus aethiops , Herpesvirus Suídeo 1/efeitos dos fármacos , Herpesvirus Suídeo 1/imunologia , Camundongos , Peptídeos/farmacologia , Suínos , Células Vero , Proteínas do Envelope Viral/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa