Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Blood ; 137(7): 929-938, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32871586

RESUMO

Consolidative radiation therapy (RT) for advanced-stage diffuse large B-cell lymphoma (DLBCL) remains controversial, with routine practice continuing to include RT in patients with initial bulky disease or residual masses. Positron emission tomography (PET)-computed tomography is a sensitive modality for detecting the presence of residual disease at the end of treatment (EOT). A PET-guided approach to selectively administering RT has been the policy in British Columbia since 2005. Patients with advanced-stage DLBCL diagnosed from 1 January 2005 to 1 March 2017 and treated with at least 6 cycles of R-CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisolone plus rituximab), who underwent EOT PET, were included in this analysis. Those with complete metabolic response (PET-negative [PET-NEG]) were observed; those with PET-positive (PET-POS) scans were offered consolidative RT, when feasible. Of the patient records reviewed, 723 were identified, with median follow-up of 4.3 years: 517 (72%) were PET-NEG; 206 (28%) were PET-POS. Time to progression (TTP) and overall survival (OS) at 3 years were 83% vs 56% and 87% vs 64%, in patients with PET-NEG and PET-POS scans, respectively. PET-POS patients with nonprogressing disease treated with consolidative RT (109 and 206; 53%) had outcomes approaching those of PET-NEG patients, with 3-year estimates of 76% and 80% for TTP and OS. PET-NEG patients who had bulky disease (≥10 cm) at diagnosis had outcomes indistinguishable from those without bulk, despite the omission of RT. These data suggest that patients with advanced-stage DLBCL who are PET-NEG at EOT and receive no RT have excellent outcomes. 18F-fluorodeoxyglucose-PET can reliably guide selective administration of consolidative RT, even in patients with initially bulky disease.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linfoma Difuso de Grandes Células B/radioterapia , Tomografia por Emissão de Pósitrons , Radioterapia Adjuvante/métodos , Radioterapia Guiada por Imagem/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Ciclofosfamida/administração & dosagem , Progressão da Doença , Doxorrubicina/administração & dosagem , Feminino , Radioisótopos de Flúor , Fluordesoxiglucose F18 , Humanos , Estimativa de Kaplan-Meier , Linfoma Difuso de Grandes Células B/diagnóstico por imagem , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/patologia , Masculino , Pessoa de Meia-Idade , Prednisona/administração & dosagem , Compostos Radiofarmacêuticos , Estudos Retrospectivos , Rituximab/administração & dosagem , Método Simples-Cego , Resultado do Tratamento , Carga Tumoral , Vincristina/administração & dosagem , Adulto Jovem
2.
Blood ; 136(24): 2803-2811, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32603413

RESUMO

Cure rates for primary mediastinal large B-cell lymphoma (PMBCL) have improved with the integration of rituximab. However, the type of primary therapy and role of radiotherapy (RT) remains ill-defined. Herein, we evaluated the outcome of PMBCL primarily treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) and the impact of an end-of-treatment (EOT) 18F-fluorodeoxyglucose positron emission tomography (PET) scan to guide consolidative RT. Patients ≥18 years of age with PMBCL treated with curative intent rituximab-chemotherapy were identified. Prior to 2005, patients were recommended to receive R-CHOP + RT (RT era). Beginning in 2005, EOT PET was used to guide RT and only those with a PET-positive scan received RT (PET era). In total, 159 patients were identified, 94% were treated with R-CHOP and 44% received RT (78% in RT era, 28% in PET era). The 5-year time to progression (TTP) and overall survival (OS) for the entire cohort were 80% and 89%, respectively, similar across treatment eras. Overall, 10% had refractory disease. In total, 113 patients had an EOT PET scan: 63% negative and 37% positive with a 5-year TTP of 90% vs 71% and 5-year OS of 97% vs 88%, respectively. For those with Deauville (D)-scored PET scans (n = 103), the 5-year TTP for PET-negative cases by Deauville criteria (D1-D3, DX) was 91%, with inferior outcomes for D5 vs D4 (5-year TTP 33% vs 87%, P = .0002). Outcomes for PMBCL treated with RCHOP are favorable and use of a PET-adapted approach reduces RT in the majority of patients. A small proportion have refractory disease and may benefit from an alternate treatment.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Linfoma Difuso de Grandes Células B , Neoplasias do Mediastino , Tomografia por Emissão de Pósitrons , Adulto , Idoso , Idoso de 80 Anos ou mais , Ciclofosfamida/administração & dosagem , Intervalo Livre de Doença , Doxorrubicina/administração & dosagem , Feminino , Seguimentos , Humanos , Linfoma Difuso de Grandes Células B/diagnóstico por imagem , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/mortalidade , Masculino , Neoplasias do Mediastino/diagnóstico por imagem , Neoplasias do Mediastino/tratamento farmacológico , Neoplasias do Mediastino/mortalidade , Pessoa de Meia-Idade , Prednisona/administração & dosagem , Rituximab/administração & dosagem , Taxa de Sobrevida , Vincristina/administração & dosagem
3.
Cancers (Basel) ; 16(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38539425

RESUMO

OBJECTIVES: Accurate outcome prediction is important for making informed clinical decisions in cancer treatment. In this study, we assessed the feasibility of using changes in radiomic features over time (Delta radiomics: absolute and relative) following chemotherapy, to predict relapse/progression and time to progression (TTP) of primary mediastinal large B-cell lymphoma (PMBCL) patients. MATERIAL AND METHODS: Given the lack of standard staging PET scans until 2011, only 31 out of 103 PMBCL patients in our retrospective study had both pre-treatment and end-of-treatment (EoT) scans. Consequently, our radiomics analysis focused on these 31 patients who underwent [18F]FDG PET-CT scans before and after R-CHOP chemotherapy. Expert manual lesion segmentation was conducted on their scans for delta radiomics analysis, along with an additional 19 EoT scans, totaling 50 segmented scans for single time point analysis. Radiomics features (on PET and CT), along with maximum and mean standardized uptake values (SUVmax and SUVmean), total metabolic tumor volume (TMTV), tumor dissemination (Dmax), total lesion glycolysis (TLG), and the area under the curve of cumulative standardized uptake value-volume histogram (AUC-CSH) were calculated. We additionally applied longitudinal analysis using radial mean intensity (RIM) changes. For prediction of relapse/progression, we utilized the individual coefficient approximation for risk estimation (ICARE) and machine learning (ML) techniques (K-Nearest Neighbor (KNN), Linear Discriminant Analysis (LDA), and Random Forest (RF)) including sequential feature selection (SFS) following correlation analysis for feature selection. For TTP, ICARE and CoxNet approaches were utilized. In all models, we used nested cross-validation (CV) (with 10 outer folds and 5 repetitions, along with 5 inner folds and 20 repetitions) after balancing the dataset using Synthetic Minority Oversampling TEchnique (SMOTE). RESULTS: To predict relapse/progression using Delta radiomics between the baseline (staging) and EoT scans, the best performances in terms of accuracy and F1 score (F1 score is the harmonic mean of precision and recall, where precision is the ratio of true positives to the sum of true positives and false positives, and recall is the ratio of true positives to the sum of true positives and false negatives) were achieved with ICARE (accuracy = 0.81 ± 0.15, F1 = 0.77 ± 0.18), RF (accuracy = 0.89 ± 0.04, F1 = 0.87 ± 0.04), and LDA (accuracy = 0.89 ± 0.03, F1 = 0.89 ± 0.03), that are higher compared to the predictive power achieved by using only EoT radiomics features. For the second category of our analysis, TTP prediction, the best performer was CoxNet (LASSO feature selection) with c-index = 0.67 ± 0.06 when using baseline + Delta features (inclusion of both baseline and Delta features). The TTP results via Delta radiomics were comparable to the use of radiomics features extracted from EoT scans for TTP analysis (c-index = 0.68 ± 0.09) using CoxNet (with SFS). The performance of Deauville Score (DS) for TTP was c-index = 0.66 ± 0.09 for n = 50 and 0.67 ± 03 for n = 31 cases when using EoT scans with no significant differences compared to the radiomics signature from either EoT scans or baseline + Delta features (p-value> 0.05). CONCLUSION: This work demonstrates the potential of Delta radiomics and the importance of using EoT scans to predict progression and TTP from PMBCL [18F]FDG PET-CT scans.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa