Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 24(5): 1510-1521, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38285667

RESUMO

α-PD-L1 therapy has shown encouraging results at harnessing the immune system to combat cancer. However, the treatment effect is relatively low due to the dense extracellular matrix (ECM) and tumor immunosuppressive microenvironment (TIME). Therefore, an ultrasound (US)-responsive nanosensitizer (URNS) is engineered to deliver losartan (LST) and polyethylenimine (PEI) to remolde the TME, driving "cold"-"hot" tumor transformation and enhancing the sensitivity of α-PD-L1 therapy. In the tumor site, noninvasive US can make MTNP generate ROS, which cleave ROS-sensitive bonds to dissociate MTNPtK@LST-PEI, shedding PEI and releasing LST from mesoporous spheres. The results demonstrated that URNS combined with α-PD-L1 therapy effectively inhibited tumor growth with an inhibition rate as high as 90%, which was 1.7-fold higher than that of the α-PD-L1 treatment in vivo. In summary, the URNS improves the sensitivity of α-PD-L1 therapy by remodeling the TME, which provides promising insights for optimizing cancer immunotherapy.


Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Espécies Reativas de Oxigênio , Matriz Extracelular , Imunossupressores , Imunoterapia , Losartan , Polietilenoimina , Microambiente Tumoral
2.
Small ; 20(13): e2306699, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37963830

RESUMO

Engineered macrophages are a promising tool for drug delivery and immunotherapy in cancer treatment. However, simultaneous targeted enrichment and controllable immunological activation of these macrophages at the tumor site remains challenging. As a solution, macrophages loaded with an advanced nanoparticle encapsulating CpG-conjugated magnetic nanoclusters (MNC) with indocyanine green (ICG) and nigericin (NIG) (MNC-ICG-NIG@SiO2 (MINS)), utilizing Se─Se bond-modified SiO2, are designed and applied in bladder cancer, which is typically managed surgically, followed by Bacillus Calmette-Guerin (BCG) adjuvant instillation therapy. Upon intravenous administration, BCG-mediated tumor-localized inflammation leads to targeted accumulation of MINS@MΦ. MINS@MΦ accumulates within the tumor tissue and is immunologically activated through laser irradiation, leading to ICG-mediated generation of reactive oxygen species, Se─Se bond cleavage, and subsequent NIG release to induce self-pyroptosis. Consequently, MINS@MΦ releases Fe2+ ions and CpG, thus promoting the M1 polarization of tumor-associated macrophages and secretion of appropriate antitumor cytokines. However, without intervention, MINS@MΦ undergoes apoptosis in the bloodstream after 48 h without eliciting any immune response. Therefore, this innovative approach optimizes and enhances the efficacy of BCG immunotherapy by precisely modulating the cytokines for effective bladder cancer treatment without inducing a systemic inflammatory response.


Assuntos
Mycobacterium bovis , Neoplasias da Bexiga Urinária , Humanos , Citocinas , Piroptose , Vacina BCG/uso terapêutico , Dióxido de Silício , Macrófagos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Imunoterapia
3.
Small ; : e2310416, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38660815

RESUMO

Synergistic therapy has shown greater advantages compared with monotherapy. However, the complex multiple-administration plan and potential side effects limit its clinical application. A transformable specific-responsive peptide (TSRP) is utilized to one-step achieve synergistic therapy integrating anti-tumor, anti-angiogenesis and immune response. The TSRP is composed of: i) Recognition unit could specifically target and inhibit the biological function of FGFR-1; ii) Transformable unit could self-assembly and trigger nanofibers formation; iii) Reactive unit could specifically cleaved by MMP-2/9 in tumor micro-environment; iv) Immune unit, stimulate the release of immune cells when LTX-315 (Immune-associated oncolytic peptide) exposed. Once its binding to FGFR-1, the TSRP could cleaved by MMP-2/9 to form the nanofibers on the cell membrane, with a retention time of up to 12 h. Through suppressing the phosphorylation levels of ERK 1/2 and PI3K/AKT signaling pathways downstream of FGFR-1, the TSRP significant inhibit the growth of tumor cells and the formation of angioginesis. Furthermore, LTX-315 is exposed after TSRP cleavage, resulting in Calreticulin activation and CD8+ T cells infiltration. All above processes together contribute to the increasing survival rate of tumor-bearing mice by nearly 4-folds. This work presented a unique design for the biological application of one-step synergistic therapy of bladder cancer.

4.
Small ; 19(25): e2300060, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36929045

RESUMO

Nanoscale drug carriers play a crucial role in reducing side effects of chemotherapy drugs. However, the mononuclear phagocyte system (MPS) and the drug protonation after nanoparticles (NPs) burst release still limit the drug delivery efficiency. In this work, a self-disguised Nanospy is designed to overcome this problem. The Nanospy is composed of: i) poly (lactic-co-glycolic acid)-polyethylene glycol (PLGA-PEG) loading doxorubicin is the core structure of the Nanospy. ii) CD47 mimic peptides (CD47p) is linked to NPs which conveyed the "don't eat me" signal. iii) 4-(2-aminoethyl) benzenesulfonamide (AEBS) as the inhibitor of Carbonic anhydrase IX (CAIX) linked to NPs. Briefly, when the Nanospy circulates in the bloodstream, CD47p binds to the regulatory protein α (SIRPα) on the surface of macrophages, which causes the Nanospy escapes from phagocytosis. Subsequently, the Nanospy enriches in tumor and the AEBS reverses the acidic microenvironment of tumor. Due to above characteristics, the Nanospy reduces liver macrophage phagocytosis by 25% and increases tumor in situ DOX concentration by 56% compared to PLGA@DOX treatment. In addition, the Nanospy effectively inhibits tumor growth with a 63% volume reduction. This work presents a unique design to evade the capture of MPS and overcomes the influence of acidic tumor microenvironment (TME) on weakly alkaline drugs.


Assuntos
Nanopartículas , Neoplasias , Humanos , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/química , Doxorrubicina/química , Neoplasias/tratamento farmacológico , Nanopartículas/química , Peptídeos/uso terapêutico , Liberação Controlada de Fármacos , Polietilenoglicóis/química , Microambiente Tumoral
5.
New Phytol ; 231(1): 432-446, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33792940

RESUMO

Investigation into plant-fungal pathogen interactions is one of the most interesting fields in plant sciences. However, the roles of plant volatile organic compounds in the arms race are still largely unknown. Based on precise quantification of plant volatiles, we discovered that the plant volatile organic compound (E)-2-hexenal, at concentrations that were similar to or lower than those in tissues of strawberry and tomato fruits, upregulates sulfate assimilation in spores and hyphae of the phytopathogenic fungus Botrytis cinerea. This upregulation is independent of the types of sulfur sources in the plant and can be achieved in the presence of inorganic sulfate and organic sulfur sources. Using the fungal deletion mutants, we further found that sulfate assimilation is involved in the infection of tomato and strawberry fruits by B. cinerea, and that the severity of the disease is proportional to the sulfate content in the fruits. Both before and during the infection, (E)-2-hexenal induced utilisation of plant sulfate by B. cinerea facilitates its pathogenesis through enhancing its tolerance to oxidative stress. This work provides novel insights into the role of plant volatiles in plant-fungal pathogen interaction and highlights the importance of sulfur levels in the host in the prevention of grey mould disease.


Assuntos
Botrytis , Compostos Orgânicos Voláteis , Aldeídos , Frutas , Doenças das Plantas , Sulfatos
6.
Plant Cell Environ ; 42(3): 815-831, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30481398

RESUMO

Ultraviolet-C (UV-C) radiation has been reported to induce defence responses to pathogens in growing crops and described as a new environmentally friendly method for disease control. However, whether the effect of the induced defence mechanisms will persist after the stress imposed by UV-C is alleviated and how these mechanisms interact with pathogen elicitors upon infection have not yet been investigated. Thus, we inoculated strawberry plants with Mycosphaerella fragariae, the causal agent of leaf spot disease, after 5 weeks of repeated UV-C irradiation treatment (cumulative dose of 10.2 kJ m-2 ) and investigated the alteration of gene expression and biochemical phenotypes. The results revealed that UV-C treatment had a significant impact on gene expression in strawberry leaves and led to the overexpression of a set of genes involved in plant-pathogen interaction. UV-C-treated leaves displayed a stronger response to infection after inoculation, with reduced symptoms and increases in accumulation of total phenolics and volatile terpenes, higher expression of pathogenesis-related proteins and the activity of several defence enzymes. This study presumptively describe, for the first time, the involvement of terpenes, reactive oxygen species, and abscisic acid, salicylic acid, jasmonic acid, and their transduction factors, in the network underpinning UV-C priming of growing crops for improved protection against pathogens.


Assuntos
Ascomicetos , Fragaria/efeitos da radiação , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Terpenos/metabolismo , Raios Ultravioleta , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/efeitos da radiação , Fragaria/metabolismo , Fragaria/microbiologia , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia
7.
Anticancer Drugs ; 25(9): 1035-43, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24999836

RESUMO

Matrine has been used in anti-inflammatory and anticancer therapies for a long time. However, the antimetastatic effect and molecular mechanism(s) of matrine on osteosarcoma are still unclear. Therefore, the aim of this study was to assess the effects of matrine and related mechanism(s) on osteosarcoma cells. In the study, we found that matrine inhibited the proliferation of osteosarcoma cells in vivo and in vitro and inhibited tumor cell metastasis in vitro at cytotoxic doses. Matrine also decreased the expression of the matrix metalloproteinases-2 and 9, decreased p50 and p65 nuclear translocation, and decreased the phosphorylated level of I-κ-B (IκB)-ß. In addition, matrine reduced the phosphorylated levels of extracellular signal-regulated kinase 1/2 proteins, which regulate the invasion of poorly differentiated cancer cells. Finally, when U2OS cells were grown as xenografts in nude mice, intragastric administration of matrine induced a significant dose-dependent decrease in tumor growth. These results show the anticancer properties of matrine, which include the inhibition of invasion and proliferation of human osteosarcoma cells.


Assuntos
Alcaloides/farmacologia , Antineoplásicos/farmacologia , Neoplasias Ósseas/patologia , NF-kappa B/metabolismo , Osteossarcoma/patologia , Quinolizinas/farmacologia , Alcaloides/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Xenoenxertos , Humanos , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Invasividade Neoplásica/patologia , Osteossarcoma/tratamento farmacológico , Fosforilação , Quinolizinas/uso terapêutico , Transdução de Sinais , Matrinas
8.
Gene ; 927: 148645, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38844271

RESUMO

BACKGROUND: Osteosarcoma is a common malignant tumor with a low survival rate after metastasis. Current treatments have not proven to effectively increase patient survival rates. Immunotherapy is a promising new treatment approach, however, immune target therapy has not shown satisfactory results. This study aims to provide new insights and evidence for the use of immunotherapy in osteosarcoma, based on a comprehensive analysis of gene expression data from databases. METHODS: Gene expression and GSAV analysis were conducted on samples from patients with metastatic and non-metastatic osteosarcoma in the TARGET and GEO databases to identify relevant genes. These genes were further analyzed using GO, KEGG, GSVA, correlation analysis, and immune microenvironment scoring techniques. The tissue location of gene expression was confirmed through single-cell analysis. Validation of gene expression patterns was performed using polymerase chain reaction, western blot, and immunohistochemistry. RESULTS: The study identified FUCA1 and NCKAP1L as significantly enriched in non-metastatic osteosarcoma, with higher expression associated with better patient survival rates. Gene function enrichment was primarily related to immune functions, with positive correlations to macrophage phagocytosis, antigen presentation, and macrophage polarization pathways. Analysis of the immune microenvironment revealed a positive correlation between gene expression and immune scores, with increased presence of macrophages, T cells, and B cells in the high expression group. Single-cell analysis and experimental results confirmed the enrichment of FUCA1 and NCKAP1L in macrophages. CONCLUSION: The identification of FUCA1 and NCKAP1L as potential prognostic biomarkers suggests their potential for improving patient outcomes. Modulation of macrophages may offer a promising strategy for enhancing the immune microenvironment in osteosarcoma.

9.
Comput Math Methods Med ; 2022: 7549894, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35075370

RESUMO

PURPOSE: Osteosarcoma (OS) is the most primary bone malignant tumor in adolescents. Although the treatment of OS has made great progress, patients' prognosis remains poor due to tumor invasion and metastasis. MATERIALS AND METHODS: We downloaded the expression profile GSE12865 from the Gene Expression Omnibus database. We screened differential expressed genes (DEGs) by making use of the R limma software package. Based on Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene Set Enrichment Analysis, we performed the function and pathway enrichment analyses. Then, we constructed a Protein-Protein Interaction network and screened hub genes through the Search Tool for the Retrieval of Interacting Genes. RESULT: By analyzing the gene expression profile GSE12865, we obtained 703 OS-related DEGs, which contained 166 genes upregulated and 537 genes downregulated. The DEGs were primarily abundant in ribosome, cell adhesion molecules, ubiquitin-ubiquitin ligase activity, and p53 signaling pathway. The hub genes of OS were KDR, CDH5, CD34, CDC42, RBX1, POLR2C, PPP2CA, and RPS2 through PPI network analysis. Finally, GSEA analysis showed that cell adhesion molecules, chemokine signal pathway, transendothelial migration, and focal adhesion were associated with OS. CONCLUSION: In this study, through analyzing microarray technology and bioinformatics analysis, the hub genes and pathways about OS are identified, and the new molecular mechanism of OS is clarified.


Assuntos
Neoplasias Ósseas/genética , Redes Reguladoras de Genes , Osteossarcoma/genética , Biologia Computacional , Bases de Dados Genéticas/estatística & dados numéricos , Regulação para Baixo , Perfilação da Expressão Gênica/estatística & dados numéricos , Regulação Neoplásica da Expressão Gênica , Ontologia Genética/estatística & dados numéricos , Humanos , Mapas de Interação de Proteínas/genética , Transdução de Sinais/genética , Regulação para Cima
10.
ACS Nano ; 16(4): 5515-5528, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35352555

RESUMO

Nearly half of pregnancies worldwide are unintended mainly due to failure of contraception, resulting in negative effects on women's health. Male contraception techniques, primarily condoms and vasectomy, play a crucial role in birth control, but cannot be both highly effective and reversible at the same time. Herein, an ultrasound (US)-induced self-clearance hydrogel capable of real-time monitoring is utilized for in situ injection into the vas deferens, enabling effective contraception and noninvasive recanalization whenever needed. The hydrogel is composed of (i) sodium alginate (SA) conjugated with reactive oxygen species (ROS)-cleavable thioketal (SA-tK), (ii) titanium dioxide (TiO2), which can generate a specific level of ROS after US treatment, and (iii) calcium chloride (CaCl2), which triggers the formation of the hydrogel. For contraception, the above mixture agents are one-time injected into the vas deferens, which can transform from liquid to hydrogel within 160 s, thereby significantly physically blocking the vas deferens and inhibiting movability of sperm. When fertility is needed, a noninvasive remedial ultrasound can make TiO2 generate ROS, which cleaves SA-tK to destroy the network of the hydrogel. Owing to the recanalization, the refertility rate is restored to 100%. Meanwhile, diagnostic ultrasound (D-US, 22 MHz) can monitor the occlusion and recanalization process in real-time. In summary, the proposed hydrogel contraception can be a reliable, safe, and reversible male contraceptive strategy that addresses an unmet need for men to control their fertility.


Assuntos
Hidrogéis , Sêmen , Gravidez , Masculino , Feminino , Humanos , Espécies Reativas de Oxigênio , Anticoncepção/métodos , Ultrassonografia
11.
Oncol Lett ; 22(5): 763, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34539867

RESUMO

The metastasis of osteosarcoma is a major threat to both adolescents and young adults. Identifying novel targets that may prevent osteosarcoma metastasis is critical in developing advanced clinical therapies for treating this cancer. The present study aimed to explore the mechanism of microRNA (miR)-545-5p in the metastasis of osteosarcoma. The present study identified miR-545-5p as a potential target that was downregulated in both osteosarcoma clinical samples and cell lines, and in the latter, ectopically expressed miR-545-5p caused apoptosis. In addition, miR-545-5p exerted inhibitory effects in osteosarcoma migration and invasion. Overexpression of miR-545-5p induced xenograft growth inhibition in vivo. In addition, miR-545-5p targeted dimethyladenosine transferase 1 (DIMT1), an oncogenic protein that facilitates osteosarcoma proliferation, migration and invasion. Taken together, the results of the present study suggest that miR-545-5p functions as a tumor suppressor in osteosarcoma that promotes apoptosis, while inhibiting migration and invasion by targeting DIMT1. Taken together, the results of the present study suggest two potential novel targets for osteosarcoma treatment and metastasis prevention.

12.
J Pers Med ; 11(5)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923231

RESUMO

The use of cyclin-dependent kinase 4/6 (CDK4/6) inhibitors represents a potent strategy for cancer therapy. Due to the complex molecular network that regulates cell cycle progression, cancer cells often acquire resistance mechanisms against these inhibitors. Previously, our group identified molecular factors conferring resistance to CDK4/6 inhibition in bladder cancer (BLCA) that also included components within the DNA repair pathway. In this study, we validated whether a combinatory treatment approach of the CDK4/6 inhibitor Palbociclib with Poly-(ADP-Ribose) Polymerase (PARP) inhibitors improves therapy response in BLCA. First, a comparison of PARP inhibitors Talazoparib and Olaparib showed superior efficacy of Talazoparib in vitro and displayed high antitumor activity in xenografts in the chicken chorioallantoic membrane (CAM) model. Moreover, the combination of Talazoparib and the CDK4/6 inhibitor Palbociclib synergistically reduced tumor growth in Retinoblastoma protein (RB)-positive BLCA in vitro and in a CAM model, an effect that relies on Palbociclib-induced cell cycle arrest in G0/G1-phase complemented by a G2 arrest induced by Talazoparib. Interestingly, Talazoparib-induced apoptosis was reduced by Palbociclib. The combination of Palbociclib and Talazoparib effectively enhances BLCA therapy, and RB is a molecular biomarker of response to this treatment regimen.

13.
Oncol Lett ; 20(4): 79, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32863912

RESUMO

Zinc finger protein 281 (ZNF281) has been characterized as a tumor suppressive lncRNA in glioma. The present study aimed to analyze the functionality of ZNF281 in osteosarcoma (OS). It was demonstrated that ZNF281 was downregulated in OS tissue specimens and predicted the survival of patients with OS. In tissues from patients with OS, ZNF281 was negatively associated with rho-associated coiled-coil containing protein kinase 1 (ROCK1), but positively associated with miR-144. In the U2OS cell line, ZNF281 overexpression mediated the upregulation of miR-44 and downregulation of ROCK1. miR-144 overexpression led to the downregulation of ROCK1, but failed to affect ZNF281. Expression of ZNF281 and miR-144 resulted in decreased cell migration and invasion, while ROCK1 overexpression resulted in increased invasion and migration of OS cells. In addition, ROCK1 overexpression attenuated the effects of ZNF281 and miR-144 overexpression. Thus, ZNF281 may downregulate ROCK1 by upregulating miR-144 and inhibit cancer cell invasion and migration in OS.

14.
Methods Mol Biol ; 2081: 211-217, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31721128

RESUMO

For the analysis of tumorigenesis and therapeutic intervention, high throughput technologies that allow the detection of tumor size in the context of a living organism are of need. Here we describe the use of a chorioallantoic membrane model in the developing chick embryo on which growth of a tumor xenograft can be monitored over time, enabling bioluminescence technology.


Assuntos
Membrana Corioalantoide/metabolismo , Medições Luminescentes/métodos , Imagem Molecular , Animais , Linhagem Celular Tumoral , Embrião de Galinha , Modelos Animais de Doenças , Xenoenxertos , Humanos , Imagem Molecular/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Neoplasias/patologia
15.
ACS Appl Mater Interfaces ; 12(49): 54367-54377, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33236624

RESUMO

Bladder cancer displays multiple biological features aided in drug resistance; therefore, single therapy fails to induce complete tumor regression. To address this issue, various kinds of cell death of cancer cells as well as restoring tumor immune microenvironment need to be taken into consideration. Here, we introduce a gel system termed AuNRs&IONs@Gel, which target-delivers a combination of photothermal, ferroptotic, and immune therapy through intravesical instillation. AuNRs&IONs@Gel consists of a gel delivery platform, embedded gold nanorods (AuNRs), and iron oxide nanoparticles (IONs). The targeted delivery gel platform provides dextran aldehyde-selective adhesion with cancer collagen. In this condition, photothermal therapy can be performed by gold nanorods (AuNRs) under imaging-guided near-infrared radiation. Local high concentrations of IONs can be absorbed by cancer cell to induce ferroptosis. Moreover, tumor-associated macrophages which often display an immune-suppressive M2-like phenotype will be repolarized by IONs into the antitumor M1-like phenotype, exerting a direct antitumor effect and professional antigen presentation of dead cancer cells. This process triggers a potent immune response of innate and adapt immunities to protect tumor rechallenge in long terms. Our triple-therapy strategy employs FDA-approved nanoparticles to inhibit bladder cancer which may possess great potential for clinical translation.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Géis/química , Neoplasias da Bexiga Urinária/terapia , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Animais , Linhagem Celular Tumoral , Terapia Combinada , Dextranos/química , Feminino , Compostos Férricos/química , Ferroptose/efeitos dos fármacos , Géis/farmacologia , Géis/uso terapêutico , Ouro/química , Humanos , Raios Infravermelhos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nanoestruturas/química , Nanoestruturas/toxicidade , Polímeros/química , Espécies Reativas de Oxigênio/metabolismo , Neoplasias da Bexiga Urinária/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Agric Food Chem ; 67(33): 9265-9276, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31361479

RESUMO

Fungal infections significantly alter the emissions of volatile organic compounds (VOCs) by plants, but the mechanisms for VOCs affecting fungal infections of plants remain largely unknown. Here, we found that infection by Botrytis cinerea upregulated linalool production by strawberries and fumigation with linalool was able to inhibit the infection of fruits by the fungus. Linalool treatment downregulated the expression of rate-limiting enzymes in the ergosterol biosynthesis pathway, and this reduced the ergosterol content in the fungi cell membrane and impaired membrane integrity. Linalool treatment also caused damage to mitochondrial membranes by collapsing mitochondrial membrane potential and also downregulated genes involved in adenosine triphosphate (ATP) production, resulting in a significant decrease in the ATP content. Linalool treatment increased the levels of reactive oxygen species (ROS), in response to which the treated fungal cells produced more of the ROS scavenger pyruvate. RNA-Seq and proteomic analysis data showed that linalool treatment slowed the rates of transcription and translation.


Assuntos
Botrytis/efeitos dos fármacos , Fragaria/metabolismo , Frutas/microbiologia , Monoterpenos/metabolismo , Doenças das Plantas/microbiologia , Compostos Orgânicos Voláteis/metabolismo , Monoterpenos Acíclicos , Trifosfato de Adenosina/metabolismo , Botrytis/crescimento & desenvolvimento , Fragaria/química , Fragaria/microbiologia , Frutas/química , Frutas/metabolismo , Interações Hospedeiro-Patógeno , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Monoterpenos/farmacologia , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteômica , Espécies Reativas de Oxigênio/metabolismo , Compostos Orgânicos Voláteis/farmacologia
17.
J Exp Clin Cancer Res ; 38(1): 322, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31331377

RESUMO

BACKGROUND: CDK4/6 inhibitors are a promising treatment strategy in tumor therapy but are hampered by resistance mechanisms. This study was performed to reveal predictive markers, mechanisms of resistance and to develop rational combination therapies for a personalized therapy approach in bladder cancer. METHODS: A genome-scale CRISPR-dCas9 activation screen for resistance to the CDK4/6 inhibitor Palbociclib was performed in the bladder cancer derived cell line T24. sgRNA counts were analyzed using next generation sequencing and MAGeCK-VISPR. Significantly enriched sgRNAs were cloned and validated on a molecular and functional level for mediating resistance to Palbociclib treatment. Analysis was done in vitro and in vivo in the chorioallantois membrane model of the chicken embryo. Comparison of screen hits to signaling pathways and clinically relevant molecular alterations was performed using DAVID, Reactome, DGIdb and cBioPortal. RESULTS: In the screen, 1024 sgRNAs encoding for 995 genes were significantly enriched indicative of mediators of resistance. 8 random sgRNAs were validated, revealing partial rescue to Palbociclib treatment. Within this gene panel, members of Receptor-Tyrosine Kinases, PI3K-Akt, Ras/MAPK, JAK/STAT or Wnt signaling pathways were identified. Combination of Palbociclib with inhibitors against these signaling pathways revealed beneficial effects in vitro and in in vivo xenografts. CONCLUSIONS: Identification of potential predictive markers, resistance mechanisms and rational combination therapies could be achieved by applying a CRISPR-dCas9 screening approach in bladder cancer.


Assuntos
Genômica , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Galinhas , Membrana Corioalantoide/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Xenoenxertos , Humanos , Camundongos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
18.
Food Chem ; 299: 125138, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31302430

RESUMO

As an environmentally friendly approach for fruit quality improvement, the effect of preharvest UV-C on the physiology of strawberry fruit during postharvest storage remains to be assessed. Strawberry fruit developed with supplementary UV-C were stored at room temperature for 2 weeks. Preharvest UV-C attenuated fruit postharvest senescence and altered phytochemicals composition. Higher ester titer was found in the treated fruit at harvest, whereas higher terpene and furanone contents were detected after 72 h of storage. At harvest, polyphenolics accumulated to a higher level in UV-C group, but the difference disappeared after 24 h of storage. Meanwhile, the intrinsic level of abscisic acid and the expressions of FaPYR1, SnRK2, and FaASR in the UV-C-treated fruit was enhanced at harvest but returned to a lower level as storage proceeded. This study highlights the time-dependent effect of preharvest UV-C on strawberry fruit postharvest biochemical indexes and the possible involvement of abscisic acid signaling factors.


Assuntos
Ácido Abscísico/metabolismo , Armazenamento de Alimentos/métodos , Fragaria/fisiologia , Frutas/fisiologia , Compostos Fitoquímicos/metabolismo , Ácido Abscísico/genética , Fragaria/química , Fragaria/efeitos da radiação , Frutas/química , Frutas/metabolismo , Frutas/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Compostos Fitoquímicos/análise , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polifenóis/análise , Polifenóis/metabolismo , Terpenos/análise , Terpenos/metabolismo , Raios Ultravioleta
20.
J Agric Food Chem ; 66(46): 12188-12197, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30384605

RESUMO

Recent studies presented preharvest ultraviolet C (UV-C) as an environmentally friendly approach for the management of horticultural crop diseases. The effect of this approach on quality preservation during postharvest storage has not yet been investigated. Strawberry fruit harvested from plants grown with supplemental UV-C were stored at room temperature for 72 h, and their postharvest shelf-life biochemical indicators were evaluated. The involvement of microRNAs (miRNAs) in the activation of UV-C-induced antioxidant systems was investigated. Preharvest UV-C contributed to the preservation of sugar and organic acid and reduced overall lipid peroxidation in strawberry fruit during storage. We found that miR159 and miR398 were downregulated by preharvest UV-C and that their respective targets were upregulated at the early stage of storage with enhancement of the activity of antioxidant enzymes. The initial burst of H2O2 and O2• - suggested that preharvest UV-C primed the fruit in an antioxidative activated state via reactive-oxygen-species-mediated feedback control with post-transcriptional involvement of miRNAs.


Assuntos
Antioxidantes/metabolismo , Fragaria/genética , Frutas/efeitos da radiação , MicroRNAs/metabolismo , Irradiação de Alimentos , Fragaria/enzimologia , Fragaria/metabolismo , Fragaria/efeitos da radiação , Frutas/enzimologia , Frutas/genética , Frutas/metabolismo , MicroRNAs/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa