Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
DNA Repair (Amst) ; 69: 24-33, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30032016

RESUMO

In protein evolution, functionally important intramolecular interactions, such as polar bridges or hydrophobic interfaces, tend to be conserved. We have analyzed coevolution of physicochemical properties in pairs of amino acid residues in the formamidopyrimidine-DNA glycosylase (Fpg) protein family, identified three conserved polar bridges (Arg54-Glu131, Gln234-Arg244, and Tyr170-Ser208 in the E. coli protein) located in known functional regions of the protein, and analyzed their roles by site-directed mutagenesis. The structure and molecular dynamic modeling showed that the coevolving pairs do not form isolated bridges but rather participate in tight local clusters of hydrogen bonds. The Arg54-Glu131 bridge, connecting the N- and C-terminal domains, was important for DNA binding, as its abolishment or even ion pair reversal inactivated Fpg and greatly decreased the enzyme's affinity for DNA. Mutations of the Gln234-Arg244 bridge, located at the base of the single Fpg ß-hairpin zinc finger, did not affect the activity but sharply decreased the melting temperature of the protein, with the bridge reversal partially restoring the thermal stability. Finally, Tyr170 mutation to Phe decreased Fpg binding but did not fully inactivate the protein, whereas Ser208 replacement with Ala had no effect; molecular dynamics showed that in both wild-type and S208 A Fpg, Tyr170 quickly re-orients to form an alternative set of hydrogen bonds. Thus, the coevolution analysis approach, combined with biochemical and computational studies, provides a powerful tool for understanding intramolecular interactions important for the function of DNA repair enzymes.


Assuntos
DNA-Formamidopirimidina Glicosilase/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Evolução Molecular , Simulação de Dinâmica Molecular , DNA/metabolismo , Reparo do DNA , DNA-Formamidopirimidina Glicosilase/química , DNA-Formamidopirimidina Glicosilase/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Cinética , Mutagênese Sítio-Dirigida , Conformação Proteica , Análise de Sequência de Proteína
2.
Mol Biosyst ; 12(7): 2247-56, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27158700

RESUMO

In actively proliferating cells, such as the cells of the developing embryo, DNA repair is crucial for preventing the accumulation of mutations and synchronizing cell division. Sea urchin embryo growth was analyzed and extracts were prepared. The relative activity of DNA polymerase, apurinic/apyrimidinic (AP) endonuclease, uracil-DNA glycosylase, 8-oxoguanine-DNA glycosylase, and other glycosylases was analyzed using specific oligonucleotide substrates of these enzymes; the reaction products were resolved by denaturing 20% polyacrylamide gel electrophoresis. We have characterized the profile of several key base excision repair activities in the developing embryos (2 blastomers to mid-pluteus) of the grey sea urchin, Strongylocentrotus intermedius. The uracil-DNA glycosylase specific activity sharply increased after blastula hatching, whereas the specific activity of 8-oxoguanine-DNA glycosylase steadily decreased over the course of the development. The AP-endonuclease activity gradually increased but dropped at the last sampled stage (mid-pluteus 2). The DNA polymerase activity was high at the first cleavage division and then quickly decreased, showing a transient peak at blastula hatching. It seems that the developing sea urchin embryo encounters different DNA-damaging factors early in development within the protective envelope and later as a free-floating larva, with hatching necessitating adaptation to the shift in genotoxic stress conditions. No correlation was observed between the dynamics of the enzyme activities and published gene expression data from developing congeneric species, S. purpuratus. The results suggest that base excision repair enzymes may be regulated in the sea urchin embryos at the level of covalent modification or protein stability.


Assuntos
Reparo do DNA , Desenvolvimento Embrionário/genética , Strongylocentrotus/embriologia , Strongylocentrotus/genética , Animais , Embrião não Mamífero , Ativação Enzimática , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Genoma , Genômica/métodos , Fases de Leitura Aberta , Uracila-DNA Glicosidase/genética , Uracila-DNA Glicosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa