Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Angew Chem Int Ed Engl ; 62(23): e202219313, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37021740

RESUMO

N-Type thermoelectrics typically consist of small molecule dopant+polymer host. Only a few polymer dopant+polymer host systems have been reported, and these have lower thermoelectric parameters. N-type polymers with high crystallinity and order are generally used for high-conductivity ( σ ${\sigma }$ ) organic conductors. Few n-type polymers with only short-range lamellar stacking for high-conductivity materials have been reported. Here, we describe an n-type short-range lamellar-stacked all-polymer thermoelectric system with highest σ ${\sigma }$ of 78 S-1 , power factor (PF) of 163 µW m-1 K-2 , and maximum Figure of merit (ZT) of 0.53 at room temperature with a dopant/host ratio of 75 wt%. The minor effect of polymer dopant on the molecular arrangement of conjugated polymer PDPIN at high ratios, high doping capability, high Seebeck coefficient (S) absolute values relative to σ ${\sigma }$ , and atypical decreased thermal conductivity ( κ ${\kappa }$ ) with increased doping ratio contribute to the promising performance.

2.
J Am Chem Soc ; 144(10): 4611-4622, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35245032

RESUMO

In this report, we describe the synthesis and electronic properties of small-molecule and polymeric [8]cycloparaphenylenes ([8]CPPs) with disjointed pi-conjugated substituents. Arylene-ethynylene linkers were installed on opposite sides of the [8]CPP nanohoop as separated by three phenyl units on either side such that the monomer systems have syn (C2 symmetry) and anti (C1 symmetry) conformers with a small energy gap (0.1-0.6 kcal/mol). This disjoined substitution pattern necessarily forces delocalization through and around the CPP radial structure. We demonstrate new electronic states from this radial/linear mixing in both the small molecules and the pi extended polymers. Quantum chemical calculations reveal that these electronic processes arise from multiple operative radial/linear conjugation pathways, as the disjoint pattern results in both ortho and meta connections to the CPP ring. These results affirm the unique nature of hybrid radial and linear pi electron delocalization operative in these new conjugation pathways.

3.
Langmuir ; 38(50): 15463-15475, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36475709

RESUMO

Supramolecular materials derived from the self-assembly of engineered molecules continue to garner tremendous scientific and technological interest. Recent innovations include the realization of nano- and mesoscale particles (0D), rods and fibrils (1D), sheets (2D), and even extended lattices (3D). Our research groups have focused attention over the past 15 years on one particular class of supramolecular materials derived from oligopeptides with embedded π-electron units, where the oligopeptides can be viewed as substituents or side chains to direct the assembly of the central π-electron cores. Upon assembly, the π-systems are driven into close cofacial architectures that facilitate a variety of energy migration processes within the nanomaterial volume, including exciton transport, voltage transmission, and photoinduced electron transfer. Like many practitioners of supramolecular materials science, many of our initial molecular designs were designed with substantial inspiration from biologically occurring self-assembly coupled with input from chemical intuition and molecular modeling and simulation. In this feature article, we summarize our current understanding of the π-peptide self-assembly process as documented through our body of publications in this area. We address fundamental spectroscopic and computational tools used to extract information regarding the internal structures and energetics of the π-peptide assemblies, and we address the current state of the art in terms of recent applications of data science tools in conjunction with high-throughput computational screening and experimental assays to guide the efficient traversal of the π-peptide molecular design space. The abstract image details our integrated program of chemical synthesis, spectroscopic and functional characterization, multiscale simulation, and machine learning which has advanced the understanding and control of the assembly of synthetic π-conjugated peptides into supramolecular nanostructures with energy and biomedical applications.


Assuntos
Nanoestruturas , Peptídeos , Peptídeos/química , Oligopeptídeos/química , Nanoestruturas/química , Modelos Moleculares , Elétrons
4.
Langmuir ; 37(28): 8594-8606, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34213333

RESUMO

Peptide-π-conjugated materials are important for biointerfacing charge-transporting applications due to their aqueous compatibility and formation of long-range π-electron networks. Perylene diimides (PDIs), well-established charge-transporting π systems, can self-assemble in aqueous solutions when conjugated with amino acids. In this work, we leveraged computational guidance from our previous work to access two different self-assembled architectures from PDI-amino acid conjugates. Furthermore, we expanded the design rule to other sequences to learn that the closest amino acids to the π core have a significant effect on the photophysical properties of the resulting assemblies. By simply altering glycine to alanine at the closest residue position, we observed significantly different electronic properties as revealed through UV-vis, photoluminescence, and circular dichroism spectroscopies. Accompanying molecular dynamics simulations revealed two distinct types of self-assembled architectures: cofacial structures when the smaller glycine residue is at the closest residue position to the π core versus rotationally shifted structures when glycine is substituted for the larger alanine. This study illustrates the use of tandem computations and experiments to unearth and understand new design rules for supramolecular materials and exposes a modest amino acid substitution as a means to predictably modulate the supramolecular organization and engineer the photophysical properties of π-conjugated peptidic materials.


Assuntos
Perileno , Aminoácidos , Elétrons , Simulação de Dinâmica Molecular , Peptídeos
5.
J Am Chem Soc ; 142(34): 14710-14724, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32786786

RESUMO

Recently, our group reported that enone and ketone functional groups, upon photoexcitation, can direct site-selective sp3 C-H fluorination in terpenoid derivatives. How this transformation actually occurred remained mysterious, as a significant number of mechanistic possibilities came to mind. Herein, we report a comprehensive study describing the reaction mechanism through kinetic studies, isotope-labeling experiments, 19F NMR, electrochemical studies, synthetic probes, and computational experiments. To our surprise, the mechanism suggests intermolecular hydrogen atom transfer (HAT) chemistry is at play, rather than classical Norrish hydrogen atom abstraction as initially conceived. What is more, we discovered a unique role for photopromoters such as benzil and related compounds that necessitates their chemical transformation through fluorination in order to be effective. Our findings provide documentation of an unusual form of directed HAT and are of crucial importance for defining the necessary parameters for the development of future methods.

6.
J Am Chem Soc ; 142(5): 2293-2300, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31934753

RESUMO

We describe the synthesis and electronic properties of new π-conjugated small molecules and polymers that combine the linear intramolecular conjugation pathways commonly associated with organic electronic materials with the emerging properties of radial conjugation found in cycloparaphenylenes (CPPs) and other curved π-surfaces. Using arylene ethynylenes as prototypical linear segments and [6]/[8]CPP as the radial segments, we demonstrate the formation of new electronic states that are not simply additive responses from the individual components. Quantum chemical calculations of model oligomeric structures reveal these electronic processes to arise from the hybrid nature of wave function delocalization over the linear and radial contributors in the photophysically relevant electronic states.

7.
Langmuir ; 36(24): 6782-6792, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32491857

RESUMO

Self-assembled supramolecular materials derived from peptidic macromolecules with π-conjugated building blocks are of enormous interest because of their aqueous solubility and biocompatibility. The design rules to achieve tailored optoelectronic properties from these types of materials can be guided by computation and virtual screening rather than intuition-based experimental trial-and-error. Using machine learning, we reported previously that the supramolecular chirality in self-assembled aggregates from VEVAG-π-GAVEV type peptidic materials was most strongly influenced by hydrogen bonding and hydrophobic packing of the alanine and valine residues. Herein, we build upon this idea to demonstrate through molecular-level experimental characterization and all-atom molecular modeling that varying the stereogenic centers of these residues has a profound impact on the optoelectronic properties of the supramolecular aggregates, whereas the variation of stereogenic centers of other residues has only nominal influence on these properties. This study highlights the synergy between computational and experimental insight relevant to the control of chiroptical or other electronic properties associated with supramolecular materials.


Assuntos
Aminoácidos , Nanoestruturas , Ligação de Hidrogênio , Substâncias Macromoleculares , Peptídeos
8.
Phys Chem Chem Phys ; 22(20): 11431-11439, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32386288

RESUMO

Conjugated polymers with quinonoid ground states can display low optical band gaps. The design of novel conjugated polymers with quinonoid ground states offers insights into the relative stabilities of aromatic vs. quinonoid structures. In this work, we present parameters such as the quinonoid (Q)/aromatic (A) energy difference, the band gap, and the C-C distances between the repeat units. This study reveals eight new polymers which exist in quinonoid ground state among twenty-nine polymers of varying structural composition that were subject to analysis. We expect that copolymerizing such quinonoid ground state monomers with aromatic ground state monomers will modulate the bandgap of the resulting polymers.

9.
Phys Chem Chem Phys ; 22(6): 3314-3328, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-31971189

RESUMO

Diarylperfluorocyclopentenes are a well-characterized class of molecular photoswitches that undergo reversible photocyclization. The efficiency of cycloreversion (<∼30%), in particular, is known to be limited by a competition with excited-state deactivation by internal conversion that is strongly impacted by the electron-withdrawing/donating character of pendant aryl groups. Here we present a first study to determine how varied structural motifs for the core bridge group impact excited-state dynamics that control cycloreversion quantum yields. Specifically, we compare photophysical behaviors of 3,3'-(perfluorocyclopent-1-ene-1,2-diyl)bis(2-methylbenzo[b]thiophene) with diarylethene derivatives possessing the same benzo[b]thiophene pendant group but with a rigid 1-methyl-1H-pyrrole-2,5-dione and a rigid/aromatic thieno[3,4-b]thiophene bridge (TT) core bridge group. We find that the flexible perfluorocyclopentene core undergoes cycloreversion 3-4× slower than the rigid core photoswitches (9 vs. 2-3 ps in acetonitrile, 25 vs. 5-6 ps in cyclohexane) despite comparable cycloreversion quantum yields. To distinguish effects induced by bridge vs. pendant groups, we also studied a series of photoswitches with the same thieno[3,4-b]thiophene bridging group, but with varied pendant groups including 2,5-dimethylthiophene and 2-(3,5-bis(trifluoromethyl)phenyl)-5-methylthiophene. Analysis of temperature-dependent excited-state lifetimes and cycloreversion quantum yields reveals that both the rates of nonreactive internal conversion and reactive cycloreversion increase with greater structural rigidity of the core. This difference is attributed to smaller energy barriers on the excited-state potential energy surface for both reactive and non-reactive deactivation from the 21A electronic state relative to the flexible perfluorocyclopentene switch, implying that a rigid core results in a net shallower excited-state potential energy surface.

10.
Chem Soc Rev ; 48(23): 5616, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31696184

RESUMO

Correction for 'Solid-state electrical applications of protein and peptide based nanomaterials' by Sayak Subhra Panda et al., Chem. Soc. Rev., 2018, 47, 3640-3658.

11.
J Am Chem Soc ; 141(7): 3146-3152, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30672284

RESUMO

The ability to externally modulate conjugated polymer optoelectronic properties is an important challenge for modern organic electronics. One attractive approach entails the incorporation of stimuli-responsive molecular systems, such as diarylethenes, into polymeric materials. Our approach involves the design of polymers possessing photochromic moieties pendant to the main conjugated chain to allow for electronic influence along the polymer backbone while avoiding substantial conformational demands that may affect solid-state performance. Herein, we report the synthesis of a series of thieno[3,4- b]thiophene (TT)-based photochromes that demonstrate drastically different optoelectronic properties upon cyclization. Experimental and computational investigations of aryl-extended model compounds provided crucial insight on the interplay between electronic structure and photochromic activity, thus allowing for the realization of pendant photoswitchable conjugated copolymers that reflect the activity found in the related model systems.

12.
Chemistry ; 25(66): 15141-15146, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31529793

RESUMO

Providing a chemical control over charge transport through molecular junctions is vital to developing sensing applications at the single-molecule scale. Quantum-interference effects that affect the charge transport through molecules offer a unique chance to enhance the chemical control. Here, we investigate how interference effects can be harnessed to optimize the response of single molecule dithienoborepin (DTB) junctions to the specific coordination of a fluoride ion in solution. The single-molecule conductance of two DTB isomers is measured using scanning tunneling microscopy break-junction (STM-BJ) before and after fluoride ion exposure. We find a significant change of conductance before and after the capture of a fluoride ion, the magnitude of which depends on the position of the boron atom in the molecular structure. This single-molecule sensor exhibits switching ratios of up to four orders of magnitudes, suggesting that the boron-fluoride coordination can lead to quantum-interference effects. This is confirmed by a quantum chemical characterization, pointing toward a cross-conjugated path through the molecular structure as the origin of the effect.

13.
Langmuir ; 35(43): 14060-14073, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31566986

RESUMO

Self-assembled supramolecular organic materials with π-functionalities are of great interest because of their applications as biocompatible nanoelectronics. A detailed understanding of molecular parameters to modulate the formation of hierarchical structures can inform design principles for materials with engineered optical and electronic properties. In this work, we combine molecular-level characterization techniques with all-atom molecular simulations to investigate the subtle relationship between the chemical structure of peptide-π-peptide molecules and the emergent supramolecular chirality of their spontaneously self-assembled nanoaggregates. We demonstrate through circular dichroism measurements that we can modulate the chirality by incorporating alkyl spacers of various lengths in between the peptides and thienylene-phenylene π-system chromophores: even numbers of alkyl carbons in the spacer units (0, 2) induce M-type helical character whereas odd numbers (1, 3) induce P-type. Corroborating molecular dynamics simulations and explicating machine learning analysis techniques identify hydrogen bonding and hydrophobic packing to be the principal discriminants of the observed chirality switches. Our results present a molecular-level design rule to engineer chirality into optically and electronically active nanoaggregates of these peptidic building blocks by exploiting systematic variations in the alkyl spacer length.

14.
Langmuir ; 35(47): 15221-15231, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31657579

RESUMO

Self-assembled nanoaggregates of π-conjugated synthetic peptides present a biocompatible and highly tunable alternative to silicon-based optical and electronic materials. Understanding the relationship between structural morphology and electronic properties of these assemblies is critical for understanding and controlling their mechanical, optical, and electronic responses. In this work, we combine all-atom classical molecular simulations with quantum mechanical electronic structure calculations to ascertain the sequence-structure-electronic property relationship within a family of Asp-X-X-quaterthiophene-X-X-Asp (DXX-OT4-XXD) oligopeptides in which X is one of the five amino acids {Ala, Phe, Gly, Ile, Val} ({A, F, G, I, V}). Molecular dynamics simulations reveal that smaller amino acid substituents (A, G) favor linear stacking within a peptide dimer, whereas larger groups (F, I, V) induce larger twist angles between the peptides. Density functional theory calculations on the dimer show the absorption spectrum to be dominated by transitions between carbon and sulfur p orbitals. Although the absorption spectrum is largely insensitive to the relative twist angle, the highest occupied molecular orbital strongly localizes onto one molecule within the dimer at large twist angles, impeding the efficiency of transport between molecules. Our results provide a fundamental understanding of the relation between peptide orientation and electronic structure and offer design precepts for rational engineering of these systems.


Assuntos
Oligopeptídeos/química , Multimerização Proteica , Sequência de Aminoácidos , Teoria da Densidade Funcional , Modelos Químicos , Simulação de Dinâmica Molecular
15.
Langmuir ; 35(6): 2270-2282, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30642185

RESUMO

The co-assembly behavior of peptide-π-peptide and peptide-alkyl-peptide triblock molecules that form one-dimensional (1D) nanostructures under acidic, aqueous environments is dependent on the peptide sequence and the torsional constraints imposed within the nanomaterial volume. Although a hydrophilic tripeptide sequence (Asp-Asp-Asp, DDD-) previously promoted isolation/dilution of minority π-electron components in the matrix of aliphatic peptides, a ß-sheet promoting sequence (Asp-Val-Val, DVV-) led to blocks of the two components distributed within larger 1D self-assembled nanostructures. Furthermore, torsional restrictions exerted on the oligoaromatic π-electron unit by the self-assembly process can lead to changes in its conformation (for example, planarity), which has ramifications on its functionality within the peptide matrix. Here, we study this impact on thiophene-based π-electron units with inherently different geometries, viz., relatively planar 2,2':5',2″:5″,2‴-quaterthiophene and 3″,4'-dimethyl-2,2':5',2″:5″,2‴-quaterthiophene, which is twisted at the core bithiophene unit due to the presence of two methyl groups. These peptides were co-assembled at 5 and 20 mol % with peptide- n-decyl-peptide triblock molecules, and the resultant assemblies were studied using UV-vis absorption, photoluminescence, and circular dichroism spectroscopies. We found that torsional restriction in dimethylated quaterthiophene units can impact the stacking behavior of these 1D peptide nanoassemblies and have consequences on their photophysical properties. Additionally, these insights help in the understanding of the dependence of the optoelectronic properties of these materials on both the intrinsic conformation of π-units and the geometric constraints imposed by their immediate local environment under aqueous conditions.


Assuntos
Nanoestruturas/química , Oligopeptídeos/química , Tiofenos/química , Medições Luminescentes , Conformação Proteica , Espectrofotometria Ultravioleta
16.
Phys Chem Chem Phys ; 21(26): 14440-14452, 2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-30920561

RESUMO

Bis(bithienyl)-1,2-dicyanoethene (4TCE) is a photoswitch that operates via reversible E/Z photoisomerization following absorption of visible light. cis-to-trans photoisomerization of 4TCE requires excitation below 470 nm, is relatively inefficient (quantum yield < 5%) and occurs via the lowest-lying triplet. We present excitation-wavelength dependent (565-420 nm) transient absorption (TA) studies to probe the photophysics of cis-to-trans isomerization to identify sources of switching inefficiency. TA data reveals contributions from more than one switch conformer and relaxation cascades between multiple states. Fast (∼4 ps) and slow (∼40 ps) components of spectral dynamics observed at low excitation energies (>470 nm) are readily attributed to deactivation of two conformers; this assignment is supported by computed thermal populations and absorption strengths of two molecular geometries (PA and PB) characterized by roughly parallel dipoles for the thiophenes on opposite sides of the ethene bond. Only the PB conformer is found to contribute to triplet population and the switching of cis-4TCE: high-energy excitation (<470 nm) of PB involves direct excitation to S2, relaxation from which prepares an ISC-active S1 geometry (ISC QY 0.4-0.67, kISC∼ 1.6-2.6 × 10-9 s-1) that is the gateway to triplet population and isomerization. We ascribe low cis-to-trans isomerization yield to excitation of the nonreactive PA conformer (75-85% loss) as well as loses along the PB S2→ S1→ T1 cascade (10-20% loss). In contrast, electrocyclization is inhibited by the electronic character of the excited states, as well as a non-existent thermal population of a reactive "antiparallel" ring conformation.

17.
J Phys Chem A ; 123(4): 881-888, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30620595

RESUMO

The definition and measurement of local and global aromaticity in fused ring polycyclic aromatic compounds is a complex issue. Historically, these types of molecules have been explored in this capacity by way of experimental (NMR, thermochemistry) and computational (NICS, HOMA) analyses. We previously showed how borepin rings with [ b, f] arene fusions can be used as experimental magnetic aromaticity reporters via the remaining protons attached to the borepin rings. In this report, we describe a joint experimental and computational analysis of several borepin-containing polycyclic aromatic molecules in order to draw conclusions about the influence of ring fusion on aromaticity. We find that the borepin ring within these extended structures is a unique motif with limited σ-contribution to aromaticity while still displaying a wide range of structural and magnetic aromatic character.

18.
Chem Soc Rev ; 47(10): 3640-3658, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-29683469

RESUMO

The field of organic electronics continues to be driven by new charge-transporting materials that are typically processed from toxic organic solvents incompatible with biological environments. Over the past few decades, powerful examples of electrical transport as mediated through protein-based macromolecules have fueled the emerging area of organic bioelectronics. These attractive bioinspired architectures have enabled several important applications that draw on their functional electrical properties, ranging from field-effect transistors to piezoelectrics. In addition to naturally occurring protein biomacromolecules, unnatural oligopeptide self-assemblies and peptide-π conjugates also exhibit interesting electrical applications. This review provides an overview of electrical transport and electrical polarization in specialized biomaterials as manifested in solid-state device architectures.


Assuntos
Nanoestruturas/química , Peptídeos/química , Proteínas/química , Transporte de Elétrons , Elétrons
19.
J Am Chem Soc ; 139(25): 8685-8692, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28578581

RESUMO

We report a peptide-based multichromophoric hydrogelator system, wherein π-electron units with different inherent spectral energies are spatially controlled within peptidic 1-D nanostructures to create localized energy gradients in aqueous environments. This is accomplished by mixing different π-conjugated peptides prior to initiating self-assembly through solution acidification. We can vary the kinetics of the assembly and the degree of self-sorting through the choice of the assembly trigger, which changes the kinetics of acidification. The hydrolysis of glucono-δ-lactone (GdL) provides a slow pH drop that allows for stepwise triggering of peptide components into essentially self-sorted nanostructures based on subtle pKa differences, whereas HCl addition leads to a rapid formation of mixed components within a nanostructure. Using 1H NMR spectroscopy and fiber X-ray diffraction, we determine the conditions and peptide mixtures that favor self-sorting or intimate comixing. Photophysical investigations in the solution phase provide insight into the correlation of energy-transport processes occurring within the assemblies to the structural organization of the π-systems.


Assuntos
Hidrogéis/química , Peptídeos/química , Cinética , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Nanoestruturas/química , Difração de Raios X
20.
Bioconjug Chem ; 28(3): 751-759, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28292179

RESUMO

Self-assembling peptides are extensively exploited as bioactive materials in applications such as regenerative medicine and drug delivery despite the fact that their relatively weak noncovalent interactions often render them susceptible to mechanical destruction and solvent erosion. Herein, we describe how covalent cross-linking enhances the mechanical stability of self-assembling π-conjugated peptide hydrogels. We designed short peptide-chromophore-peptide sequences displaying different reactive functional groups that can form cross-links with appropriately modified bifunctional polyethylene glycol (PEG)-based small guest molecules. These peptides self-assemble into one-dimensional fibrillar networks in response to pH in the aqueous environment. The cross-linking reactions were promoted to create a secondary network locked in place by covalent bonds within the physically cross-linked (preassembled) π-conjugated peptide strands. Rheology measurements were used to evaluate the mechanical modifications of the network, and the chemical changes that accompany the cross-linking were further confirmed by infrared spectroscopy. Furthermore, we modified these cross-linkable π-conjugates by incorporating extracellular matrix (ECM)-derived Ile-Lys-Val-Ala-Val (IKVAV) and Arg-Gly-Asp (RGD) bioactive epitopes to support human neural stem and progenitor cell (hNSCs) differentiation. The hNSCs undergo differentiation into neurons on IKVAV-derived π-conjugates while RGD-containing peptides failed to support cell attachment. These findings provide significant insight into the biochemical and electronic properties of π-conjugated peptide hydrogelators for creating artificial ECM to enable advanced tissue-engineering applications.


Assuntos
Materiais Biocompatíveis/química , Reagentes de Ligações Cruzadas/química , Hidrogéis/química , Laminina/química , Oligopeptídeos/química , Fragmentos de Peptídeos/química , Peptídeos/química , Polietilenoglicóis/química , Adesão Celular , Elétrons , Humanos , Células-Tronco Neurais/citologia , Neurogênese , Reologia , Engenharia Tecidual , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa