Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 37(19-20): 901-912, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914351

RESUMO

Fertilization in mammals is accompanied by an intense period of chromatin remodeling and major changes in nuclear organization. How the earliest events in embryogenesis, including zygotic genome activation (ZGA) during maternal-to-zygotic transition, influence such remodeling remains unknown. Here, we have investigated the establishment of nuclear architecture, focusing on the remodeling of lamina-associated domains (LADs) during this transition. We report that LADs reorganize gradually in two-cell embryos and that blocking ZGA leads to major changes in nuclear organization, including altered chromatin and genomic features of LADs and redistribution of H3K4me3 toward the nuclear lamina. Our data indicate that the rearrangement of LADs is an integral component of the maternal-to-zygotic transition and that transcription contributes to shaping nuclear organization at the beginning of mammalian development.


Assuntos
RNA Polimerase II , Transcrição Gênica , Animais , Camundongos , RNA Polimerase II/genética , Desenvolvimento Embrionário/genética , Zigoto , Mamíferos/genética , Regulação da Expressão Gênica no Desenvolvimento , Cromatina
2.
Genes Dev ; 37(7-8): 336-350, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37072228

RESUMO

The majority of our genome is composed of repeated DNA sequences that assemble into heterochromatin, a highly compacted structure that constrains their mutational potential. How heterochromatin forms during development and how its structure is maintained are not fully understood. Here, we show that mouse heterochromatin phase-separates after fertilization, during the earliest stages of mammalian embryogenesis. Using high-resolution quantitative imaging and molecular biology approaches, we show that pericentromeric heterochromatin displays properties consistent with a liquid-like state at the two-cell stage, which change at the four-cell stage, when chromocenters mature and heterochromatin becomes silent. Disrupting the condensates results in altered transcript levels of pericentromeric heterochromatin, suggesting a functional role for phase separation in heterochromatin function. Thus, our work shows that mouse heterochromatin forms membrane-less compartments with biophysical properties that change during development and provides new insights into the self-organization of chromatin domains during mammalian embryogenesis.


Assuntos
Cromatina , Heterocromatina , Animais , Camundongos , Embrião de Mamíferos , Genoma , Mamíferos/genética
4.
Nature ; 625(7994): 401-409, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38123678

RESUMO

DNA replication enables genetic inheritance across the kingdoms of life. Replication occurs with a defined temporal order known as the replication timing (RT) programme, leading to organization of the genome into early- or late-replicating regions. RT is cell-type specific, is tightly linked to the three-dimensional nuclear organization of the genome1,2 and is considered an epigenetic fingerprint3. In spite of its importance in maintaining the epigenome4, the developmental regulation of RT in mammals in vivo has not been explored. Here, using single-cell Repli-seq5, we generated genome-wide RT maps of mouse embryos from the zygote to the blastocyst stage. Our data show that RT is initially not well defined but becomes defined progressively from the 4-cell stage, coinciding with strengthening of the A and B compartments. We show that transcription contributes to the precision of the RT programme and that the difference in RT between the A and B compartments depends on RNA polymerase II at zygotic genome activation. Our data indicate that the establishment of nuclear organization precedes the acquisition of defined RT features and primes the partitioning of the genome into early- and late-replicating domains. Our work sheds light on the establishment of the epigenome at the beginning of mammalian development and reveals the organizing principles of genome organization.


Assuntos
Período de Replicação do DNA , Embrião de Mamíferos , Genoma , Animais , Camundongos , Blastocisto/citologia , Blastocisto/metabolismo , Cromatina/genética , Epigenoma/genética , Genoma/genética , RNA Polimerase II/metabolismo , Zigoto/citologia , Zigoto/crescimento & desenvolvimento , Zigoto/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo
5.
Genes Dev ; 35(1-2): 22-39, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33397727

RESUMO

Transposable elements (TEs) are genetic elements capable of changing position within the genome. Although their mobilization can constitute a threat to genome integrity, nearly half of modern mammalian genomes are composed of remnants of TE insertions. The first critical step for a successful transposition cycle is the generation of a full-length transcript. TEs have evolved cis-regulatory elements enabling them to recruit host-encoded factors driving their own, selfish transcription. TEs are generally transcriptionally silenced in somatic cells, and the mechanisms underlying their repression have been extensively studied. However, during germline formation, preimplantation development, and tumorigenesis, specific TE families are highly expressed. Understanding the molecular players at stake in these contexts is of utmost importance to establish the mechanisms regulating TEs, as well as the importance of their transcription to the biology of the host. Here, we review the transcription factors known to be involved in the sequence-specific recognition and transcriptional activation of specific TE families or subfamilies. We discuss the diversity of TE regulatory elements within mammalian genomes and highlight the importance of TE mobilization in the dispersal of transcription factor-binding sites over the course of evolution.


Assuntos
Elementos de DNA Transponíveis/genética , Fatores de Transcrição/genética , Animais , Evolução Molecular , Regulação da Expressão Gênica/genética , Genoma/genética , Humanos , Mamíferos/genética , Fatores de Transcrição/metabolismo
6.
Genes Dev ; 35(15-16): 1142-1160, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34244292

RESUMO

The establishment of cell fates involves alterations of transcription factor repertoires and repurposing of transcription factors by post-translational modifications. In embryonic stem cells (ESCs), the chromatin organizers SATB2 and SATB1 balance pluripotency and differentiation by activating and repressing pluripotency genes, respectively. Here, we show that conditional Satb2 gene inactivation weakens ESC pluripotency, and we identify SUMO2 modification of SATB2 by the E3 ligase ZFP451 as a potential driver of ESC differentiation. Mutations of two SUMO-acceptor lysines of Satb2 (Satb2K →R ) or knockout of Zfp451 impair the ability of ESCs to silence pluripotency genes and activate differentiation-associated genes in response to retinoic acid (RA) treatment. Notably, the forced expression of a SUMO2-SATB2 fusion protein in either Satb2K →R or Zfp451-/- ESCs rescues, in part, their impaired differentiation potential and enhances the down-regulation of Nanog The differentiation defect of Satb2K →R ESCs correlates with altered higher-order chromatin interactions relative to Satb2wt ESCs. Upon RA treatment of Satb2wt ESCs, SATB2 interacts with ZFP451 and the LSD1/CoREST complex and gains binding at differentiation genes, which is not observed in RA-treated Satb2K →R cells. Thus, SATB2 SUMOylation may contribute to the rewiring of transcriptional networks and the chromatin interactome of ESCs in the transition of pluripotency to differentiation.


Assuntos
Células-Tronco Embrionárias , Sumoilação , Ubiquitina-Proteína Ligases/metabolismo , Diferenciação Celular/genética , Cromatina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Annu Rev Genet ; 54: 167-187, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32867543

RESUMO

Cellular heterogeneity is a property of any living system; however, its relationship with cellular fate decision remains an open question. Recent technological advances have enabled valuable insights, especially in complex systems such as the mouse embryo. In this review, we discuss recent studies that characterize cellular heterogeneity at different levels during mouse development, from the two-cell stage up to gastrulation. In addition to key experimental findings, we review mathematical modeling approaches that help researchers interpret these findings. Disentangling the role of heterogeneity in cell fate decision will likely rely on the refined integration of experiments, large-scale omics data, and mathematical modeling, complemented by the use of synthetic embryos and gastruloids as promising in vitro models.


Assuntos
Embrião de Mamíferos/fisiologia , Animais , Diferenciação Celular/fisiologia , Humanos , Camundongos
8.
Development ; 150(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37294170

RESUMO

A powerful feature of single-cell genomics is the possibility of identifying cell types from their molecular profiles. In particular, identifying novel rare cell types and their marker genes is a key potential of single-cell RNA sequencing. Standard clustering approaches perform well in identifying relatively abundant cell types, but tend to miss rarer cell types. Here, we have developed CIARA (Cluster Independent Algorithm for the identification of markers of RAre cell types), a cluster-independent computational tool designed to select genes that are likely to be markers of rare cell types. Genes selected by CIARA are subsequently integrated with common clustering algorithms to single out groups of rare cell types. CIARA outperforms existing methods for rare cell type detection, and we use it to find previously uncharacterized rare populations of cells in a human gastrula and among mouse embryonic stem cells treated with retinoic acid. Moreover, CIARA can be applied more generally to any type of single-cell omic data, thus allowing the identification of rare cells across multiple data modalities. We provide implementations of CIARA in user-friendly packages available in R and Python.


Assuntos
Algoritmos , Análise de Célula Única , Animais , Humanos , Camundongos , Análise de Sequência de RNA/métodos , Análise por Conglomerados , Análise de Célula Única/métodos , Perfilação da Expressão Gênica/métodos
9.
EMBO Rep ; 25(4): 1721-1733, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38528171

RESUMO

Remnants of transposable elements (TEs) are widely expressed throughout mammalian embryo development. Originally infesting our genomes as selfish elements and acting as a source of genome instability, several of these elements have been co-opted as part of a complex system of genome regulation. Many TEs have lost transposition ability and their transcriptional potential has been tampered as a result of interactions with the host throughout evolutionary time. It has been proposed that TEs have been ultimately repurposed to function as gene regulatory hubs scattered throughout our genomes. In the early embryo in particular, TEs find a perfect environment of naïve chromatin to escape transcriptional repression by the host. As a consequence, it is thought that hosts found ways to co-opt TE sequences to regulate large-scale changes in chromatin and transcription state of their genomes. In this review, we discuss several examples of TEs expressed during embryo development, their potential for co-option in genome regulation and the evolutionary pressures on TEs and on our genomes.


Assuntos
Elementos de DNA Transponíveis , Regulação da Expressão Gênica , Animais , Elementos de DNA Transponíveis/genética , Evolução Biológica , Cromatina/genética , Embrião de Mamíferos , Evolução Molecular , Mamíferos/genética
10.
Nat Rev Mol Cell Biol ; 15(11): 723-34, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25303116

RESUMO

Following fertilization, gametes undergo epigenetic reprogramming in order to revert to a totipotent state. How embryonic cells subsequently acquire their fate and the role of chromatin dynamics in this process are unknown. Genetic and experimental embryology approaches have identified some of the players and morphological changes that are involved in early mammalian development, but the exact events underlying cell fate allocation in single embryonic cells have remained elusive. Experimental and technological advances have recently provided novel insights into chromatin dynamics and nuclear architecture in single cells; these insights have reshaped our understanding of the mechanisms underlying cell fate allocation and plasticity in early mammalian development.


Assuntos
Blastocisto/metabolismo , Cromatina/metabolismo , Desenvolvimento Embrionário/genética , Histonas/metabolismo , Células-Tronco Totipotentes/metabolismo , Fatores de Transcrição/metabolismo , Animais , Blastocisto/citologia , Diferenciação Celular , Cromatina/química , Epigênese Genética , Fertilização , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas , Histonas/genética , Transdução de Sinais , Análise de Célula Única , Células-Tronco Totipotentes/citologia , Fatores de Transcrição/genética
11.
Nature ; 587(7834): 377-386, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32894860

RESUMO

Here we describe the LifeTime Initiative, which aims to track, understand and target human cells during the onset and progression of complex diseases, and to analyse their response to therapy at single-cell resolution. This mission will be implemented through the development, integration and application of single-cell multi-omics and imaging, artificial intelligence and patient-derived experimental disease models during the progression from health to disease. The analysis of large molecular and clinical datasets will identify molecular mechanisms, create predictive computational models of disease progression, and reveal new drug targets and therapies. The timely detection and interception of disease embedded in an ethical and patient-centred vision will be achieved through interactions across academia, hospitals, patient associations, health data management systems and industry. The application of this strategy to key medical challenges in cancer, neurological and neuropsychiatric disorders, and infectious, chronic inflammatory and cardiovascular diseases at the single-cell level will usher in cell-based interceptive medicine in Europe over the next decade.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Atenção à Saúde/métodos , Atenção à Saúde/tendências , Medicina/métodos , Medicina/tendências , Patologia , Análise de Célula Única , Inteligência Artificial , Atenção à Saúde/ética , Atenção à Saúde/normas , Diagnóstico Precoce , Educação Médica , Europa (Continente) , Feminino , Saúde , Humanos , Legislação Médica , Masculino , Medicina/normas
12.
Genes Dev ; 37(1-2): 56-57, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37061962
13.
EMBO Rep ; 24(9): e56194, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37432066

RESUMO

Mouse embryonic stem cells (ESCs) display pluripotency features characteristic of the inner cell mass of the blastocyst. Mouse embryonic stem cell cultures are highly heterogeneous and include a rare population of cells, which recapitulate characteristics of the 2-cell embryo, referred to as 2-cell-like cells (2CLCs). Whether and how ESC and 2CLC respond to environmental cues has not been fully elucidated. Here, we investigate the impact of mechanical stress on the reprogramming of ESC to 2CLC. We show that hyperosmotic stress induces 2CLC and that this induction can occur even after a recovery time from hyperosmotic stress, suggesting a memory response. Hyperosmotic stress in ESCs leads to accumulation of reactive-oxygen species (ROS) and ATR checkpoint activation. Importantly, preventing either elevated ROS levels or ATR activation impairs hyperosmotic-mediated 2CLC induction. We further show that ROS generation and the ATR checkpoint act within the same molecular pathway in response to hyperosmotic stress to induce 2CLCs. Altogether, these results shed light on the response of ESC to mechanical stress and on our understanding of 2CLC reprogramming.


Assuntos
Células-Tronco Embrionárias , Transdução de Sinais , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Blastocisto/metabolismo , Diferenciação Celular
14.
Nature ; 569(7758): 729-733, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31118510

RESUMO

In mammals, the emergence of totipotency after fertilization involves extensive rearrangements of the spatial positioning of the genome1,2. However, the contribution of spatial genome organization to the regulation of developmental programs is unclear3. Here we generate high-resolution maps of genomic interactions with the nuclear lamina (a filamentous meshwork that lines the inner nuclear membrane) in mouse pre-implantation embryos. We reveal that nuclear organization is not inherited from the maternal germline but is instead established de novo shortly after fertilization. The two parental genomes establish lamina-associated domains (LADs)4 with different features that converge after the 8-cell stage. We find that the mechanism of LAD establishment is unrelated to DNA replication. Instead, we show that paternal LAD formation in zygotes is prevented by ectopic expression of Kdm5b, which suggests that LAD establishment may be dependent on remodelling of H3K4 methylation. Our data suggest a step-wise assembly model whereby early LAD formation precedes consolidation of topologically associating domains.


Assuntos
Posicionamento Cromossômico , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Genoma/fisiologia , Lâmina Nuclear/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/embriologia , Desenvolvimento Embrionário , Feminino , Fertilização , Histona Desmetilases com o Domínio Jumonji/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oócitos/citologia , Oócitos/metabolismo , Zigoto/citologia , Zigoto/metabolismo
15.
EMBO J ; 39(19): e105725, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32894572

RESUMO

This commentary outlines challenges with identifying and implementing ethical, legal and societal considerations when initiating large-scale scientific programs and suggests best practices to ensure responsible research.


Assuntos
Temas Bioéticos , Pesquisa Biomédica/ética , Humanos
16.
Genes Dev ; 30(6): 611-21, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26980186

RESUMO

In mammals, epigenetic reprogramming, the acquisition and loss of totipotency, and the first cell fate decision all occur within a 3-d window after fertilization from the one-cell zygote to the formation of the blastocyst. These processes are poorly understood in molecular detail, yet this is an essential prerequisite to uncover principles of stem cells, chromatin biology, and thus regenerative medicine. A unique feature of preimplantation development is the drastic genome-wide changes occurring to nuclear architecture. From studying somatic and in vitro cultured embryonic stem cells (ESCs) it is becoming increasingly established that the three-dimensional (3D) positions of genomic loci relative to each other and to specific compartments of the nucleus can act on the regulation of gene expression, potentially driving cell fate. However, the functionality, mechanisms, and molecular characteristics of the changes in nuclear organization during preimplantation development are only now beginning to be unraveled. Here, we discuss the peculiarities of nuclear compartments and chromatin organization during mammalian preimplantation development in the context of the transition from totipotency to pluripotency.


Assuntos
Núcleo Celular/metabolismo , Desenvolvimento Embrionário/fisiologia , Animais , Linhagem da Célula , Cromatina/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos
17.
Genes Dev ; 30(22): 2513-2526, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27920088

RESUMO

Extensive chromatin remodeling after fertilization is thought to take place to allow a new developmental program to start. This includes dynamic changes in histone methylation and, in particular, the remodeling of constitutive heterochromatic marks such as histone H4 Lys20 trimethylation (H4K20me3). While the essential function of H4K20me1 in preimplantation mouse embryos is well established, the role of the additional H4K20 methylation states through the action of the SUV4-20 methyltransferases has not been addressed. Here we show that Suv4-20h1/h2 are mostly absent in mouse embryos before implantation, underscoring a rapid decrease of H4K20me3 from the two-cell stage onward. We addressed the functional significance of this remodeling by introducing Suv4-20h1 and Suv4-20h2 in early embryos. Ectopic expression of Suv4-20h2 leads to sustained levels of H4K20me3, developmental arrest, and defects in S-phase progression. The developmental phenotype can be partially overcome through inhibition of the ATR pathway, suggesting that the main function for the remodeling of H4K20me3 after fertilization is to allow the timely and coordinated progression of replication. This is in contrast to the replication program in somatic cells, where H4K20me3 has been shown to promote replication origin licensing, and anticipates a different regulation of replication during this early developmental time window.


Assuntos
Blastocisto/enzimologia , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Blastocisto/citologia , Expressão Ectópica do Gene , Embrião de Mamíferos , Genoma/genética , Histonas/genética , Histonas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Zigoto/metabolismo
18.
Development ; 147(16)2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32847823

RESUMO

Currently, two main cell culture models predominate pluripotent stem cell research: embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Thanks to their ability to contribute to and form all tissues within the body, ESCs and iPSCs have proven invaluable in understanding pluripotent states, early embryonic development and cell differentiation, as well as in devising strategies for regenerative medicine. Comparatively little is known about totipotency - a cellular state with greater developmental potential. In mice, only the zygote and the blastomeres of the 2-cell-stage embryo are truly totipotent, as they alone can develop to form the embryo and all of its supportive extra-embryonic tissues. However, the discovery of a rare subpopulation of cells in murine ESC cultures, possessing features of 2-cell embryo blastomeres and expanded cell fate potential, has provided a biochemically tractable model to enable the in vitro study of totipotency. Here, we summarize current known features of these 2-cell-like cells (2CLCs) in an effort to provide a reference for the community, and to clarify what we know about their identity so far.


Assuntos
Blastômeros/metabolismo , Diferenciação Celular , Embrião de Mamíferos , Desenvolvimento Embrionário , Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Blastômeros/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia
19.
EMBO Rep ; 21(1): e48354, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31849178

RESUMO

Pluripotent stem cells are thought of as a surrogate of early developmental stages that sustain the capacity to generate all cell types in the body, thereby constituting an invaluable tool to address the mechanisms underlying cellular plasticity. In the mouse, cells resembling totipotent 2-cell-stage embryos (2-cell-like cells) arise at a very low frequency in embryonic stem cell (ESC) cultures. However, the extent to which these early-embryonic-like cells recapitulate the molecular features of the early embryo is unclear. Here, we have undertaken a characterization of some of the metabolic features of early-embryonic-like cells in culture. Our data indicate that early-embryonic-like cells exhibit decreased glycolytic and respiratory activity, lower levels of reactive oxygen species and increased glucose uptake, suggesting a shift of the metabolic programme during 2-cell-like cell reprogramming. Accordingly, we find that 2-cell-like cells can be induced by defined metabolites. Thus, in addition to their transcriptional and chromatin features, 2-cell-like cells recapitulate some of the metabolic features of their in vivo counterpart. Altogether, our work underscores a distinct metabolic state of early-embryonic-like cells and identifies compounds that can induce their emergence in vitro.


Assuntos
Células-Tronco Embrionárias , Células-Tronco Pluripotentes , Animais , Diferenciação Celular , Reprogramação Celular , Cromatina , Embrião de Mamíferos , Camundongos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa