Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(32): e2216141120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523525

RESUMO

Living longer without simultaneously extending years spent in good health ("health span") is an increasing societal burden, demanding new therapeutic strategies. Hydrogen sulfide (H2S) can correct disease-related mitochondrial metabolic deficiencies, and supraphysiological H2S concentrations can pro health span. However, the efficacy and mechanisms of mitochondrion-targeted sulfide delivery molecules (mtH2S) administered across the adult life course are unknown. Using a Caenorhabditis elegans aging model, we compared untargeted H2S (NaGYY4137, 100 µM and 100 nM) and mtH2S (AP39, 100 nM) donor effects on life span, neuromuscular health span, and mitochondrial integrity. H2S donors were administered from birth or in young/middle-aged animals (day 0, 2, or 4 postadulthood). RNAi pharmacogenetic interventions and transcriptomics/network analysis explored molecular events governing mtH2S donor-mediated health span. Developmentally administered mtH2S (100 nM) improved life/health span vs. equivalent untargeted H2S doses. mtH2S preserved aging mitochondrial structure, content (citrate synthase activity) and neuromuscular strength. Knockdown of H2S metabolism enzymes and FoxO/daf-16 prevented the positive health span effects of mtH2S, whereas DCAF11/wdr-23 - Nrf2/skn-1 oxidative stress protection pathways were dispensable. Health span, but not life span, increased with all adult-onset mtH2S treatments. Adult mtH2S treatment also rejuvenated aging transcriptomes by minimizing expression declines of mitochondria and cytoskeletal components, and peroxisome metabolism hub components, under mechanistic control by the elt-6/elt-3 transcription factor circuit. H2S health span extension likely acts at the mitochondrial level, the mechanisms of which dissociate from life span across adult vs. developmental treatment timings. The small mtH2S doses required for health span extension, combined with efficacy in adult animals, suggest mtH2S is a potential healthy aging therapeutic.


Assuntos
Proteínas de Caenorhabditis elegans , Sulfeto de Hidrogênio , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Longevidade , Sulfetos/metabolismo , Sulfeto de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Fatores de Transcrição GATA/metabolismo
2.
Plant Physiol ; 191(3): 2001-2011, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36560868

RESUMO

Hydrogen sulfide (H2S) is a gaseous signaling molecule involved in numerous physiological processes in plants, including gas exchange with the environment through the regulation of stomatal pore width. Guard cells (GCs) are pairs of specialized epidermal cells that delimit stomatal pores and have a higher mitochondrial density and metabolic activity than their neighboring cells. However, there is no clear evidence on the role of mitochondrial activity in stomatal closure induction. In this work, we showed that the mitochondrial-targeted H2S donor AP39 induces stomatal closure in a dose-dependent manner. Experiments using inhibitors of the mitochondrial electron transport chain (mETC) or insertional mutants in cytochrome c (CYTc) indicated that the activity of mitochondrial CYTc and/or complex IV are required for AP39-dependent stomatal closure. By using fluorescent probes and genetically encoded biosensors we reported that AP39 hyperpolarized the mitochondrial inner potential (Δψm) and increased cytosolic ATP, cytosolic hydrogen peroxide levels, and oxidation of the glutathione pool in GCs. These findings showed that mitochondrial-targeted H2S donors induce stomatal closure, modulate guard cell mETC activity, the cytosolic energetic and oxidative status, pointing to an interplay between mitochondrial H2S, mitochondrial activity, and stomatal closure.


Assuntos
Mitocôndrias , Transdução de Sinais , Mitocôndrias/metabolismo , Estômatos de Plantas/fisiologia
3.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33431651

RESUMO

Alzheimer's disease (AD), the most common cause of dementia and neurodegeneration in the elderly, is characterized by deterioration of memory and executive and motor functions. Neuropathologic hallmarks of AD include neurofibrillary tangles (NFTs), paired helical filaments, and amyloid plaques. Mutations in the microtubule-associated protein Tau, a major component of the NFTs, cause its hyperphosphorylation in AD. We have shown that signaling by the gaseous molecule hydrogen sulfide (H2S) is dysregulated during aging. H2S signals via a posttranslational modification termed sulfhydration/persulfidation, which participates in diverse cellular processes. Here we show that cystathionine γ-lyase (CSE), the biosynthetic enzyme for H2S, binds wild type Tau, which enhances its catalytic activity. By contrast, CSE fails to bind Tau P301L, a mutant that is present in the 3xTg-AD mouse model of AD. We further show that CSE is depleted in 3xTg-AD mice as well as in human AD brains, and that H2S prevents hyperphosphorylation of Tau by sulfhydrating its kinase, glycogen synthase kinase 3ß (GSK3ß). Finally, we demonstrate that sulfhydration is diminished in AD, while administering the H2S donor sodium GYY4137 (NaGYY) to 3xTg-AD mice ameliorates motor and cognitive deficits in AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Cistationina gama-Liase/genética , Glicogênio Sintase Quinase 3 beta/genética , Sulfeto de Hidrogênio/farmacologia , Morfolinas/farmacologia , Fármacos Neuroprotetores/farmacologia , Compostos Organotiofosforados/farmacologia , Proteínas tau/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Cistationina gama-Liase/metabolismo , Modelos Animais de Doenças , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Emaranhados Neurofibrilares/efeitos dos fármacos , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Fosforilação , Placa Amiloide/genética , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Placa Amiloide/prevenção & controle , Ligação Proteica , Processamento de Proteína Pós-Traducional , Sulfatos/metabolismo , Proteínas tau/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33627403

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive muscle degeneration and weakness due to mutations in the dystrophin gene. The symptoms of DMD share similarities with those of accelerated aging. Recently, hydrogen sulfide (H2S) supplementation has been suggested to modulate the effects of age-related decline in muscle function, and metabolic H2S deficiencies have been implicated in affecting muscle mass in conditions such as phenylketonuria. We therefore evaluated the use of sodium GYY4137 (NaGYY), a H2S-releasing molecule, as a possible approach for DMD treatment. Using the dys-1(eg33) Caenorhabditis elegans DMD model, we found that NaGYY treatment (100 µM) improved movement, strength, gait, and muscle mitochondrial structure, similar to the gold-standard therapeutic treatment, prednisone (370 µM). The health improvements of either treatment required the action of the kinase JNK-1, the transcription factor SKN-1, and the NAD-dependent deacetylase SIR-2.1. The transcription factor DAF-16 was required for the health benefits of NaGYY treatment, but not prednisone treatment. AP39 (100 pM), a mitochondria-targeted H2S compound, also improved movement and strength in the dys-1(eg33) model, further implying that these improvements are mitochondria-based. Additionally, we found a decline in total sulfide and H2S-producing enzymes in dystrophin/utrophin knockout mice. Overall, our results suggest that H2S deficit may contribute to DMD pathology, and rectifying/overcoming the deficit with H2S delivery compounds has potential as a therapeutic approach to DMD treatment.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Distrofina/genética , Sulfeto de Hidrogênio/farmacologia , Mitocôndrias Musculares/efeitos dos fármacos , Morfolinas/farmacologia , Músculo Esquelético/efeitos dos fármacos , Distrofia Muscular Animal/tratamento farmacológico , Compostos Organofosforados/farmacologia , Compostos Organotiofosforados/farmacologia , Tionas/farmacologia , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Distrofina/deficiência , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Humanos , Sulfeto de Hidrogênio/metabolismo , Locomoção/efeitos dos fármacos , Locomoção/genética , Masculino , Camundongos , Camundongos Endogâmicos mdx , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Morfolinas/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patologia , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Compostos Organofosforados/metabolismo , Compostos Organotiofosforados/metabolismo , Prednisona/farmacologia , Sirtuínas/genética , Sirtuínas/metabolismo , Tionas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Utrofina/deficiência , Utrofina/genética
5.
J Cell Physiol ; 237(1): 763-773, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34346059

RESUMO

Hydrogen sulfide (H2 S) is a gasotransmitter that regulates both physiological and pathophysiological processes in mammalian cells. Recent studies have demonstrated that H2 S promotes aerobic energy production in the mitochondria in response to hypoxia, but its effect on anaerobic energy production has yet to be established. Glycolysis is the anaerobic process by which ATP is produced through the metabolism of glucose. Mammalian red blood cells (RBCs) extrude mitochondria and nucleus during erythropoiesis. These cells would serve as a unique model to observe the effect of H2 S on glycolysis-mediated energy production. The purpose of this study was to determine the effect of H2 S on glycolysis-mediated energy production in mitochondria-free mouse RBCs. Western blot analysis showed that the only H2 S-generating enzyme expressed in mouse RBCs is 3-mercaptopyruvate sulfurtransferase (MST). Supplement of the substrate for MST stimulated, but the inhibition of the same suppressed, the endogenous production of H2 S. Both exogenously administered H2 S salt and MST-derived endogenous H2 S stimulated glycolysis-mediated ATP production. The effect of NaHS on ATP levels was not affected by oxygenation status. On the contrary, hypoxia increased intracellular H2 S levels and MST activity in mouse RBCs. The mitochondria-targeted H2 S donor, AP39, did not affect ATP levels of mouse RBCs. NaHS at low concentrations (3-100 µM) increased ATP levels and decreased cell viability after 3 days of incubation in vitro. Higher NaHS concentrations (300-1000 µM) lowered ATP levels, but prolonged cell viability. H2 S may offer a cytoprotective effect in mammalian RBCs to maintain oxygen-independent energy production.


Assuntos
Sulfeto de Hidrogênio , Trifosfato de Adenosina/metabolismo , Animais , Eritrócitos/metabolismo , Glicólise , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Hipóxia , Mamíferos/metabolismo , Camundongos
6.
J Inherit Metab Dis ; 44(2): 367-375, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33325042

RESUMO

Primary mitochondrial diseases (PMD) are inherited diseases that cause dysfunctional mitochondrial oxidative phosphorylation, leading to diverse multisystem diseases and substantially impaired quality of life. PMD treatment currently comprises symptom management, with an unmet need for therapies targeting the causative mitochondrial defects. Molecules which selective target mitochondria have been proposed as potential treatment options in PMD but have met with limited success. We have previously shown in animal models that mitochondrial dysfunction caused by the disease process could be prevented and/or reversed by selective targeting of the "gasotransmitter" hydrogen sulfide (H2 S) to mitochondria using a novel compound, AP39. Therefore, in this study we investigated whether AP39 could also restore mitochondrial function in PMD models where mitochondrial dysfunction was the cause of the disease pathology using C. elegans. We characterised several PMD mutant C. elegans strains for reduced survival, movement and impaired cellular bioenergetics and treated each with AP39. In animals with widespread electron transport chain deficiency (gfm-1[ok3372]), AP39 (100 nM) restored ATP levels, but had no effect on survival or movement. However, in a complex I mutant (nuo-4[ok2533]), a Leigh syndrome orthologue, AP39 significantly reversed the decline in ATP levels, preserved mitochondrial membrane potential and increased movement and survival. For the first time, this study provides proof-of-principle evidence suggesting that selective targeting of mitochondria with H2 S could represent a novel drug discovery approach to delay, prevent and possibly reverse mitochondrial decline in PMD and related disorders.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/tratamento farmacológico , Compostos Organofosforados/farmacologia , Tionas/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Caenorhabditis elegans , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Potencial da Membrana Mitocondrial , Mitocôndrias/efeitos dos fármacos , Doenças Mitocondriais/metabolismo
7.
Int J Mol Sci ; 22(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34360581

RESUMO

Ischemic stroke is the third leading cause of death in the world, which accounts for almost 12% of the total deaths worldwide. Despite decades of research, the available and effective pharmacotherapy is limited. Some evidence underlines the beneficial properties of hydrogen sulfide (H2S) donors, such as NaSH, in an animal model of brain ischemia and in in vitro research; however, these data are ambiguous. This study was undertaken to verify the neuroprotective activity of AP39, a slow-releasing mitochondria-targeted H2S delivery molecule. We administered AP39 for 7 days prior to ischemia onset, and the potential to induce brain tolerance to ischemia was verified. To do this, we used the rat model of 90-min middle cerebral artery occlusion (MCAO) and used LC-MS/MS, RT-PCR, LuminexTM assays, Western blot and immunofluorescent double-staining to determine the absolute H2S levels, inflammatory markers, neurotrophic factor signaling pathways and apoptosis marker in the ipsilateral frontal cortex, hippocampus and in the dorsal striatum 24 h after ischemia onset. AP39 (50 nmol/kg) reduced the infarct volume, neurological deficit and reduced the microglia marker (Iba1) expression. AP39 also exerted prominent anti-inflammatory activity in reducing the release of Il-1ß, Il-6 and TNFα in brain areas particularly affected by ischemia. Furthermore, AP39 enhanced the pro-survival pathways of neurotrophic factors BDNF-TrkB and NGF-TrkA and reduced the proapoptotic proNGF-p75NTR-sortilin pathway activity. These changes corresponded with reduced levels of cleaved caspase 3. Altogether, AP39 treatment induced adaptative changes within the brain and, by that, developed brain tolerance to ischemia.


Assuntos
Isquemia Encefálica/prevenção & controle , Sulfeto de Hidrogênio/metabolismo , Infarto da Artéria Cerebral Média/complicações , Mitocôndrias/metabolismo , Compostos Organofosforados/farmacologia , Substâncias Protetoras/farmacologia , Tionas/farmacologia , Animais , Isquemia Encefálica/etiologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Sulfeto de Hidrogênio/análise , Masculino , Mitocôndrias/efeitos dos fármacos , Compostos Organofosforados/administração & dosagem , Substâncias Protetoras/administração & dosagem , Ratos , Ratos Sprague-Dawley , Tionas/administração & dosagem
8.
Pharmacol Res ; 111: 442-451, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27378570

RESUMO

Exogenous hydrogen sulfide (H2S) protects against myocardial ischemia/reperfusion injury but the mechanism of action is unclear. The present study investigated the effect of GYY4137, a slow-releasing H2S donor, on myocardial infarction given specifically at reperfusion and the signalling pathway involved. Thiobutabarbital-anesthetised rats were subjected to 30min of left coronary artery occlusion and 2h reperfusion. Infarct size was assessed by tetrazolium staining. In the first study, animals randomly received either no treatment or GYY4137 (26.6, 133 or 266µmolkg(-1)) by intravenous injection 10min before reperfusion. In a second series, involvement of PI3K and NO signalling were interrogated by concomitant administration of LY294002 or L-NAME respectively and the effects on the phosphorylation of Akt, eNOS, GSK-3ß and ERK1/2 during early reperfusion were assessed by immunoblotting. GYY4137 266µmolkg(-1) significantly limited infarct size by 47% compared to control hearts (P<0.01). In GYY4137-treated hearts, phosphorylation of Akt, eNOS and GSK-3ß was increased 2.8, 2.2 and 2.2 fold respectively at early reperfusion. Co-administration of L-NAME and GYY4137 attenuated the cardioprotection afforded by GYY4137, associated with attenuated phosphorylation of eNOS. LY294002 totally abrogated the infarct-limiting effect of GYY4137 and inhibited Akt, eNOS and GSK-3ß phosphorylation. These data are the first to demonstrate that GYY4137 protects the heart against lethal reperfusion injury through activation of PI3K/Akt signalling, with partial dependency on NO signalling and inhibition of GSK-3ß during early reperfusion. H2S-based therapeutic approaches may have value as adjuncts to reperfusion in the treatment of acute myocardial infarction.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Morfolinas/farmacologia , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Compostos Organotiofosforados/farmacologia , Substâncias Protetoras/farmacologia , Animais , Citoproteção , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Hemodinâmica/efeitos dos fármacos , Masculino , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/patologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
9.
Pharmacol Res ; 113(Pt A): 186-198, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27565382

RESUMO

The development of diabetic vascular complications is initiated, at least in part, by mitochondrial reactive oxygen species (ROS) production in endothelial cells. Hyperglycemia induces superoxide production in the mitochondria and initiates changes in the mitochondrial membrane potential that leads to mitochondrial dysfunction. Hydrogen sulfide (H2S) supplementation has been shown to reduce the mitochondrial oxidant production and shows efficacy against diabetic vascular damage in vivo. However, the half-life of H2S is very short and it is not specific for the mitochondria. We have therefore evaluated two novel mitochondria-targeted anethole dithiolethione and hydroxythiobenzamide H2S donors (AP39 and AP123 respectively) at preventing hyperglycemia-induced oxidative stress and metabolic changes in microvascular endothelial cells in vitro. Hyperglycemia (HG) induced significant increase in the activity of the citric acid cycle and led to elevated mitochondrial membrane potential. Mitochondrial oxidant production was increased and the mitochondrial electron transport decreased in hyperglycemic cells. AP39 and AP123 (30-300nM) decreased HG-induced hyperpolarisation of the mitochondrial membrane and inhibited the mitochondrial oxidant production. Both H2S donors (30-300nM) increased the electron transport at respiratory complex III and improved the cellular metabolism. Targeting H2S to mitochondria retained the cytoprotective effect of H2S against glucose-induced damage in endothelial cells suggesting that the molecular target of H2S action is within the mitochondria. Mitochondrial targeting of H2S also induced >1000-fold increase in the potency of H2S against hyperglycemia-induced injury. The high potency and long-lasting effect elicited by these H2S donors strongly suggests that these compounds could be useful against diabetic vascular complications.


Assuntos
Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Sulfeto de Hidrogênio/metabolismo , Hiperglicemia/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Compostos Organofosforados/farmacologia , Substâncias Protetoras/farmacologia , Tionas/farmacologia , Animais , Linhagem Celular , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatologia , Transporte de Elétrons/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Glucose/metabolismo , Hiperglicemia/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
10.
Org Biomol Chem ; 12(23): 3902-11, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24788654

RESUMO

Two chiral derivatives of 1,2-benzenedisulfonimide, namely 4-methyl-3,6-bis(o-tolyl)-1,2-benzenedisulfonimide and 4,5-dimethyl-3,6-bis(o-tolyl)-1,2-benzenedisulfonimide, have been easily synthesized in good overall yields (respectively 34% and 41%) by means of an eleven-step synthetic protocol from commercially available 2-methyl-6-nitroaniline or 2,3-dimethyl-6-nitroaniline. 4,5-Dimethyl-3,6-bis(1-naphthyl)-1,2-benzenedisulfonimide was also synthesized, but the overall yield from 2,3-dimethyl-6-nitroaniline was lower (9%). The atropisomers of these compounds have been resolved and (-)atropisomers have been demonstrated to be efficient chiral catalysts in the Strecker reaction.

11.
Neuroscience ; 539: 86-102, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-37993086

RESUMO

The vast majority of stroke cases are classified as ischemic stroke, but effective pharmacotherapy strategies to treat brain infarction are still limited. Glutamate, which is a primary mediator of excitotoxicity, contributes to neuronal damage in numerous pathologies, including ischemia. The aim of this study was to investigate the effect of the hydrogen sulfide donor AP39 on excitotoxicity. AP39 was administered as a single dose of 100 nmol/kg b.w. i.v. 10 min after the restoration of blood flow and 100 min after middle cerebral artery occlusion (MCAO) in male Sprague-Dawley rats. Neurological deficits by Phillips's score, and infarct volume by TTC staining were evaluated (n = 8). LC-MS was used to determine the extracellular glutamate concentration in microdialysates collected intrasurgically and from freely moving animals 24 h and 3 days after reperfusion (n = 6). The expression of proteins involved in the regulation of glutamatergic transmission was investigated 24 h after reperfusion by Western-blot analysis (n = 6). The results were verified by double-immunostaining of brain cryosections (n = 6). The results showed a significant longitudinal decrease in extracellular glutamate concentrations in the motor cortex and hippocampus in MCAO + AP39 rats compared to MCAO rats. Moreover, the administration of AP39 increased the content of the GLT-1 transporter and reduced the content of VGLUT1 in the ischemic core. Upregulation of the GLT-1 transporter responsible for glutamate reuptake from the synaptic cleft, and downregulation of VGLUT1, which regulates glutamate transport to synaptic vesicles, indicate that these are important mechanisms by which AP39 reduces extracellular glutamate concentrations and, consequently, excitotoxicity after ischemia.


Assuntos
Isquemia Encefálica , Sulfeto de Hidrogênio , Ratos , Masculino , Animais , Ácido Glutâmico/metabolismo , Sulfeto de Hidrogênio/farmacologia , Ratos Sprague-Dawley , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico
12.
Redox Biol ; 66: 102847, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37597422

RESUMO

Hydrogen sulfide (H2S) signaling and H2S-prodrugs maintain redox balance in gastrointestinal (GI) tract. Predominant effect of any H2S-donor is mitochondrial. Non-targeted H2S-moieties were shown to decrease the non-steroidal anti-inflammatory drugs (NSAIDs)-induced gastrotoxicity but in high doses. However, direct, controlled delivery of H2S to gastric mucosal mitochondria as a molecular target improving NSAIDs-pharmacology remains overlooked. Thus, we treated Wistar rats, i.g. with vehicle, mitochondria-targeted H2S-releasing AP39 (0.004-0.5 mg/kg), AP219 (0.02 mg/kg) as structural control without H2S-releasing ability, or AP39 + SnPP (10 mg/kg) as a heme oxygenase (HMOX) inhibitor. Next, animals were administered i.g. with acetylsalicylic acid (ASA, 125 mg/kg) as NSAIDs representative or comparatively with 75% ethanol to induce translational hemorrhagic or necrotic gastric lesions, that were assessed micro-/macroscopically. Activity of mitochondrial complex IV/V, and DNA oxidation were assessed biochemically. Gastric mucosal/serum content of IL-1ß, IL-10, TNF-α, TGF-ß1/2, ARG1, GST-α, or phosphorylation of mTOR, NF-κB, ERK, Akt, JNK, STAT3/5 were evaluated by microbeads-fluorescent xMAP®-assay; gastric mucosal mRNA level of HMOX-1/2, COX-1/2, SOD-1/2 by real-time PCR. AP39 (but not AP219) dose-dependently (0.02 and 0.1 mg/kg) diminished NSAID- (and ethanol)-induced gastric lesions and DNA oxidation, restoring mitochondrial complexes activity, ARG1, GST-α protein levels and increasing HMOX-1 and SOD-2 expression. AP39 decreased proteins levels or phosphorylation of gastric mucosal inflammation/oxidation-sensitive markers and restored mTOR phosphorylation. Pharmacological inhibition of HMOX-1 attenuated AP39-gastroprotection. We showed that mitochondria-targeted H2S released from very low i.g. doses of AP39 improved gastric mucosal capacity to cope with NSAIDs-induced mitochondrial dysfunction and redox imbalance, mechanistically requiring the activity of HMOX-1.


Assuntos
Heme Oxigenase (Desciclizante) , Sulfetos , Ratos , Animais , Ratos Wistar , Heme Oxigenase (Desciclizante)/genética , Fosforilação , Anti-Inflamatórios não Esteroides , Aspirina
13.
Redox Biol ; 60: 102629, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36780769

RESUMO

Hydrogen sulfide (H2S) was previously revealed to inhibit osteoblastic differentiation of valvular interstitial cells (VICs), a pathological feature in calcific aortic valve disease (CAVD). This study aimed to explore the metabolic control of H2S levels in human aortic valves. Lower levels of bioavailable H2S and higher levels of interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) were detected in aortic valves of CAVD patients compared to healthy individuals, accompanied by higher expression of cystathionine γ-lyase (CSE) and same expression of cystathionine ß-synthase (CBS). Increased biogenesis of H2S by CSE was found in the aortic valves of CAVD patients which is supported by increased production of lanthionine. In accordance, healthy human aortic VICs mimic human pathology under calcifying conditions, as elevated CSE expression is associated with low levels of H2S. The expression of mitochondrial enzymes involved in H2S catabolism including sulfide quinone oxidoreductase (SQR), the key enzyme in mitochondrial H2S oxidation, persulfide dioxygenase (ETHE1), sulfite oxidase (SO) and thiosulfate sulfurtransferase (TST) were up-regulated in calcific aortic valve tissues, and a similar expression pattern was observed in response to high phosphate levels in VICs. AP39, a mitochondria-targeting H2S donor, rescued VICs from an osteoblastic phenotype switch and reduced the expression of IL-1ß and TNF-α in VICs. Both pro-inflammatory cytokines aggravated calcification and osteoblastic differentiation of VICs derived from the calcific aortic valves. In contrast, IL-1ß and TNF-α provided an early and transient inhibition of VICs calcification and osteoblastic differentiation in healthy cells and that effect was lost as H2S levels decreased. The benefit was mediated via CSE induction and H2S generation. We conclude that decreased levels of bioavailable H2S in human calcific aortic valves result from an increased H2S metabolism that facilitates the development of CAVD. CSE/H2S represent a pathway that reverses the action of calcifying stimuli.


Assuntos
Estenose da Valva Aórtica , Calcinose , Sulfeto de Hidrogênio , Humanos , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Sulfeto de Hidrogênio/metabolismo , Calcinose/metabolismo , Calcinose/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Células Cultivadas , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo
14.
Redox Biol ; 62: 102657, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36913800

RESUMO

Diabetes is associated with severe vascular complications involving the impairment of endothelial nitric oxide synthase (eNOS) as well as cystathionine γ-lyase (CSE) activity. eNOS function is suppressed in hyperglycaemic conditions, resulting in reduced NO bioavailability, which is paralleled by reduced levels of hydrogen sulfide (H2S). Here we have addressed the molecular basis of the interplay between the eNOS and CSE pathways. We tested the impact of H2S replacement by using the mitochondrial-targeted H2S donor AP123 in isolated vessels and cultured endothelial cells in high glucose (HG) environment, at concentrations not causing any vasoactive effect per se. Aorta exposed to HG displayed a marked reduction of acetylcholine (Ach)-induced vasorelaxation that was restored by the addition of AP123 (10 nM). In HG condition, bovine aortic endothelial cells (BAEC) showed reduced NO levels, downregulation of eNOS expression, and suppression of CREB activation (p-CREB). Similar results were obtained by treating BAEC with propargylglycine (PAG), an inhibitor of CSE. AP123 treatment rescued eNOS expression, as well as NO levels, and restored p-CREB expression in both the HG environment and the presence of PAG. This effect was mediated by a PI3K-dependent activity since wortmannin (PI3K inhibitor) blunted the rescuing effects operated by the H2S donor. Experiments performed in the aorta of CSE-/- mice confirmed that reduced levels of H2S not only negatively affect the CREB pathway but also impair Ach-induced vasodilation, significantly ameliorated by AP123. We have demonstrated that the endothelial dysfunction due to HG involves H2S/PI3K/CREB/eNOS route, thus highlighting a novel aspect of the H2S/NO interplay in the vasoactive response.


Assuntos
Sulfeto de Hidrogênio , Hiperglicemia , Camundongos , Animais , Bovinos , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Células Endoteliais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Hiperglicemia/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Acetilcolina/metabolismo
15.
J Control Release ; 348: 321-334, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35654168

RESUMO

Hydrogen sulfide (H2S) as a gaseous molecule prevents gastrointestinal (GI)-tract against various injuries. This study aimed to evaluate for the first time the detailed molecular mechanism of mitochondria-targeting H2S-prodrugs, AP39 and RT01 in gastroprotection against ischemia/reperfusion (I/R)-induced lesions. Wistar rats exposed to I/R were pretreated i.g. with vehicle, AP39 (0.004-2 mg/kg), RT01 (0.1 mg/kg), or with AP219 (0.1 mg/kg) as structural control without ability to release H2S. AP39 was also administered with mTOR1 inhibitor, rapamycin (1 mg/kg i.g.). Gastric damage area was assessed micro-/macroscopically, gastric blood flow (GBF) by laser flowmetry, mRNA level of HIF-1α, GPx, SOD1, SOD2, annexin-A1, SOCS3, IL-1RA, IL-1ß, IL-1R1, IL-1R2, TNFR2, iNOS by real-time PCR. Gastric mucosal and/or serum content of IL-1ß, IL-4, IL-5, IL-10, G-CSF, M-CSF, VEGFA, GRO, RANTES, MIP-1α, MCP1, TNF-α, TIMP1, FABP3, GST-α, STAT3/5 and phosphorylation of mTOR, NF-κB, ERK, Akt was evaluated by microbeads-fluorescent assay. Mitochondrial complexes activities were measured biochemically. RNA damage was assessed as 8-OHG by ELISA. AP39 and RT01 reduced micro-/macroscopic gastric I/R-injury increasing GBF. AP39-gastroprotection was accompanied by maintained activity of mitochondrial complexes, prevented RNA oxidation and enhanced mRNA/protein expression of SOCS3, IL-1RA, annexin-A1, GST-α, HIF-1α. Rapamycin reversed AP-39-gastroprotection. AP39-gastroprotection was followed by decreased NF-κB, ERK, IL-1ß and enhanced Akt and mTOR proteins phosphorylation. AP39-prevented gastric mucosal damage caused by I/R-injury, partly by mitochondrial complex activity maintenance. AP39-mediated attenuation of gastric mucosal oxidation, hypoxia and inflammation involved mTOR1 and Akt pathways activity and modulation of HIF-1α, GST-α, SOCS3, IL1RA and TIMP1 molecular interplay.


Assuntos
Sulfeto de Hidrogênio , Traumatismo por Reperfusão , Animais , Anexinas/metabolismo , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA , RNA Mensageiro/genética , Ratos , Ratos Wistar , Traumatismo por Reperfusão/metabolismo , Sirolimo , Serina-Treonina Quinases TOR/metabolismo
16.
Antioxid Redox Signal ; 36(16-18): 1268-1288, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34235951

RESUMO

Aims: Oxidative stress and mitochondrial dysfunction play a role in the process of skin photoaging via activation of matrix metalloproteases (MMPs) and the subsequent degradation of collagen. The activation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor controlling antioxidant and cytoprotective defense systems, might offer a pharmacological approach to prevent skin photoaging. We therefore investigated a pharmacological approach to prevent skin photoaging, and also investigated a protective effect of the novel mitochondria-targeted hydrogen sulfide (H2S) delivery molecules AP39 and AP123, and nontargeted control molecules, on ultraviolet A light (UVA)-induced photoaging in normal human dermal fibroblasts (NHDFs) in vitro and the skin of BALB/c mice in vivo. Results: In NHDFs, AP39 and AP123 (50-200 nM) but not nontargeted controls suppressed UVA (8 J/cm2)-mediated cytotoxicity and induction of MMP-1 activity, preserved cellular bioenergetics, and increased the expression of collagen and nuclear levels of Nrf2. In in vivo experiments, topical application of AP39 or AP123 (0.3-1 µM/cm2; but not nontargeted control molecules) to mouse skin before UVA (60 J/cm2) irradiation prevented skin thickening, MMP induction, collagen loss of oxidative stress markers 8-hydroxy-2'-deoxyguanosine (8-OHdG), increased Nrf2-dependent signaling, as well as increased manganese superoxide dismutase levels and levels of the mitochondrial biogenesis marker peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α). Innovation and Conclusion: Targeting H2S delivery to mitochondria may represent a novel approach for the prevention and treatment of skin photoaging, as well as being useful tools for determining the role of mitochondrial H2S in skin disorders and aging. Antioxid. Redox Signal. 36, 1268-1288.


Assuntos
Sulfeto de Hidrogênio , Envelhecimento da Pele , Animais , Colágeno/metabolismo , Fibroblastos/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Camundongos , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Pele/metabolismo , Raios Ultravioleta/efeitos adversos
17.
Commun Biol ; 5(1): 1255, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36385509

RESUMO

Mutations in the dystrophin gene cause Duchenne muscular dystrophy (DMD), a common muscle disease that manifests with muscle weakness, wasting, and degeneration. An emerging theme in DMD pathophysiology is an intramuscular deficit in the gasotransmitter hydrogen sulfide (H2S). Here we show that the C. elegans DMD model displays reduced levels of H2S and expression of genes required for sulfur metabolism. These reductions can be offset by increasing bioavailability of sulfur containing amino acids (L-methionine, L-homocysteine, L-cysteine, L-glutathione, and L-taurine), augmenting healthspan primarily via improved calcium regulation, mitochondrial structure and delayed muscle cell death. Additionally, we show distinct differences in preservation mechanisms between sulfur amino acid vs H2S administration, despite similarities in required health-preserving pathways. Our results suggest that the H2S deficit in DMD is likely caused by altered sulfur metabolism and that modulation of this pathway may improve DMD muscle health via multiple evolutionarily conserved mechanisms.


Assuntos
Distrofia Muscular de Duchenne , Animais , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Caenorhabditis elegans/genética , Enxofre , Cisteína , Suplementos Nutricionais
18.
Biomolecules ; 12(2)2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35204781

RESUMO

Mitochondria-targeted hydrogen sulfide (H2S) donor compounds, such as compound AP39, supply H2S into the mitochondrial environment and have shown several beneficial in vitro and in vivo effects in cardiovascular conditions such as diabetes and hypertension. However, the study of their direct vascular effects has not been addressed to date. Thus, the objective of the present study was to analyze the effects and describe the mechanisms of action of AP39 on the in vitro vascular reactivity of mouse mesenteric artery. Protein and gene expressions of the H2S-producing enzymes (CBS, CSE, and 3MPST) were respectively analyzed by Western blot and qualitative RT-PCR, as well the in vitro production of H2S by mesenteric artery homogenates. Gene expression of CSE and 3MPST in the vessels has been evidenced by RT-PCR experiments, whereas the protein expression of all the three enzymes was demonstrated by Western blotting experiments. Nonselective inhibition of H2S-producing enzymes by AOAA abolished H2S production, whereas it was partially inhibited by PAG (a CSE selective inhibitor). Vasorelaxation promoted by AP39 and its H2S-releasing moiety (ADT-OH) were significantly reduced after endothelium removal, specifically dependent on NO-cGMP signaling and SKCa channel opening. Endogenous H2S seems to participate in the mechanism of action of AP39, and glibenclamide-induced KATP blockade did not affect the vasorelaxant response. Considering the results of the present study and the previously demonstrated antioxidant and bioenergetic effects of AP39, we conclude that mitochondria-targeted H2S donors may offer a new promising perspective in cardiovascular disease therapeutics.


Assuntos
Artérias Mesentéricas , Vasodilatadores , Animais , Camundongos , Mitocôndrias/metabolismo , Tionas , Vasodilatadores/farmacologia
19.
Antioxid Redox Signal ; 35(7): 551-579, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33736455

RESUMO

Hydrogen sulfide (H2S) is a gaseous signaling molecule involved in a plethora of physiological and pathological processes. It is primarily synthesized by cystathionine-ß-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase as a metabolite of the transsulfuration pathway. H2S has been shown to exert beneficial roles in lung disease acting as an anti-inflammatory and antiviral and to ameliorate cell metabolism and protect from oxidative stress. H2S interacts with transcription factors, ion channels, and a multitude of proteins via post-translational modifications through S-persulfidation ("sulfhydration"). Perturbation of endogenous H2S synthesis and/or levels have been implicated in the development of accelerated lung aging and diseases, including asthma, chronic obstructive pulmonary disease, and fibrosis. Furthermore, evidence indicates that persulfidation is decreased with aging. Here, we review the use of H2S as a biomarker of lung pathologies and discuss the potential of using H2S-generating molecules and synthesis inhibitors to treat respiratory diseases. Furthermore, we provide a critical appraisal of methods of detection used to quantify H2S concentration in biological samples and discuss the challenges of characterizing physiological and pathological levels. Considerations and caveats of using H2S delivery molecules, the choice of generating molecules, and concentrations are also reviewed. Antioxid. Redox Signal. 35, 551-579.


Assuntos
Sulfeto de Hidrogênio , Pneumopatias , Envelhecimento , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , Pneumopatias/tratamento farmacológico , Sulfetos/metabolismo
20.
Front Pharmacol ; 12: 613989, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841145

RESUMO

Donors of H2S may be beneficial in treating cardiovascular diseases where the plasma levels of H2S are decreased. Therefore, we investigated the mechanisms involved in relaxation of small arteries induced by GYY4137 [(4-methoxyphenyl)-morpholin-4-yl-sulfanylidene-sulfido-λ5-phosphane;morpholin-4-ium], which is considered a slow-releasing H2S donor. Sulfides were measured by use of 5,5'-dithiobis-(2-nitro benzoic acid), and small rat mesenteric arteries with internal diameters of 200-250 µm were mounted in microvascular myographs for isometric tension recordings. GYY4137 produced similar low levels of sulfides in the absence and the presence of arteries. In U46619-contracted small mesenteric arteries, GYY4137 (10-6-10-3 M) induced concentration-dependent relaxations, while a synthetic, sulfur-free, GYY4137 did not change the vascular tone. L-cysteine (10-6-10-3 M) induced only small relaxations reaching 24 ± 6% at 10-3 M. Premixing L-cysteine (10-3 M) with Na2S and GYY4137 decreased Na2S relaxation and abolished GYY4137 relaxation, an effect prevented by an nitric oxide (NO) synthase inhibitor, L-NAME (Nω-nitro-L-arginine methyl ester). In arteries without endothelium or in the presence of L-NAME, relaxation curves for GYY4137 were rightward shifted. High extracellular K+ concentrations decreased Na2S and abolished GYY4137 relaxation suggesting potassium channel-independent mechanisms are also involved Na2S relaxation while potassium channel activation is pivotal for GYY4137 relaxation in small arteries. Blockers of large-conductance calcium-activated (BKCa) and voltage-gated type 7 (KV7) potassium channels also inhibited GYY4137 relaxations. The present findings suggest that L-cysteine by reaction with Na2S and GYY4137 and formation of sulfides, inhibits relaxations by these compounds. The low rate of release of H2S species from GYY4137 is reflected by the different sensitivity of these relaxations towards high K+ concentration and potassium channel blockers compared with Na2S. The perspective is that the rate of release of sulfides plays an important for the effects of H2S salt vs. donors in small arteries, and hence for a beneficial effect of GYY4137 for treatment of cardiovascular disease.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa