Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(6): 3700-3709, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38216144

RESUMO

Acenes represent a unique class of polycyclic aromatic hydrocarbons that have fascinated chemists and physicists due to their exceptional potential for use in organic electronics. While recent advances in on-surface synthesis have resulted in higher acenes up to dodecacene, a comprehensive understanding of their fundamental properties necessitates their expansion toward even longer homologues. Here, we demonstrate the on-surface synthesis of tridecacene via atom-manipulation-induced conformational preparation and dissociation of a trietheno-bridged precursor on a Au(111) surface. The generated tridecacene has been investigated by scanning tunneling microscopy and spectroscopy (STM/STS), combined with first-principles calculations. We observe that the STS transport gap (1.09 eV) shrinks again following the gap reopening of dodecacene (1.4 eV). Spin-polarized density functional theory calculations confirm an antiferromagnetic open-shell ground-state electronic configuration for tridecacene in the gas phase. Interestingly, tridecacene's open-shell character is significantly reduced upon interaction with the Au(111) surface despite being only physisorbed. The interaction with the surface leads to a lowering of the magnetization of tridecacene, a reduced gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), compared to the gas phase, and a reduced relative energy to the nonmagnetic state, making it nearly isoenergetic. These observations show qualitatively that the influence of the Au(111) substrate on the properties of long acenes is significant, which is important for interpreting the measured STS transport gaps. Our work contributes to a fundamental understanding of the electronic properties of long acenes, confirming a nonmonotonous length-dependent HOMO-LUMO gap, and to the development of multistep tip-assisted synthesis of elusive compounds.

2.
J Comput Chem ; 45(7): 368-376, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37909259

RESUMO

The concept of chemical bonding is a crucial aspect of chemistry that aids in understanding the complexity and reactivity of molecules and materials. However, the interpretation of chemical bonds can be hindered by the choice of the theoretical approach and the specific method utilized. This study aims to investigate the effect of choosing different density functionals on the interpretation of bonding achieved through energy decomposition analysis (EDA). To achieve this goal, a data set was created, representing four bonding groups and various combinations of functionals and dispersion correction schemes. The calculations showed significant variation among the different functionals for the EDA terms, with the dispersion correction terms exhibiting the highest variability. More information was extracted by using machine learning in combination with dimensionality reduction on the data set. Results indicate that, despite the differences in the EDA terms obtained from different functionals, the functional has the least significant impact, suggesting minimal influence on the bonding interpretation.

3.
J Comput Chem ; 44(25): 1986-1997, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37526139

RESUMO

The surfaces of waimirite ß- YF 3 have been studied for their fluorine and chlorine versus water affinity. Bonding patterns of HF, HCl, and H 2 O chemically adsorbed onto surfaces of (010), (100), (011), and (101) have been quantified by density functional theory applying energy decomposition analysis. We found that the adsorption of H 2 O is dominated by about 65% of electrostatics, which causes a low surface sensitivity and weak interactions. On the contrary, the adsorptions of HF and HCl are driven by strong hydrogen bonds resulting in a highly surface-dependent ratio of 30-60% electrostatic versus orbital contribution. Among the stoichiometric surfaces, the shortest and strongest hydrogen bonds and consequently most covalent bonding patterns are found within YF 3 · HCl. However, when including the preparation energy, each surface favors the adsorption of HF over HCl, which reproduces the higher affinity of yttrium towards fluoride over chloride, previously known for solutions, also for the solid state.

4.
J Comput Chem ; 44(3): 179-189, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35397119

RESUMO

On-surface synthesis has become a thriving topic in surface science. The Ullmann coupling reaction is the most applied synthetic route today, but the nature of the organometallic intermediate is still under discussion. We investigate the bonding nature of prototypical intermediate species (phenyl, naphthyl, anthracenyl, phenanthryl, and triphenylenyl) on the Cu(111) surface with a combination of plane wave and atomic orbital basis set methods using density functional theory calculations with periodic boundary conditions. The surface bonding is shown to be of covalent nature with a polarized shared-electron bond supported by π-back donation effects using energy decomposition analysis for extended systems (pEDA). The bond angle of the intermediates is determined by balancing dispersion attraction and Pauli repulsion between adsorbate and surface. The latter can be significantly reduced by adatoms on the surface. We furthermore investigate how to choose computational parameters for pEDA of organic adsorbates on metal surfaces efficiently and show that bonding interpretation requires consistent choice of the density functional.

5.
Chemistry ; 29(72): e202302247, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37749942

RESUMO

Superelectrophilic anions constitute a special class of molecular anions that show strong binding of weak nucleophiles despite their negative charge. In this study, the binding characteristics of smaller gaseous electrophilic anions of the types [B6 X5 ]- and [B10 X9 ]- (with X=Cl, Br, I) were computationally and experimentally investigated and compared to those of the larger analogues [B12 X11 ]- . The positive charge of vacant boron increases from [B6 X5 ]- via [B10 X9 ]- to [B12 X11 ]- , as evidenced by increasing attachment enthalpies towards typical σ-donor molecules (noble gases, H2 O). However, this behavior is reversed for σ-donor-π-acceptor molecules. [B6 Cl5 ]- binds most strongly to N2 and CO, even more strongly than to H2 O. Energy decomposition analysis confirms that the orbital interaction is responsible for this opposite trend. The extended transition state natural orbitals for chemical valence method shows that the π-backdonation order is [B6 X5 ]- >[B10 X9 ]- >[B12 X11 ]- . This predicted order explains the experimentally observed red shifts of the CO and N2 stretching fundamentals compared to those of the unbound molecules, as measured by infrared photodissociation spectroscopy. The strongest red shift is observed for [B6 Cl5 N2 ]- : 222 cm-1 . Therefore, strong activation of unreactive σ-donor-π-acceptor molecules (commonly observed for cationic transition metal complexes) is achieved with metal-free molecular anions.

6.
J Chem Phys ; 159(10)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37681701

RESUMO

Quaternary III-V semiconductors are one of the most promising material classes in optoelectronics. The bandgap and its character, direct or indirect, are the most important fundamental properties determining the performance and characteristics of optoelectronic devices. Experimental approaches screening a large range of possible combinations of III- and V-elements with variations in composition and strain are impractical for every target application. We present a combination of accurate first-principles calculations and machine learning based approaches to predict the properties of the bandgap for quaternary III-V semiconductors. By learning bandgap magnitudes and their nature at density functional theory accuracy based solely on the composition and strain features of the materials as an input, we develop a computationally efficient yet highly accurate machine learning approach that can be applied to a large number of compositions and strain values. This allows for a computationally efficient prediction of a vast range of materials under different strains, offering the possibility of virtual screening of multinary III-V materials for optoelectronic applications.

7.
Angew Chem Int Ed Engl ; 62(47): e202306706, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37671442

RESUMO

Although diphosphene transition metal complexes are known to undergo E to Z isomerization upon irradiation with UV light, their potential for photoswitching has remained poorly explored. In this study, we present diphosphene complexes capable of reversible photoisomerizations through haptotropic rearrangements. The compounds [(2-κ2 P,κ6 C)Mo(CO)2 ][OTf] (3 a[OTf]), [(2-κ2 P,κ6 C)Fe(CO)][OTf] (3 b[OTf]), and [(2-κ2 P)Fe(CO)4 ][OTf] (4[OTf]) were prepared using the triflate salt [(LC )P=P(Dipp)][OTf] (2[OTf) as a precursor (LC =4,5-dichloro-1,3-bis(2,6-diisiopropylphenyl)-imidazolin-2-yl; Dipp=2,6-diisiopropylphenyl, OTf=triflate). Upon exposure to blue or UV light (λ=400 nm, 470 nm), the initially red-colored η2 -diphosphene complexes 3 a,b[OTf] readily undergo isomerization to form blue-colored η1 -complexes [(2-κ1 P,κ6 C)M(CO)n ][OTf] (5 a,b[OTf]; a: M=Mo, n=2; b: M=Fe, n=1). This haptotropic rearrangement is reversible, and the (κ2 P,κ6 C)-coordination mode gradually reverts back upon dissolution in coordinating solvents or more rapidly upon exposure to yellow or red irradiation (λ=590 nm, 630 nm). The electronic reasons for the reversible visible-light-induced photoswitching observed for 3 a,b[OTf] are elucidated by DFT calculations. These calculations indicate that the photochromic isomerization originates from the S1 excited state and proceeds through a conical intersection.

8.
J Am Chem Soc ; 144(26): 11757-11766, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35674504

RESUMO

The adsorption of metalorganic and metal halide precursors on the SiO2 surface plays an essential role in thin-film deposition processes such as atomic layer deposition (ALD). In the case of aluminum oxide (Al2O3) films, the growth characteristics are influenced by the precursor structure, which controls both chemical reactivity and the geometrical constraints during deposition. In this work, a systematic study using a series of Al(CH3)xCl3-x (x = 0, 1, 2, and 3) and Al(CyH2y+1)3 (y = 1, 2, and 3) precursors is carried out using a combination of experimental spectroscopic techniques together with density functional theory calculations and Monte Carlo simulations to analyze differences across precursor molecules. Results show that reactivity and steric hindrance mutually influence the ALD surface reaction. The increase in the number of chlorine ligands in the precursor shifts the deposition temperature higher, an effect attributed to more favorable binding of the intermediate species due to higher Lewis acidity, while differences between precursors in film growth per cycle are shown to originate from variations in adsorption activation barriers and size-dependent saturation coverage. Comparison between the theoretical and experimental results indicates that the Al(CyH2y+1)3 precursors are favored to undergo two ligand exchange reactions upon adsorption at the surface, whereas only a single Cl-ligand exchange reaction is energetically favorable upon adsorption by the AlCl3 precursor. By pursuing the first-principles design of ALD precursors combined with experimental analysis of thin-film growth, this work enables a robust understanding of the effect of precursor chemistry on ALD processes.

9.
Molecules ; 26(21)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34771062

RESUMO

The reactivity and bonding of an ethinyl-functionalized cyclooctyne on Si(001) is studied by means of density functional theory. This system is promising for the organic functionalization of semiconductors. Singly bonded adsorption structures are obtained by [2 + 2] cycloaddition reactions of the cyclooctyne or ethinyl group with the Si(001) surface. A thermodynamic preference for adsorption with the cyclooctyne group in the on-top position is found and traced back to minimal structural deformation of the adsorbate and surface with the help of energy decomposition analysis for extended systems (pEDA). Starting from singly bonded structures, a plethora of reaction paths describing conformer changes and consecutive reactions with the surface are discussed. Strongly exothermic and exergonic reactions to doubly bonded structures are presented, while small reaction barriers highlight the high reactivity of the studied organic molecule on the Si(001) surface. Dynamic aspects of the competitive bonding of the functional groups are addressed by ab initio molecular dynamics calculations. Several trajectories for the doubly bonded structures are obtained in agreement with calculations using the nudged elastic band approach. However, our findings disagree with the experimental observations of selective adsorption by the cyclooctyne moiety, which is critically discussed.

10.
Chem Commun (Camb) ; 59(15): 2150-2152, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36727440

RESUMO

The synthesis and characterisation of the rhodium(III) dinitrogen complex [Rh(2,2'-biphenyl)(CxP2)(N2)]+ are described, where CxP2 is a trans-spanning calix[4]arene-based diphosphine and the dinitrogen ligand is projected into the cavity of the macrocycle.

11.
Dalton Trans ; 51(36): 13771-13778, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36018323

RESUMO

Iodido metalates of heavy main group elements have seen much research interest in the last years due to their possible application as absorbers in photovoltaics. However, for materials based on the non-toxic element bismuth one challenge lies in narrowing the optical band gap for sufficient solar absorption. Here, we present a new iodido silver bismuthate, [SMe3]2[Bi2Ag2I10] (1), which is prepared from solution and characterized regarding its structure, thermal stability and optical absorption. While compounds with similar anion compositions are known, the band gap of 1.82 eV is the smallest in chain-like Bi/Ag/I-compounds that has been reported to date. To support our experimental findings we carried out computational investigations and were able to reproduce the surprisingly narrow band gap, highlighting the subtle influence of the connectivity of different building units in multinary bismuthates. We also prepared and characterized the simple iodido pentelates [SMe]3[E2I9] (E = Bi, Sb; 2, 3) to provide a point of comparison.

12.
ACS Nano ; 16(8): 11979-11987, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35916359

RESUMO

Defects play a critical role for the functionality and performance of materials, but the understanding of the related effects is often lacking, because the typically low concentrations of defects make them difficult to study. A prominent case is the topological defects in two-dimensional materials such as graphene. The performance of graphene-based (opto-)electronic devices depends critically on the properties of the graphene/metal interfaces at the contacting electrodes. The question of how these interface properties depend on the ubiquitous topological defects in graphene is of high practical relevance, but could not be answered so far. Here, we focus on the prototypical Stone-Wales (S-W) topological defect and combine theoretical analysis with experimental investigations of molecular model systems. We show that the embedded defects undergo enhanced bonding and electron transfer with a copper surface, compared to regular graphene. These findings are experimentally corroborated using molecular models, where azupyrene mimics the S-W defect, while its isomer pyrene represents the ideal graphene structure. Experimental interaction energies, electronic-structure analysis, and adsorption distance differences confirm the defect-controlled bonding quantitatively. Our study reveals the important role of defects for the electronic coupling at graphene/metal interfaces and suggests that topological defect engineering can be used for performance control.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa