Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Lab Invest ; 97(4): 370-382, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28112757

RESUMO

Chronic ventricular pressure overload (PO) results in congestive heart failure (CHF) in which myocardial fibrosis develops in concert with ventricular dysfunction. Caveolin-1 is important in fibrosis in various tissues due to its decreased expression in fibroblasts and monocytes. The profibrotic effects of low caveolin-1 can be blocked with the caveolin-1 scaffolding domain peptide (CSD, a caveolin-1 surrogate) using both mouse models and human cells. We have studied the beneficial effects of CSD on mice in which PO was induced by trans-aortic constriction (TAC). Beneficial effects observed in TAC mice receiving CSD injections daily included: improved ventricular function (increased ejection fraction, stroke volume, and cardiac output; reduced wall thickness); decreased collagen I, collagen chaperone HSP47, fibronectin, and CTGF levels; decreased activation of non-receptor tyrosine kinases Pyk2 and Src; and decreased activation of eNOS. To determine the source of cells that contribute to fibrosis in CHF, flow cytometric studies were performed that suggested that myofibroblasts in the heart are in large part bone marrow-derived. Two CD45+ cell populations were observed. One (Zone 1) contained CD45+/HSP47-/macrophage marker+ cells (macrophages). The second (Zone 2) contained CD45moderate/HSP47+/macrophage marker- cells often defined as fibrocytes. TAC increased the number of cells in Zones 1 and 2 and the level of HSP47 in Zone 2. These studies are a first step in elucidating the mechanism of action of CSD in heart fibrosis and promoting the development of CSD as a novel treatment to reduce fibrosis and improve ventricular function in CHF patients.


Assuntos
Caveolina 1/farmacologia , Coração/efeitos dos fármacos , Miocárdio/patologia , Fragmentos de Peptídeos/farmacologia , Função Ventricular/efeitos dos fármacos , Animais , Aorta/patologia , Aorta/fisiopatologia , Western Blotting , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Constrição Patológica/fisiopatologia , Fibrose/prevenção & controle , Citometria de Fluxo , Quinase 2 de Adesão Focal/metabolismo , Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP47/genética , Proteínas de Choque Térmico HSP47/metabolismo , Coração/fisiopatologia , Humanos , Integrina beta3/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Pressão , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Quinases da Família src/metabolismo
2.
Am J Physiol Lung Cell Mol Physiol ; 306(8): L736-48, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24583879

RESUMO

The interstitial lung diseases (ILD) include a large number of chronic, progressive, irreversible respiratory disorders involving pulmonary fibrosis, the most common of which are idiopathic pulmonary fibrosis and scleroderma lung disease (SSc ILD). Because bleomycin causes lung fibrosis when used in cancer chemotherapy, it is used to model human ILD in rodents. In most studies, bleomycin has been delivered directly into the lung by intratracheal or intraoral administration. Here we have compared the effects in mice of bleomycin delivered directly into the lungs (direct model) or systemically using osmotic minipumps (pump model) to determine which more closely resembles human ILD. The pump model is more similar to human SSc ILD in that: 1) lung injury/fibrosis is limited to the subpleural portion of the lung in the pump model and in SSc ILD, whereas the entire lung is affected in the direct model; 2) conversely, there is massive inflammation throughout the lung in the direct model, whereas inflammation is limited in the pump model and in SSc ILD; 3) hypertrophic type II alveolar epithelial cells are present at high levels in SSc ILD and in the pump model but not in the direct model; and 4) lung fibrosis is accompanied by dermal fibrosis. The pump model is also move convenient and humane than the direct model because there is less weight loss and mortality.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Bleomicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Bombas de Infusão , Doenças Pulmonares Intersticiais/tratamento farmacológico , Escleroderma Sistêmico/tratamento farmacológico , Animais , Caveolina 1/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Imunofluorescência , Humanos , Técnicas Imunoenzimáticas , Doenças Pulmonares Intersticiais/metabolismo , Doenças Pulmonares Intersticiais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osmose , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/patologia , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia , Redução de Peso/efeitos dos fármacos
3.
Respir Res ; 14: 90, 2013 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-24011378

RESUMO

BACKGROUND: In fibrotic lung diseases, expression of caveolin-1 is decreased in fibroblasts and monocytes. The effects of this deficiency are reversed by treating cells or animals with the caveolin-1 scaffolding domain peptide (CSD, amino acids 82-101 of caveolin-1) which compensates for the lack of caveolin-1. Here we compare the function of CSD subdomains (Cav-A, Cav-B, Cav-C, Cav-AB, and Cav-BC) and mutated versions of CSD (F92A and T90A/T91A/F92A). METHODS: Migration toward the chemokine CXCL12 and the associated expression of F-actin, CXCR4, and pSmad 2/3 were studied in monocytes from healthy donors and SSc patients. Fibrocyte differentiation was studied using PBMC from healthy donors and SSc patients. Collagen I secretion and signaling were studied in fibroblasts derived from the lung tissue of healthy subjects and SSc patients. RESULTS: Cav-BC and CSD at concentrations as low as 0.01 µM inhibited the hypermigration of SSc monocytes and TGFß-activated Normal monocytes and the differentiation into fibrocytes of SSc and Normal monocytes. While CSD also inhibited the migration of poorly migrating Normal monocytes, Cav-A (and other subdomains to a lesser extent) promoted the migration of Normal monocytes while inhibiting the hypermigration of TGFß-activated Normal monocytes. The effects of versions of CSD on migration may be mediated in part via their effects on CXCR4, F-actin, and pSmad 2/3 expression. Cav-BC was as effective as CSD in inhibiting fibroblast collagen I and ASMA expression and MEK/ERK signaling. Cav-C and Cav-AB also inhibited collagen I expression, but in many cases did not affect ASMA or MEK/ERK. Cav-A increased collagen I expression in scleroderma lung fibroblasts. Full effects on fibroblasts of versions of CSD required 5 µM peptide. CONCLUSIONS: Cav-BC retains most of the anti-fibrotic functions of CSD; Cav-A exhibits certain pro-fibrotic functions. Results obtained with subdomains and mutated versions of CSD further suggest that the critical functional residues in CSD depend on the cell type and readout being studied. Monocytes may be more sensitive to versions of CSD than fibroblasts and endothelial cells because the baseline level of caveolin-1 in monocytes is much lower than in these other cell types.


Assuntos
Caveolina 1/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Escleroderma Sistêmico/metabolismo , Actinas/metabolismo , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Fibroblastos/patologia , Humanos , Pulmão/patologia , Masculino , Regiões de Interação com a Matriz , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Monócitos/patologia , Estrutura Terciária de Proteína , Receptores CXCR4/metabolismo , Escleroderma Sistêmico/patologia , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Adulto Jovem
4.
Curr Opin Rheumatol ; 24(6): 642-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22955018

RESUMO

PURPOSE OF REVIEW: Racial disparities appear to exist in the susceptibility and severity of systemic sclerosis (SSc, scleroderma) and are responsible for a greater health burden in blacks as compared with whites. Disparities in socioeconomic status and access to healthcare do not sufficiently explain the observed differences in prevalence and mortality. It is important to determine whether there might be a biologic basis for the racial disparities observed in SSc. RECENT FINDINGS: We present data to suggest that the increased susceptibility and severity of SSc in blacks may result in part from an imbalance of profibrotic and antifibrotic factors. Racial differences in the expression of transforming growth factor-ß1 (TGF-ß1) and caveolin-1, as well as differences in the expression of hepatocyte growth factor and PPAR-γ, have been demonstrated in blacks with SSc, as well as in normal black individuals. A genetic predisposition to fibrosis may account for much of the racial disparities between black and white patients with SSc. SUMMARY: A better understanding of the biologic basis for the racial disparities observed in SSc may lead to improved therapies, along with the recognition that different therapies may need to be adapted for different groups of patients.


Assuntos
Negro ou Afro-Americano/etnologia , Disparidades nos Níveis de Saúde , Escleroderma Sistêmico/etnologia , População Branca/etnologia , Negro ou Afro-Americano/genética , Caveolina 1/genética , Suscetibilidade a Doenças/etnologia , Predisposição Genética para Doença/etnologia , Predisposição Genética para Doença/genética , Fator de Crescimento de Hepatócito/genética , Humanos , PPAR gama/genética , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/terapia , Fator de Crescimento Transformador beta1/genética , População Branca/genética
5.
PLoS One ; 17(2): e0264413, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35213624

RESUMO

The caveolin-1 scaffolding domain (CSD, amino acids 82-101 of caveolin-1) has been shown to suppress bleomycin-induced lung and skin fibrosis and angiotensin II (AngII)-induced myocardial fibrosis. To identify active subregions within CSD, we split its sequence into three slightly overlapping 8-amino acid subregions (82-89, 88-95, and 94-101). Interestingly, all three peptides showed activity. In bleomycin-treated mice, all three subregions suppressed the pathological effects on lung and skin tissue morphology. In addition, while bone marrow monocytes isolated from bleomycin-treated mice showed greatly enhanced migration in vitro toward CXCL12, treatment in vivo with CSD and its subregions almost completely suppressed this enhanced migration. In AngII-induced heart failure, both 82-89 and 88-95 significantly suppressed fibrosis (both Col I and HSP47 levels), microvascular leakage, and heart weight/ body weight ratio (HW/BW) while improving ventricular function. In contrast, while 94-101 suppressed the increase in Col I, it did not improve the other parameters. The idea that all three subregions can be active depending on the assay was further supported by experiments studying the in vitro migration of human monocytes in which all three subregions were extremely active. These studies are very novel in that it has been suggested that there is only one active region within CSD that is centered on amino acids 90-92. In contrast, we demonstrate here the presence of other active regions within CSD.


Assuntos
Caveolina 1/metabolismo , Movimento Celular , Monócitos/metabolismo , Fibrose Pulmonar/metabolismo , Dermatopatias/metabolismo , Animais , Bleomicina/efeitos adversos , Bleomicina/farmacologia , Camundongos , Fibrose Pulmonar/induzido quimicamente , Dermatopatias/induzido quimicamente
6.
Ann Rheum Dis ; 69(6): 1220-6, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20410070

RESUMO

OBJECTIVES: Reduced caveolin-1 levels in lung fibroblasts from patients with scleroderma and the lungs of bleomycin-treated mice promote collagen overexpression and lung fibrosis. This study was undertaken to determine whether caveolin-1 is deficient in leucocytes from bleomycin-treated mice and patients with scleroderma and to examine the consequences of this deficiency and its reversal. METHODS: Mice or cells received the caveolin-1 scaffolding domain (CSD) peptide to reverse the pathological effects of reduced caveolin-1 expression. In bleomycin-treated mice, the levels of caveolin-1 in leucocytes and the effect of CSD peptide on leucocyte accumulation in lung tissue were examined. To validate the results in human disease and to identify caveolin-1-regulated molecular mechanisms, monocytes and neutrophils were isolated from patients with scleroderma and control subjects and caveolin-1, extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), p38, CXC chemokine receptor 4 (CXCR4) and matrix metalloproteinase 9 (MMP-9) expression/activation were evaluated. These parameters were also studied in monocytes treated with cytokines or CSD peptide. RESULTS: Leucocyte caveolin-1 is important in lung fibrosis. In bleomycin-treated mice, caveolin-1 expression was diminished in monocytes and CSD peptide inhibited leucocyte recruitment into the lungs. These observations are relevant to human disease. Monocytes and neutrophils from patients with scleroderma contained less caveolin-1 and more activated ERK, JNK and p38 than those from control subjects. Treatment with CSD peptide reversed ERK, JNK and p38 hyperactivation. Scleroderma monocytes also overexpressed CXCR4 and MMP-9, which was inhibited by the CSD peptide. Cytokine treatment of normal monocytes caused adoption of the scleroderma phenotype (low caveolin-1, high CXCR4 and MMP-9 and signalling molecule hyperactivation). CONCLUSIONS: Caveolin-1 downregulation in leucocytes contributes to fibrotic lung disease, highlighting caveolin-1 as a promising therapeutic target in scleroderma.


Assuntos
Caveolina 1/fisiologia , Leucócitos/fisiologia , Fibrose Pulmonar/metabolismo , Escleroderma Sistêmico/metabolismo , Adulto , Idoso , Animais , Bleomicina , Caveolina 1/sangue , Caveolina 1/deficiência , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Leucócitos/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , Monócitos/fisiologia , Infiltração de Neutrófilos/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Escleroderma Sistêmico/patologia , Transdução de Sinais/fisiologia , Adulto Jovem
7.
J Scleroderma Relat Disord ; 4(2): 127-136, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35382388

RESUMO

The potential value of mesenchymal stromal/stem cell therapy in treating skin fibrosis in scleroderma (systemic sclerosis) and of the caveolin-1 scaffolding domain peptide in treating lung, skin, and heart fibrosis is known. To understand how these observations may relate to differences between mesenchymal stromal/stem cells from healthy subjects and subjects with fibrosis, we have characterized the fibrogenic and adipogenic potential of adipose-derived mesenchymal stromal/stem cells from systemic sclerosis patients, from mice with fibrotic lung and skin disease induced by systemic bleomycin treatment, and from healthy controls. Early passage systemic sclerosis adipose-derived mesenchymal stromal/stem cells have a profibrotic/anti-adipogenic phenotype compared to healthy adipose-derived mesenchymal stromal/stem cells (low caveolin-1, high α-smooth muscle actin, high HSP47, low pAKT, low capacity for adipogenic differentiation). This phenotype is mimicked by treating healthy adipose-derived mesenchymal stromal/stem cells with transforming growth factor beta or caveolin-1 small interfering RNA and is reversed in systemic sclerosis adipose-derived mesenchymal stromal/stem cells by treatment with caveolin-1 scaffolding domain peptide, but not scrambled caveolin-1 scaffolding domain peptide. Similar results were obtained with adipose-derived mesenchymal stromal/stem cells from systemic sclerosis patients and from bleomycin-treated mice, indicating the central role of caveolin-1 in mesenchymal stromal/stem cell differentiation in fibrotic disease.

8.
PLoS One ; 13(12): e0207844, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30576317

RESUMO

Dysregulation of the renin-angiotensin system leads to systemic hypertension and maladaptive fibrosis in various organs. We showed recently that myocardial fibrosis and the loss of cardiac function in mice with transverse aortic constriction (TAC) could be averted by treatment with the caveolin-1 scaffolding domain (CSD) peptide. Here, we used angiotensin II (AngII) infusion (2.1 mg/kg/day for 2 wk) in mice as a second model to confirm and extend our observations on the beneficial effects of CSD on heart and kidney disease. AngII caused cardiac hypertrophy (increased heart weight to body weight ratio (HW/BW) and cardiomyocyte cross-sectional area); fibrosis in heart and kidney (increased levels of collagen I and heat shock protein-47 (HSP47)); and vascular leakage (increased levels of IgG in heart and kidney). Echocardiograms of AngII-infused mice showed increased left ventricular posterior wall thickness (pWTh) and isovolumic relaxation time (IVRT), and decreased ejection fraction (EF), stroke volume (SV), and cardiac output (CO). CSD treatment (i.p. injections, 50 µg/mouse/day) of AngII-infused mice significantly suppressed all of these pathological changes in fibrosis, hypertrophy, vascular leakage, and ventricular function. AngII infusion increased ß1 and ß3 integrin levels and activated Pyk2 in both heart and kidney. These changes were also suppressed by CSD. Finally, bone marrow cell (BMC) isolated from AngII-infused mice showed hyper-migration toward SDF1. When AngII-infused mice were treated with CSD, BMC migration was reduced to the basal level observed in cells from control mice. Importantly, CSD did not affect the AngII-induced increase in blood pressure (BP), indicating that the beneficial effects of CSD were not mediated via normalization of BP. These results strongly indicate that CSD suppresses AngII-induced pathological changes in mice, suggesting that CSD can be developed as a treatment for patients with hypertension and pressure overload-induced heart failure.


Assuntos
Angiotensina II/administração & dosagem , Caveolina 1/administração & dosagem , Coração/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/patologia , Miocárdio/patologia , Fragmentos de Peptídeos/administração & dosagem , Angiotensina II/fisiologia , Angiotensinas/antagonistas & inibidores , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/fisiologia , Permeabilidade Capilar/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Fibrose/etiologia , Fibrose/patologia , Fibrose/prevenção & controle , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sistema Renina-Angiotensina/efeitos dos fármacos , Sistema Renina-Angiotensina/fisiologia , Transdução de Sinais/efeitos dos fármacos
9.
Front Pharmacol ; 8: 174, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28420992

RESUMO

Monocytes from systemic sclerosis (SSc, scleroderma) patients and healthy African Americans (AA) are deficient in the regulatory protein caveolin-1 leading to enhanced migration toward chemokines and fibrogenic differentiation. While dermal fibrosis is the hallmark of SSc, loss of subcutaneous adipose tissue is a lesser-known feature. To better understand the etiology of SSc and the predisposition of AA to SSc, we studied the adipogenic potential of SSc and healthy AA monocytes. The ability of SSc and healthy AA monocytes to differentiate into adipocyte-like cells (ALC) is inhibited compared to healthy Caucasian (C) monocytes. We validated that monocyte-derived ALCs are distinct from macrophages by flow cytometry and immunocytochemistry. Like their enhanced fibrogenic differentiation, their inhibited adipogenic differentiation is reversed by the caveolin-1 scaffolding domain peptide (CSD, a surrogate for caveolin-1). The altered differentiation of SSc and healthy AA monocytes is additionally regulated by peroxisome proliferator-activated receptor γ (PPARγ) which is also present at reduced levels in these cells. In vivo studies further support the importance of caveolin-1 and PPARγ in fibrogenesis and adipogenesis. In SSc patients, healthy AA, and mice treated systemically with bleomycin, adipocytes lose caveolin-1 and PPARγ and the subcutaneous adipose layer is diminished. CSD treatment of these mice leads to a reappearance of the caveolin-1+/PPARγ+/FABP4+ subcutaneous adipose layer. Moreover, many of these adipocytes are CD45+, suggesting they are monocyte derived. Tracing experiments with injected EGFP+ monocytes confirm that monocytes contribute to the repair of the adipose layer when it is damaged by bleomycin treatment. Our observations strongly suggest that caveolin-1 and PPARγ work together to maintain a balance between the fibrogenic and adipogenic differentiation of monocytes, that this balance is altered in SSc and in healthy AA, and that monocytes make a major contribution to the repair of the adipose layer.

10.
Artigo em Inglês | MEDLINE | ID: mdl-26322128

RESUMO

BACKGROUND: A major health disparity suffered by African Americans (AA) is a predisposition toward fibrotic diseases of the skin, lung, and other organs. We previously showed that healthy AA and scleroderma (systemic sclerosis (SSc)) patient monocytes share biochemical and functional differences from control Caucasian (C) monocytes that may predispose AA to SSc. The central difference is a decrease in caveolin-1. Low caveolin-1 levels promote monocyte migration, their differentiation into fibrocytes, and fibrocyte recruitment into fibrotic tissues. Here we have greatly expanded our studies on the mechanism of action in fibrosis of caveolin-1 in AA and SSc monocytes. RESULTS: Expression of chemokine receptors (CCR1, CCR2, CCR3) is enhanced in healthy AA monocytes compared to healthy C monocytes and further increased in SSc monocytes. A parallel increase in function occurs assessed by migration toward chemokines MCP-1 and MCP-3. Chemokine-receptor expression and function are inhibited by the caveolin-1 scaffolding domain peptide (CSD) via its action as a surrogate for caveolin-1. Cells bearing chemokine receptors accumulate to high levels in fibrotic lung and skin tissue from SSc patients and from mice treated with bleomycin. This accumulation is almost completely blocked in mice treated with CSD. In signaling studies, Src activation is enhanced in AA monocytes compared to C monocytes and further increased in SSc monocytes. Lyn is also highly activated in SSc monocytes. Src and Lyn activation are inhibited by CSD. Src and Lyn's roles in monocyte migration were demonstrated using specific inhibitors. CONCLUSIONS: To the best of our knowledge, this is the first report that the expression and function of CCR1, CCR2, and CCR3 are upregulated in monocytes from healthy AA and from SSc patients via molecular mechanisms involving caveolin-1, Src/Lyn, and MEK/ERK. The results suggest that the migration/recruitment of monocytes and fibrocytes into fibrotic tissues, mediated at least in part by CCR1, CCR2, and CCR3, plays a major role in the progression of lung and skin fibrosis and in the predisposition of AA to fibrotic diseases. Our findings further suggest that chemokine receptors and signaling molecules, particularly caveolin-1, that control their expression/function are promising targets for treating fibrotic diseases.

11.
Arthritis Rheumatol ; 66(7): 1909-19, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24578173

RESUMO

OBJECTIVE: Interstitial lung disease (ILD) is the leading cause of death in patients with systemic sclerosis (SSc; scleroderma). Although SSc-related ILD is more common and severe in African Americans than in Caucasians, little is known about factors underlying this significant health disparity. The aim of this study was to examine the role that low expression of caveolin-1 might play in susceptibility to ILD among African Americans. METHODS: Assays of monocyte migration toward stromal cell-derived factor 1 (SDF-1) were performed using monocytes from Caucasian and African American healthy donors and patients with SSc. For fibrocyte differentiation studies, total peripheral blood mononuclear cells were incubated on fibronectin-coated plates. Protein expression was evaluated by immunohistochemistry and Western blotting. RESULTS: Monocytes from healthy African American donors and those from patients with SSc had low caveolin-1 levels, enhanced migration toward the CXCR4 ligand SDF-1, and enhanced differentiation to fibrocytes. Enhanced migration and differentiation of monocytes from African Americans and patients with SSc appeared to be attributable to the lack of caveolin-1, because restoring caveolin-1 function using a caveolin-1 scaffolding domain peptide inhibited these processes. Although they differed from monocytes from Caucasians, monocytes from both African Americans and patients with SSc were not identical, because SSc monocytes showed major increases from baseline in ERK, JNK, p38, and Smad2/3 activation, while monocytes from African Americans showed only limited ERK activation and no activation of JNK, p38, or Smad2/3. In contrast, SDF-1 exposure caused no additional ERK activation in SSc monocytes but did cause significant additional activation in monocytes from African Americans. CONCLUSION: African Americans may be predisposed to SSc-related ILD due to low baseline caveolin-1 levels in their monocytes, potentially affecting signaling, migration, and fibrocyte differentiation. The monocytes of African Americans may lack caveolin-1 due to high levels of transforming growth factor ß in their blood.


Assuntos
Negro ou Afro-Americano , Caveolina 1/deficiência , Doenças Pulmonares Intersticiais/metabolismo , Monócitos/citologia , Escleroderma Sistêmico/metabolismo , População Branca , Caveolina 1/metabolismo , Diferenciação Celular/imunologia , Movimento Celular/imunologia , Citoesqueleto/metabolismo , Fibroblastos/citologia , Humanos , Técnicas In Vitro , Doenças Pulmonares Intersticiais/etnologia , Doenças Pulmonares Intersticiais/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Monócitos/imunologia , Receptores CXCR4/metabolismo , Fatores de Risco , Escleroderma Sistêmico/etnologia , Escleroderma Sistêmico/imunologia , Fator de Crescimento Transformador beta/metabolismo
12.
Front Pharmacol ; 5: 140, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24966836

RESUMO

In fibrotic diseases caveolin-1 underexpression in fibroblasts results in collagen overexpression and in monocytes leads to hypermigration. These profibrotic behaviors are blocked by the caveolin-1 scaffolding domain peptide (CSD) which compensates for caveolin-1 deficiency. Monocytes and fibroblasts are related in that monocytes are the progenitors of fibrocytes (CD45+/Collagen I+ cells) that, in turn, are the progenitors of many fibroblasts in fibrotic tissues. In an additional anti-fibrotic activity, CSD blocks monocyte differentiation into fibrocytes. We studied a mouse fibrosis model (Pump Model) involving systemic bleomycin delivery that closely models scleroderma (SSc) in several ways, the most important of which for this study is that fibrosis is observed in the lungs, skin, and internal organs. We show here that dermal thickness is increased 2-fold in the Pump Model and that this effect is almost completely blocked by CSD (p < 0.001). Concomitantly, the subcutaneous fat layer becomes >80% thinner. This effect is also blocked by CSD (p < 0.001). Even in mice receiving vehicle instead of bleomycin, CSD increases the thickness of the fat layer. To study the mechanisms of action of bleomycin and CSD, we examined the accumulation of the chemokine receptor CCR5 and its ligands MIP1α and MIP1ß in fibrotic tissue and their roles in monocyte migration. Fibrocytes and other leukocytes expressing CCR5 and its ligands were present at high levels in the fibrotic dermis of SSc patients and Pump Model mice while CSD blocked their accumulation in mouse dermis. Migration toward CCR5 ligands of SSc monocytes and Pump Model bone marrow cells was 3-fold greater than cells from control subjects. This enhanced migration was almost completely blocked by CSD. These results suggest that low monocyte caveolin-1 promotes fibrosis by enhancing the recruitment of fibrocytes and their progenitors into affected tissue.

13.
Front Pharmacol ; 5: 141, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24999331

RESUMO

Fibrocytes are bone marrow hematopoietic-derived cells that also express a mesenchymal cell marker (commonly collagen I) and participate in fibrotic diseases of multiple organs. Given their origin, they or their precursors must be circulating cells before recruitment into target tissues. While most previous studies focused on circulating fibrocytes, here we focus on the fibrocyte phenotype in fibrotic tissue. The study's relevance to human disease is heightened by use of a model in which bleomycin is delivered systemically, recapitulating several features of human scleroderma including multi-organ fibrosis not observed when bleomycin is delivered directly into the lungs. Using flow cytometry, we find in the fibrotic lung a large population of CD45(high) fibrocytes (called Region I) rarely found in vehicle-treated control mice. A second population of CD45+ fibrocytes (called Region II) is observed in both control and fibrotic lung. The level of CD45 in circulating fibrocytes is far lower than in either Region I or II lung fibrocytes. The chemokine receptors CXCR4 and CCR5 are expressed at higher levels in Region I than in Region II and are present at very low levels in all other lung cells including CD45+/collagen I- leucocytes. The collagen chaperone HSP47 is present at similar high levels in both Regions I and II, but at a higher level in fibrotic lung than in control lung. There is also a major population of HSP47(high)/CD45- cells in fibrotic lung not present in control lung. CD44 is present at higher levels in Region I than in Region II and at much lower levels in all other cells including CD45+/collagen I- leucocytes. When lung fibrosis is inhibited by restoring caveolin-1 activity using a caveolin-1 scaffolding domain peptide (CSD), a strong correlation is observed between fibrocyte number and fibrosis score. In summary, the distinctive phenotype of fibrotic lung fibrocytes suggests that fibrocyte differentiation occurs primarily within the target organ.

14.
Open Rheumatol J ; 6: 116-22, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22802909

RESUMO

Caveolin-1 is a master regulator of several signaling cascades because it is able to bind to and thereby inhibit members of a variety of kinase families. While associated with caveolae and involved in their generation, caveolin-1 is also present at other sites. A variety of studies have suggested that caveolin-1 may be a useful therapeutic target in fibrotic diseases of the lung and other tissues because in these diseases a low level of caveolin-1 expression is associated with a high level of collagen expression and fibrosis. Reduced caveolin-1 expression is observed not only in the fibroblasts that secrete collagen, but also in epithelial cells and monocytes. This is intriguing because both epithelial cells and monocytes have been suggested to be precursors of fibroblasts. Likely downstream effects of loss of caveolin-1 in fibrosis include activation of TGF-ß signaling and upregulation of CXCR4 in monocytes resulting in their enhanced migration into damaged tissue where its ligand CXCL12 is produced. Finally, it may be possible to target caveolin-1 in fibrotic diseases without the use of gene therapy. A caveolin-1 peptide (caveolin-1 scaffolding domain) has been identified that retains the function of the full-length molecule to inhibit kinases and that can be modified by addition of the Antennapedia internalization sequence to allow it to enter cells both in vitro and in vivo.

15.
Fibrogenesis Tissue Repair ; 4(1): 15, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21722364

RESUMO

Interstitial lung disease (ILD) is a major cause of morbidity and mortality in scleroderma (systemic sclerosis, or SSc). Fibrocytes are a monocyte-derived cell population implicated in the pathogenesis of fibrosing disorders. Given the recently recognized importance of caveolin-1 in regulating function and signaling in SSc monocytes, in the present study we examined the role of caveolin-1 in the migration and/or trafficking and phenotype of monocytes and fibrocytes in fibrotic lung disease in human patients and an animal model. These studies fill a gap in our understanding of how monocytes and fibrocytes contribute to SSc-ILD pathology. We found that C-X-C chemokine receptor type 4-positive (CXCR4+)/collagen I-positive (ColI+), CD34+/ColI+ and CD45+/ColI+ cells are present in SSc-ILD lungs, but not in control lungs, with CXCR4+ cells being most prevalent. Expression of CXCR4 and its ligand, stromal cell-derived factor 1 (CXCL12), are also highly upregulated in SSc-ILD lung tissue. SSc monocytes, which lack caveolin-1 and therefore overexpress CXCR4, exhibit almost sevenfold increased migration toward CXCL12 compared to control monocytes. Restoration of caveolin-1 function by administering the caveolin scaffolding domain (CSD) peptide reverses this hypermigration. Similarly, transforming growth factor ß-treated normal monocytes lose caveolin-1, overexpress CXCR4 and exhibit 15-fold increased monocyte migration that is CSD peptide-sensitive. SSc monocytes exhibit a different phenotype than normal monocytes, expressing high levels of ColI, CD14 and CD34. Because ColI+/CD14+ cells are prevalent in SSc blood, we looked for such cells in lung tissue and confirmed their presence in SSc-ILD lungs but not in normal lungs. Finally, in the bleomycin model of lung fibrosis, we show that CSD peptide diminishes fibrocyte accumulation in the lungs. Our results suggest that low caveolin-1 in SSc monocytes contributes to ILD via effects on cell migration and phenotype and that the hyperaccumulation of fibrocytes in SSc-ILD may result from the altered phenotype and migratory activity of their monocyte precursors.

16.
Am J Physiol Lung Cell Mol Physiol ; 294(5): L843-61, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18203815

RESUMO

Lung fibrosis involves the overexpression of ECM proteins, primarily collagen, by alpha-smooth muscle actin (ASMA)-positive cells. Caveolin-1 is a master regulator of collagen expression by cultured lung fibroblasts and of lung fibrosis in vivo. A peptide equivalent to the caveolin-1 scaffolding domain (CSD peptide) inhibits collagen and tenascin-C expression by normal lung fibroblasts (NLF) and fibroblasts from the fibrotic lungs of scleroderma patients (SLF). CSD peptide inhibits ASMA expression in SLF but not NLF. Similar inhibition of collagen, tenascin-C, and ASMA expression was also observed when caveolin-1 expression was upregulated using adenovirus. These observations suggest that the low caveolin-1 levels in SLF cause their overexpression of collagen, tenascin-C, and ASMA. In mechanistic studies, MEK, ERK, JNK, and Akt were hyperactivated in SLF, and CSD peptide inhibited their activation and altered their subcellular localization. These studies and experiments using kinase inhibitors suggest many differences between NLF and SLF in signaling cascades. To validate these data, we determined that the alterations in signaling molecule activation observed in SLF also occur in fibrotic lung tissue from scleroderma patients and in mice with bleomycin-induced lung fibrosis. Finally, we demonstrated that systemic administration of CSD peptide to bleomycin-treated mice blocks epithelial cell apoptosis, inflammatory cell infiltration, and changes in tissue morphology as well as signaling molecule activation and collagen, tenascin-C, and ASMA expression associated with lung fibrosis. CSD peptide may be a prototype for novel treatments for human lung fibrosis that act, in part, by inhibiting the expression of ASMA and ECM proteins.


Assuntos
Caveolina 1/metabolismo , Fibroblastos/metabolismo , Doenças Pulmonares Intersticiais/metabolismo , Pulmão/metabolismo , Escleroderma Sistêmico/metabolismo , Actinas/metabolismo , Animais , Apoptose/fisiologia , Caveolina 1/genética , Células Cultivadas , Colágeno/metabolismo , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Fibroblastos/patologia , Fibrose , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Pulmão/patologia , Doenças Pulmonares Intersticiais/patologia , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Escleroderma Sistêmico/patologia , Tenascina/metabolismo
17.
Anal Biochem ; 337(1): 62-9, 2005 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-15649376

RESUMO

A method to detect and quantify curcumin and two curcuminoid metabolites in biological matrices, including mouse serum and mouse lung cell cultures, was developed. Standard curves between 0.04 and 10.00 nmol curcumin were prepared in serum, giving correlation coefficients of 0.94-0.99. Alcoholic extraction, concentration, and addition of dilute hydrochloric acid to stabilize the curcumin were essential to the reproducibility of the protocol. Untreated and curcumin-treated mouse lung fibrotic and nonfibrotic cell cultures were analyzed by matrix-assisted laser desorption ionization time of flight mass spectrometry utilizing this method. Curcumin uptake was calculated to be 7.0-11.6% for the saline-treated cells and 7.4-11.9% for the bleomycin-treated cultures. Curcumin was not detected in untreated cells. Two additional peaks (m/z=399 and 429) were observed in the curcumin-treated cells. These may be curcumin-derived products resulting from HCl treatment of the tissue samples.


Assuntos
Curcumina/análogos & derivados , Curcumina/análise , Pulmão/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Bleomicina , Células Cultivadas , Curcumina/metabolismo , Curcumina/farmacocinética , Diarileptanoides , Pulmão/citologia , Camundongos , Camundongos Endogâmicos , Fibrose Pulmonar/patologia
18.
J Biol Chem ; 280(14): 13879-87, 2005 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-15691837

RESUMO

The roles of MEK, ERK, the epsilon and alpha isoforms of protein kinase C (PKC), and caveolin-1 in regulating collagen expression were studied in normal lung fibroblasts. Knocking down caveolin-1 gave particularly striking results. A 70% decrease caused a 5-fold increase in MEK/ERK activation and collagen expression. The combined data reveal a branched signaling pathway. In its central portion MEK activates ERK, leading to increased collagen expression. Two branches converge on MEK/ERK. In one, increased PKCepsilon leads to MEK/ERK activation. In another, increased PKCalpha induces caveolin-1 expression, which in turn inhibits MEK/ERK activation and collagen expression. Lung fibroblasts from scleroderma patients with pulmonary fibrosis showed altered signaling. Consistent with their overexpression of collagen, scleroderma lung fibroblasts contain more activated MEK/ERK and less caveolin-1 than normal lung fibroblasts. Because cutaneous fibrosis is the hallmark of scleroderma, we also studied dermal fibroblasts. As in lung, there was more activated MEK/ERK in cells from scleroderma patients than in control cells, and MEK inhibition decreased collagen expression. However, the distinctive levels of PKCepsilon, PKCalpha, and caveolin-1 in lung and dermal fibroblasts from scleroderma patients and control subjects indicate that the links between these signaling proteins and MEK/ERK must function differently in the four cell types. Finally, we confirmed the relevance of these signaling cascades in vivo. The combined results demonstrate that a branched signaling pathway involving MEK, ERK, PKCepsilon, PKCalpha, and caveolin-1 regulates collagen expression in normal lung tissue and is perturbed during fibrosis.


Assuntos
Caveolinas/metabolismo , Colágeno/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibroblastos/fisiologia , Pulmão/citologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteína Quinase C/metabolismo , Animais , Butadienos/metabolismo , Caveolina 1 , Caveolinas/genética , Células Cultivadas , Colágeno/genética , Ativação Enzimática , Inibidores Enzimáticos/metabolismo , Fibroblastos/citologia , Fibrose/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Nitrilas/metabolismo , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Proteína Quinase C/genética , Proteína Quinase C-alfa , Proteína Quinase C-épsilon , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia
19.
Am J Respir Cell Mol Biol ; 31(1): 28-35, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-14742295

RESUMO

Scleroderma, a disease involving excessive collagen deposition, can be studied using fibroblasts cultured from affected tissues. We find that curcumin, the active component of the spice turmeric, causes apoptosis in scleroderma lung fibroblasts (SLF), but not in normal lung fibroblasts (NLF). This effect is likely to be linked to the fact that although curcumin induces the expression of the phase 2 detoxification enzymes heme oxygenase 1 and glutathione S-transferase P1 (GST P1) in NLF, SLF are deficient in these enzymes, particularly after curcumin treatment. The sensitivity of cells to curcumin-induced apoptosis and the expression of GST P1 (but not heme oxygenase 1) are regulated by the epsilon isoform of protein kinase C (PKCepsilon). SLF, which contain less PKCepsilon and less GST P1 than NLF, become less sensitive to curcumin-induced apoptosis and express higher levels of GST P1 when transfected with wild-type PKCepsilon, but not with dominant-negative PKCepsilon. Conversely, NLF become sensitive to curcumin-induced apoptosis and express lower levels of GST P1 when PKCepsilon expression or function is inhibited. The subcellular distribution of PKCepsilon also differs in NLF and SLF. PKCepsilon is predominantly nuclear or perinuclear in NLF but is associated with stress fibers in SLF. Just as PKCepsilon levels are lower in SLF than in NLF in vitro, PKCepsilon expression is decreased in fibrotic lung tissue in vivo. In summary, our results suggest that a signaling pathway involving PKCepsilon and phase 2 detoxification enzymes provides protection against curcumin-induced apoptosis in NLF and is defective in SLF. These observations suggest that curcumin may have therapeutic value in treating scleroderma, just as it has already been shown to protect rats from lung fibrosis induced by a variety of agents.


Assuntos
Curcumina/farmacologia , Fibroblastos/enzimologia , Pulmão/enzimologia , Proteína Quinase C/metabolismo , Fibrose Pulmonar/enzimologia , Escleroderma Sistêmico/enzimologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Bleomicina , Núcleo Celular/enzimologia , Tamanho Celular/efeitos dos fármacos , Células Cultivadas , Curcumina/uso terapêutico , Regulação para Baixo/fisiologia , Resistência a Medicamentos/efeitos dos fármacos , Resistência a Medicamentos/fisiologia , Feminino , Fibroblastos/efeitos dos fármacos , Glutationa Transferase/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase-1 , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Proteínas de Membrana , Camundongos , Estresse Oxidativo/fisiologia , Proteína Quinase C/efeitos dos fármacos , Proteína Quinase C/genética , Proteína Quinase C-épsilon , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/patologia , Escleroderma Sistêmico/patologia , Escleroderma Sistêmico/fisiopatologia , Transdução de Sinais/fisiologia , Fibras de Estresse/enzimologia , Transfecção
20.
Am J Physiol Lung Cell Mol Physiol ; 285(2): L334-43, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12665468

RESUMO

Activated fibroblasts, or myofibroblasts, are crucial players in tissue remodeling, wound healing, and various fibrotic disorders, including interstitial lung fibrosis associated with scleroderma. Here we characterize the signaling pathways in normal lung fibroblasts exposed to thrombin as they acquire two of the main features of myofibroblasts: smooth muscle (SM) alpha-actin organization and collagen gel contraction. Our results show that the small G protein Rho is involved in lung myofibroblast differentiation. Thrombin induces Rho-35S-labeled guanosine 5'-O-(3-thiotriphosphate) binding in a dose-dependent manner. It potently stimulates Rho activity in vivo and initiates protein kinase C (PKC)-epsilon-Rho complex formation. Toxin B, which inactivates Rho by ADP ribosylation, inhibits thrombin-induced SM alpha-actin organization, collagen gel contraction, and PKC-epsilon-SM alpha-actin and PKC-epsilon-RhoA coimmunoprecipitation. However, it has no effect on PKC-epsilon activation or translocation of PKC-epsilon to the membrane. Overexpression of constitutively active PKC-epsilon and constitutively active RhoA induces collagen gel contraction or SM alpha-actin organization, whereas, individually, they do not perform these functions. We therefore conclude that the contractile activity of myofibroblasts induced by thrombin is mediated via PKC-epsilon- and RhoA-dependent pathways and that activation of both of these molecules is required. We postulate that PKC-epsilon-RhoA complex formation is an early event in thrombin activation of lung fibroblasts, followed by PKC-epsilon-SM alpha-actin coimmunoprecipitation, which leads to the PKC-epsilon-RhoA-SM alpha-actin ternary complex formation.


Assuntos
Actinas/fisiologia , Pulmão/fisiologia , Contração Muscular/fisiologia , Trombina/fisiologia , Ativação Enzimática/efeitos dos fármacos , Humanos , Pulmão/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Proteína Quinase C/metabolismo , Proteína Quinase C-épsilon , Trombina/farmacologia , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa